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Circularly polarized high harmonics (CHHs) have been observed in several solid targets under single-color
circularly polarized excitation. However, experimental observations show that CHHs cannot be efficiently
generated in monolayer molybdenum disulphide (MoS2) driving by a single-color circularly polarized laser,
thus letting its unique valley-selective circular dichroism (VSCD) to remain unexploited in the high harmonic
generation process. Here we demonstrate that the efficient generation of CHHs in monolayer MoS2 driven by
counterrotating bicircular (CRB) fields and the broken inversion symmetry of monolayer MoS2 leads to the
generation of forbidden 3n (n ∈ N) harmonic orders. Interestingly, we find that the VSCD lead to a distinctive
valley selection of harmonic orders, while the valley selection caused by the trefoil orientation relative to the
lattice is also observed. Dynamical symmetry analyses show that the rotational symmetry of the crystals can be
decoded by the combination of a linearly polarized excitation scheme and CRB excitation scheme via the lowest
common multiple rule. Additionally, VSCD leaves unique fingerprints in the ellipticity of harmonics.
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I. INTRODUCTION

Circularly polarized high harmonics (CHHs) play an im-
portant role in investigating chirality-sensitive light matter
interactions [1–6]. Due to the recollision-based mecha-
nism, generating CHHs directly in the gas-phase relies on
counterrotating bicircular (CRB) pulses [5,7,8], noncollinear
counterrotating circularly polarized fields [9], or the use of
molecular alignment techniques [10]. In contrast, the periodic
nature and the accompanying band structure of the crystalline
solid leads to an intrinsically different mechanism of high
harmonic generation (HHG) from a solid. The anisotropy of
the band structure and the easy-to-control direction of the
crystal axis are conducive to the generation, measurement, and
control of the polarized harmonic radiation. Several experi-
ments reported the polarization properties of the harmonics
from solids [11–18]. The generation of CHHs has been theo-
retical predicted in cubic Si and MgO excited by single-color
circularly polarized (CP) pulses [19]. Experimentally, CHHs
were obtained in a thin gallium selenide crystal [20] and
quartz [21] irradiated by CP pulses. Recently, it was shown
that the polarization states of high harmonics from solids can
differ from those of the drivers [17,18], CHHs with elliptically
polarized (EP) excitation were observed experimentally in
cubic Si [17] and zinc-blende ZnS [18].

The negligible propagation effect, unique energy band
structure, and distinctive optical properties make two-
dimensional (2D) materials interesting candidates for HHG
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[12,22–33]. For HHG in the 2D target driving by midinfrared
pulses, both atomic-like [22,31] and anomalous ellipticity
dependence (harmonic yields are enhanced by elliptically
polarized driver) [23,24] are experimentally or theoretically
observed. These results illustrate the important point that
harmonic yields are greatly suppressed by using a CP driv-
ing field. Theoretical simulation shows that it is possible to
generate CHHs in graphene with a single CP, near-infrared
driver [25], or CRB fields, composed of the fundamental and
its second harmonic [26]. Some theoretical results even show
that the linearly polarized (LP) driver lead to the emission of
elliptically polarized high harmonics (EHHs), on the contrary,
EP driver may give rise to LP harmonics [27].

Monolayer molybdenum disulphide (MoS2) can be re-
garded as the semiconductor analog of graphene. Unlike the
bulk MoS2 with indirect band gap, monolayer MoS2 crystal
is a direct band-gap semiconductor (1.8 eV) with hexagonal
lattice structure [34]. The first Brillouin zone (BZ) with two
nonorthogonal primitive reciprocal vectors b1 and b2 and the
associated high-symmetric points are shown in Fig. 1(b). The
two local minima of the band gap shown in Fig. 1(a) are
the valleys. The broken inversion symmetry induces positive
(negative) Berry curvature in K valley (K ′ valley). More im-
portantly, the broken inversion symmetry also gives rise to a
unique valley-selective circular dichroism (VSCD) [Fig. 1(d)]
[35–38], that is, the K valley only absorbs left circularly
polarized photons, whereas the K ′ valley absorbs right circu-
larly polarized photons [35,36]. The VSCD is quantified by
the k-resolved degree of circular polarization (DCP) shown
in Fig. 1(c) [34,36]. The unique VSCD is expected to play
an important role in the generation of CHHs in monolayer
MoS2. However, for the monolayer MoS2 crystal, both the
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FIG. 1. (a) Band gap (eV) of monolayer MoS2 in the 2D mo-
mentum space, defined as the energy difference between the lowest
conduction band (CB) and the highest valence band (VB). The
two red arrows represent the two in-plane reciprocal lattice vectors
b1 = ( 2π

a , − 2π√
3a

) and b2 = ( 2π

a , 2π√
3a

), respectively. K = ( 4π

3a , 0) and

K ′ = ( 8π

3a , 0) are the two inequivalent K points. a = 3.129 Å is the
lattice constant. (b) The first Brillouin zone in the reciprocal lattice.
� = (0, 0) is the gamma point. The kx and ky directions correspond to
the zigzag and armchair directions of monolayer MoS2. (c) Degree of
circular polarization. (d) Schematic of one-photon valley-contrasting
selection rules: K (K ′) valley only absorbs left (right) circularly
polarized light for the sake of angular momentum conservation. The
definition of the polarization: σ+ (σ−) correspond to the right (left)
circularly polarized state of light. (e) Berry curvature in units of
Å2. (f) Typical total harmonic spectrum driven by CRB fields with
(σ+, σ−) configuration, that is, σ+ polarized fundamental and σ−

polarized second harmonic.

experiment [12,22,29] and theory [22,29] show atomic-like
monotonic ellipticity dependence. The harmonic yields al-
most vanishes with CP excitation. Therefore, CHHs cannot be
efficiently generated in monolayer MoS2 crystal excited by a
single CP pulses. Fortunately, not only the crystal symmetries,
but also the polarization states of the drivers affect HHG from
solids [39], it is quite natural to question whether it is possible
to generate CHHs in the monolayer MoS2 crystal by tailored
excitation fields and what role will the VSCD play.

The tailored excitation fields can possess desired field
symmetries, such as discrete rotational symmetry [5,7]. The
selection rules are governed by the associated rotational
symmetry of the laser-target system [40–43]. For a system
consisting of a laser with L-fold rotational symmetry and a
target with in-plane M-fold rotational symmetry, the allowed
harmonic orders are Nk ± 1(k = 0, 1, 2, . . .), where N is the
greatest common divisor (GCD) of L and M [42,43]. For
solid targets with CM symmetry driven by a single-color CP
laser (C∞ symmetry), the allowed harmonic orders by GCD
rule are Mk ± 1, which is consistent with the experimental
results [20]. For isotropic gas-phase atoms (C∞ symmetry)
[5] or solid targets with C3 symmetry [6] driven by the CRB
fields with C3 symmetry, the experimentally observed CHHs
orders are 3k ± 1, which is consistent with the GCD rule.

For solid targets with C4 or C6 symmetries, the GCD rule is
still valid [6]. Experimental observations show that, similar
to gas-phase targets, the lattice itself participates in the HHG
process and can give or take angular momentum [6,20], the
sum of the angular momentum of the fundamental photons
is equal to the angular momentum transferred to the lattice
(Mk, [k ∈ N]) plus the angular momentum of the harmonic
photon (±1) [6,20]. The experimental results also show that
the CRB excitation scheme can be used to determine crystal
symmetries accurately when the rotational symmetry of the
driver and the rotational symmetry of crystal are matched [6].

Recently, lightwave-driven switching of the valley pseu-
dospin on the subcycle scale in a monolayer of tungsten
diselenide have shed new light on lightwave valleytronics
[44]. In the CRB excitation scheme, a new, robust mechanism
for valley selection by the orientation of the trefoil relative to
the lattice has been found theoretically [45]. This new mecha-
nism for valley selection induces a sixfold pattern of harmonic
emission in graphene with inversion symmetry [26]. Instead,
monolayer MoS2 breaks inversion symmetry, the CRB ex-
citation scheme is expected to imprint VSCD directly onto
harmonic spectrum, the two inequivalent valleys will impart
different angular momentums to harmonic photons. With the
participation of VSCD, what new characteristics will the val-
ley selected harmonic spectrum have?

In this paper, we demonstrate that CHHs can be generated
in monolayer MoS2 with CRB excitation scheme by solv-
ing semiconductor Bloch equations (SBEs) in the velocity
gauge (VG). The connection between the valley selection
of harmonic orders and VSCD is revealed by the valley-
resolved and polarization-resolved harmonic spectra. The
rotation scanned harmonic spectra clearly show the mech-
anism of valley selection caused by the trefoil orientation
relative to the lattice. Based on the dynamical symmetry
analysis, we show that the allowed number of folds in the
pattern of direction-dependent yields for above-gap, interband
harmonics obey the lowest common multiple (LCM) rule,
which provide potential applications to all-optical probes of
crystal structure. In addition, we also discover the fingerprints
of VSCD leaving in ellipticity of harmonics.

This paper is organized as follows. In Sec. II, we present
the details of the SBEs in VG. We illustrate our results and
analyze the underlying physical mechanisms in Sec. III. Fi-
nally, we summarize the work and draw our conclusions in
Sec. IV. Atomic units are used in this paper.

II. THEORETICAL METHODS

In the simulations, we use a symmetry-based (D3h

point-group) three-band tight-binding (TB) model for mono-
layer MoS2 constructed from a minimal basis consisting
of dz2 , dxy, dx2−y2 orbits of Mo atoms [34] and ignore the
spin-orbit coupling. The in-plane C3 rotational symmetry
operations is a subset of the symmetry operations of D3h

point-group. Therefore, the Hamiltonian still belongs to the
C3 rotating symmetry. This TB model involving up to the
third-nearest-neighbor Mo-Mo hoppings works well in a large
neighborhood around the K or K ′ valley, but it is not enough to
capture the physics in the small region around Gamma points
where p-orbitals of S atoms are important.

024305-2



DYNAMICAL SYMMETRY AND VALLEY-SELECTIVE … PHYSICAL REVIEW B 105, 024305 (2022)

The density matrix approach is used to model the electron
dynamics in monolayer MoS2. Within the independent-
particle approximation and the dipole approximation, the
temporal evolution of density operator ρ̂ is described by SBEs
in the VG [28,46–49]

ρ̇mn(k, t ) = −i

[
εmn(k) − i

1

T2
(1 − δmn)

]
ρmn(k, t )

− iA(t ) ·
∑

l

[Pml (k)ρln(k, t ) − Pln(k)ρml (k, t )]

− ρmn(k, t ) − 1

T1
δmn. (1)

Here, ρmn(k, t ) is the density matrix element. εmn(k) =
Em(k) − En(k) and Pmn(k) are, respectively, the band-gap en-
ergy and the matrix elements of momentum operator between
m and n energy bands at k. The diagonal elements of the mo-
mentum operator are related to the band dispersion relation by
Pnn(k) = ∇kEn(k). The off-diagonal elements of the momen-
tum operator are calculated as Pmn(k) = γ 〈n, k|∇kĤk|m, k〉
where we introduce a factor γ to rescale momentum matrix
to ab initio result [28], |m, k〉 is the periodic part of the
Bloch wave function. Different from the way of the damping
of physical quantities by the dephasing terms in the length
gauge (LG) [47], the dephasing time T1 and T2 in Eq. (1)
are responsible for the damping of the diagonal and off-
diagonal elements of the density matrix, respectively [28,50].
The damping rates for physical qualities such as quantum
coherence and population are functions of T1 and T2, similar
to the mixed form in the literature [51]. Like the dephasing
terms in LG, the dephasing terms we used in VG also lead to
spectra with clean peaks structure. The advantage of the SBEs
in VG is that a random structure gauge is sufficient [28,47–
49,52]. The total current in the BZ is

J(t ) =
∑
mn

∫
BZ

dk[ρmn(k, t )Pnm(k) + NVBA(t )], (2)

where NVB is the number of valence bands. The parallelogram
defined by nonorthogonal b1 and b2 in Fig. 1(a) shows the
integral area used in this work, which is equivalent to the first
BZ. The high-order harmonic spectrum is given by the Fourier
transform (FT) of the time derivative of the current as I (ω) ∝
ω2|FT[J(t )]|2.

Another advantage of the SBEs in VG is that every k-
crystal momentum channel is decoupled [28,46–49], thus
making the implementation of parallelization of Eq. (1) more
accessible. Meanwhile, K or K ′ valley-resolved spectra can
be reasonably obtained by integrating the Eq. (1) in the left or
right triangular region shown in Fig. 1(c). Although the VG
require more bands for convergence [47] and the phenomeno-
logical dephasing terms are not gauge-invariant [47,53], our
simulations (γ = 0.1, T1 = 500 fs, and T2 = 20 fs [28]) have
already captured the orientation-dependent features observed
in the experiment [12,54], thus confirming the validity of our
simulations.

III. RESULTS AND DISCUSSION

In our simulations, the vector potential of the fields have
the following form:

Ax(t ) = A0 f (t )

[
ξ1 cos(ωt + ϕ) + R

q
ξ2 cos(qωt )

]
, (3)

Ay(t ) = A0 f (t )

[
ζ1 sin(ωt + ϕ) + R

q
ζ2 sin(qωt )

]
, (4)

where A0 and ω are the amplitude of the vector potential and
the circular frequency of the fundamental field, respectively.
q is an integer greater than 1, which represents the frequency
ratio of the two fields. ξi = 1√

1+ε2
i

, ζi = εi√
1+ε2

i

, (i = 1, 2), the

negative (positive) ellipticity εi is defined as the left-handed
(right-handed) helicity. The CRB fields (|εi| = 1, but with
opposite signs) composed of the fundamental and its qth
harmonic are denoted as 1:q CRB. It possesses (q + 1)-fold
rotational symmetry, which is denoted as Cq+1. We use a
temporal envelope f (t ) = cos2( ωt

2n ) with the number of total
optical cycles n = 40. ϕ is the phase difference between the
two fields. R represents the ratio of the electric field strengths
for the CRB fields. The central wavelength 4 μm, peak inten-
sity 1 TW/cm2 and R = 2 are adopted. This laser intensity is
below the damage threshold for monolayer MoS2 [12,22,29].

Figure 1(f) shows the total harmonic spectrum for mono-
layer MoS2 driven by 1 : 2 CRB fields with (σ+, σ−)
configuration (ϕ = 0). Since C3 symmetry of 1 : 2 CRB fields
inherently conform to the threefold rotation symmetry of
monolayer MoS2, the harmonics come in pairs, n(ω + 2ω) +
ω = (3n + 1)ω and n(ω + 2ω) + 2ω = (3n + 2)ω, which is
consistent with the GCD rule and is similar with the result
from neon or argon gas [5,7,8] or pristine graphene [26] ex-
posed to 1 : 2 CBR fields. The distinguishing feature is that
the harmonics 3nω are no longer parity forbidden, reflecting
the broken inversion symmetry. But the intensity of the har-
monics 3nω is about three orders of magnitude lower than that
of harmonics (3n + 1)ω and (3n + 2)ω.

A. Valley-selective HHG

Figure 2(a1) shows the left (σ−) and right (σ+) circu-
larly polarized components of the harmonic emission driven
by 1 : 2 CRB fields with (σ+, σ−) configuration. The 10th
and 13th [(3n + 1)th] harmonics are dominant by σ− com-
ponents, whereas the 11th and 14th [(3n + 2)th] harmonics
are dominant by σ+ components. Therefore, the (3n + 1)th
and (3n + 2)th harmonics are nearly circular with opposite
helicity. But, for the 3nth harmonics such as H12, the intensity
of σ− component is comparable to that of σ+ component,
and therefore are not circular. When drivers with (σ−, σ+)
configuration are used, as shown in Fig. 2(b1), except for
the reversal of harmonic helicity, other characteristics remain
unchanged.

Valley-resolved total spectra in Fig. 2(a2) show that the
intensity of the K-valley components for the 11th and 14th
[(3n + 2)th] are much higher than that of the K ′-valley
components. While for the 10th and 13th [(3n + 1)th], the
situation is reversed. These results support that, for (σ+, σ−)
configuration drivers, the 11th and 14th [(3n + 2)th] harmon-
ics are emitted from the K valley, while the 10th and 13th
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FIG. 2. HHG spectra from monolayer MoS2 driven by 1 : 2 CRB
fields (ϕ = 0). Green (cyan) shaded areas indicate σ+-polarized (σ−-
polarized) spectra, respectively. Red (blue) shaded areas indicate
K valley (K ′ valley) resolved spectra, respectively. Individual har-
monic orders are multiplied with the indicated multiplication factors.
(a1)–(a3) HHG spectra driven by 1 : 2 CRB fields with (σ+, σ−)
configuration. (b1)–(b3) HHG spectra driven by 1 : 2 CRB fields
with (σ−, σ+) configuration. (a1,b1) σ+ (σ−) components of the to-
tal harmonic spectra. (a2,b2) Valley-resolved total harmonic spectra.
(a3,b3) Valley-resolved, x-polarized components of total harmonic
spectra.

[(3n + 1)th] harmonics are emitted from the K ′ valley. When
drivers with (σ−, σ+) configuration are used, the intensity ra-
tio of K to K ′ valley components is reversed [Fig. 2(b2)]. The
x-polarized spectra shown in Figs. 2(a3) and 2(b3) support
the same conclusion. The one-to-one relationship between the
reversal of the helicity and the reversal of valley-resolved
origins support that the valley selection of harmonic orders oc-
cur in monolayer MoS2 with broken inversion symmetry, the
generation of (3n + 1)th and (3n + 2)th harmonics follows
the one-photon valley-contrasting selection rules, as shown
in Fig. 1(d), when the recombinations of electron-hole pair
occur in the K valley (K ′ valley), the interband harmonics
will have right (left) circular polarization for the sake of an-
gular momentum conservation. Therefore the (3n + 1)th and
(3n + 2)th harmonics are dominant by the interband mecha-
nism and the distinctive valley selection of harmonic orders
can be attributed to the VSCD of monolayer MoS2. Note that
the valley selection of harmonic orders cannot occur in the
inversion-symmetric graphene system [26]. The only excep-
tion for the valley-resolved spectra of H10 in Figs. 1(b2) and
2(b3) will be discussed in the following analysis.

Figures 3(a)–3(c) present, respectively, the simulated to-
tal, K , and K ′ valley-resolved spectra driven by 1 : 2 CRB
field with (σ+, σ−) configuration as a function of the trefoil
orientation angle relative to the lattice. Three features are
worth mentioning. The first is the valley selection of har-
monic orders, that is, (3n + 1)th harmonics [n = 2, 3, 4 in
Fig. 3] mainly comes from the contribution of the K ′ val-
ley, and the contribution of the K valley is small. Whereas
the (3n + 2)th harmonics are dominated by the contribution

FIG. 3. (a) The total harmonic spectra as a function of the angle
θ . Panels (b) and (c) show the K and K ′ valley-resolved spectra as
a function of the angle θ on the same scale (not logarithmic). Panel
(d) shows the polarplot of the normalized yields for H10 (orange
five-pointed stars) and H11 (violet triangles) as a function of angle
θ . The angle θ denote the orientation of the 1 : 2 CRB fields with
respect to �–K direction (dark gray arrow, 0◦ direction). Panels (e)
and (f) show the normalized harmonic yields as a function of the
angle θ , calculated for the total and valley-resolved ninth, tenth,
and 11th harmonics. Thick cyan (thin red) lines represent harmonic
yields for K (K ′) valley-resolved harmonics. Yields for a specific
order of valley-resolved harmonics are normalized by the maximum
yield between the yield of K and yield of K ′ valley. Yields for a
specific order of total harmonics (olive green circles) are normal-
ized independently. Panels (a)–(e) are spectra driven by fields with
(σ+, σ−) configuration. Panel (f) represents spectra driven by fields
with (σ−, σ+) configuration.

of the K valley. Figure 3(e) shows the valley selection of
harmonic orders more clearly. Figure 3(f) show that the re-
versed results are observed when simultaneously changing
the helicities of both driving fields. Second, as shown in
Figs. 3(a) and 3(d), the valleys (harmonic orders) are also
selected by the orientation of the CRB fields relative to the
lattice (each 180◦ change in ϕ results in 120◦ rotation of the
1 : 2 CRB fields). Figure 3(d) clearly shows that the H11
(violet triangles) are mainly emitted with the orientation of the
CRB fields along the �-M directions (θ = 30◦, 150◦, 270◦),
approximately. While the orientation of the CRB fields along
the �-M directions (θ = 90◦, 210◦, 330◦), approximately, are
favored for H10 (orange five-pointed stars). Third, each pair of
harmonics (specific n value) exhibit three-fold beating similar
to Fig. 3(d), but with different offset phases. The similar phase
offset was observed in quartz by experiments [6]. It can be
qualitatively understood by the recollision model for HHG in
solids [55–63], the electron-hole pairs generated at different
initial momentum go across different recollision trajectories,
thus accumulating a different dynamic phase [64–66], leading
to different offset phases for different pairs of harmonics.
Otherwise, the valley selection caused by field orientation
can be used to obtain helicity-selected harmonics in a wide
spectral range. Furthermore, as shown in Fig. 3(f), the yields
of H10 for K and K ′ valley-resolved components are nearly
equal (near zero) at θ = 0◦, 120◦, 240◦, 360◦, corresponding
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(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

FIG. 4. (a)–(c) Yields of the total harmonics (cyan open circles),
the parallel (thick red lines), and perpendicular (thin blue lines)
components of harmonics as a function of angle θ for LP laser.
(d)–(f) Yields of harmonics as a function of the angle θ for 1 : 2
CRB fields. (h)–(i) Yields of harmonics as a function of the angle θ

for 1 : 3 CRB fields. Thick red lines and thin cyan lines in panels
(d)–(j) are driven by CRB fields with (σ−, σ+) configuration and
(σ+, σ−) configuration, respectively. The angle θ denote the polar-
ization direction of LP field or the orientation of the CRB fields
with respect to �-K direction (dark gray arrow, 0◦ direction). First
[(a), (d), and (h)], second [(b), (e), and (i)], and third [(c), (f), and
(j)] columns present the normalized, direction-resolved yields of
harmonics for ninth (H9), tenth (H10), and 11th (H11) harmonic
orders, respectively. Note that the yields of harmonics are normalized
independently.

to the exception for H10 in Figs. 2(b2) and 2(b3). Except for
these points, the yield of the K-valley component are always
greater than that of the K ′-valley component. Therefore, the
exception for H10 in Figs. 2(b2) and 2(b3) do not change the
qualitative conclusions about the valley selection of harmonic
orders.

B. Rotational symmetry probing via dynamical symmetry

To investigate the dependence of HHG on the dynamical
symmetries, we apply the LP field, 1 : 2 CRB fields, and
1 : 3 CRB fields, corresponding to C2, C3, and C4 symmetries,
respectively, to the monolayer MoS2. The polar plots of the
normalized yields of the total, parallel, and perpendicular
components for H9, H10, and H11 (above-gap harmonics)
driving by LP laser pulses are shown in Figs. 4(a)–4(c), re-
spectively. The parallel components (thick red lines) exhibit
a sixfold pattern. The perpendicular components (thin blue
lines) of even harmonics also exhibit a clear sixfold pattern,
whereas the perpendicular components (thin blue lines) of odd
harmonics exhibit a twelvefold pattern. The total yields of odd
harmonics are mainly contributed to by parallel components,
whereas the total yields of even harmonics are dominated
by perpendicular components. Both the total yields (cyan
open circles) of odd and even harmonics exhibit a sixfold
pattern. The LP laser field possesses C2 symmetry, and the

monolayer MoS2 possesses C3 symmetry, the allowed number
of lobes in the pattern of total yields are the LCM of rota-
tional symmetries of the target and laser field. All of these
polarization-dependent results reported in Figs. 4(a)–4(c) are
in excellent agreement with the experimental observation [12]
and the recent theoretical simulation [28], thus validating our
calculations.

When 1 : 2 CRB fields are used, the C3 symmetry of the
field exactly matches the C3 symmetry of monolayer MoS2.
The convolution of the threefold field and the threefold crystal
result in a threefold pattern, which are clearly demonstrated
in the polar plots of the normalized yields for H9, H10, and
H11 in Figs. 4(d)–4(f). The thin cyan lines for the (σ+, σ−)
configuration are extracted from the spectrograms in Fig. 3(a).
The maximal yields of H10 are along the �-M directions
(θ = 90◦, 210◦, 330◦), approximately. The maximal yields of
H11 are along the �-M directions (θ = 30◦, 150◦, 270◦), ap-
proximately. In addition, there are three unexpected, small
lobes (sublobes) displaced by 60◦ relative to the three main
lobes, e.g., the sublobes are along the 90◦, 210◦, 330◦ direc-
tions in Fig. 4(f). Notably, thin cyan lines and thick red lines,
are mirror symmetrical to the �-M directions, approximately.
The threefold patterns for H9 are obviously different from
that of H10 and H11. The maximal yields for the (σ−, σ+)
configuration (the thick red line for H9) deviates from the
�-M direction, neither in the �-M direction nor in the �-K
direction. The mirror symmetry between the thick red line
and the thin cyan line for H9 no longer exists. All in all,
the allowed number of lobes is still equal to the LCM of the
rotational symmetries of the target and laser fields.

If the rotational symmetry of the target and laser fields
do not match exactly, what will the pattern of direction-
dependent yields look like? Figures 4(i) and 4(j) show the
normalized total yields of H10 and H11 for 1 : 3 CRB fields
with C4 symmetry and the monolayer MoS2 with the C3 sym-
metry, where the ambiguous twelvefold pattern with a small
modulation depth is observed. These expected results further
confirm the LCM rule. However, the yield pattern of H9 (3nth
harmonic) is closer to a fourfold symmetry. Note that each
120◦ change in ϕ results in 90◦ rotation of the 1 : 3 CRB
fields.

LCM rules can be well understood by a real-space picture
for HHG in solids [11,15,67]. Since monolayer MoS2 is a
layered material with a hexagonal lattice, it has three in-plane
S-Mo bonds. The spatial directions of atomic bonds define
the preferred directions for electronic motion in real space
[11,15,67]. The harmonic yields are maximized when the
exciting electric field is aligned with these preferred directions
[11,15,67]. Therefore, when we discuss the rotational symme-
try of the pattern of direction-dependent harmonic yields, we
are actually faced with a counting problem [68]. When the
laser field rotate by 360◦ around the axis of laser propagation,
we need to count the number of times that the lobes of the
electric field are aligned with the direction of the S-Mo bond
(abbreviated as the LABD event), which equals the number
of folds for the rotational symmetry of the yield pattern. Note
that the lobes of the laser electric field have the same rotational
symmetry with the laser vector potential in momentum space.

In general, for a system consisting of a laser with L-
fold rotational symmetry and a target with in-plane M-fold
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(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

FIG. 5. The same as Fig. 4 but for below-gap harmonics H3, H4,
and H5.

rotational symmetry, the total number of LABD events should
be L × M. When the GCD of L and M is greater than 1, i.e.,
GCD > 1, the LABD events always occur simultaneously for
GCD lobes. Thus, the GCD LABD events are indistinguish-
able. According to the Addition Principle [68], the number of
the LABD events is L × M/GCD = LCM.

For the below-gap harmonics driving by LP laser pulses,
as shown in Figs. 5(a)–5(c), in addition to minor differences
in the details, the yield pattern and characteristics are consis-
tent with those of the above-gap harmonics. For the case of
fields with C3 symmetry, as shown in Figs. 5(e) and 5(f), the
normalized total yields of H4 and H5 still exhibit a threefold
pattern, but with relatively wider lobes and thus ambiguous
directivities. Obviously, the mirror symmetries to �-M direc-
tions between the thick red lines and the thin cyan lines are
preserved. For the below-gap H3 (3nth harmonic), the unex-
pected sublobes become too big to be identified as a threefold
pattern [Fig. 5(d)]. For the case of fields with C4 symmetry,
the below-gap H3 shows a near isotropic yield pattern, and the
yield patterns of H4 and H5 are closer to a fourfold symmetry.

To sum up, only the above-gap, interband harmonics obey
the LCM rule, while the above-gap 3nth harmonics and the
below-gap harmonics do not. Therefore, for the purpose of
structural probing, it is preferable to use above-gap, inter-
band harmonics, e.g., (3n + 1)th or (3n + 2)th harmonics,
its narrower lobes and the larger modulation depths in the
orientation-dependent pattern of the harmonic yield reduce
the experimental challenges, make this all-optical method for
structural probes more promising. More generally, when the
crystal symmetry is unknown, the LCM rule mean that one
should use the combination of different excitation schemes to
decode the rotation symmetries of crystal with HHG. For ex-
ample, a polarization scan with a LP field will lead to sixfold
pattern for both targets of C3 and C6 symmetries, while a
polarization scan with threefold fields will lead to sixfold pat-
tern for both targets of C2 and C6 symmetries. Therefore, the
combination of LP field scheme and threefold fields scheme

(a)

(b)

(c)

FIG. 6. Ellipticity of harmonics driven by fields with (σ+, σ−)
configuration with ε2 = 1.0 and ε1 = 0.3, 0.5, 0.7, 1.0, respectively.
Panels (a), (b), and (c) are ellipticity of harmonics for θ =
0◦, 30◦, 60◦, respectively.

is essential to make an accurate judgment about the rotation
symmetry of crystal.

C. Fingerprints of VSCD leaving in harmonic spectra

Figure 6 shows that the ellipticity of the 3nth harmonics
can be adjusted by tuning the ellipticity of one of the driv-
ing fields, ε1, whereas the ellipticity of the (3n + 1)th and
(3n + 2)th harmonics hardly changes. This is dramatically
different from that of the gas medium, where the ellipticity of
every harmonics can be controlled by varying the ellipticity of
the driving lasers [7]. So far, it is generally accepted that the
HHG in solids is contributed to by two distinct mechanisms:
the interband mechanism and the intraband mechanism. The
sensitivity of the harmonic ellipticity to the driver’s ellipticity
can be qualitatively understood by which mechanism domi-
nates for a particular harmonic order.

The interband mechanisms are better understood in terms
of the polarization of the electron-hole pairs or the recollision
picture, while the intraband mechanism can be understood by
the semiclassical motion of carriers (e.g., on the mth band)
driving by the laser field

vm(k) = ∇kεm(k) + E(t ) × �m(k). (5)

The first term of the above equation is the group velocity of the
mth band, the second term is the transverse velocity induced
by Berry curvature. Naturally, the intraband current can be
written in the following two parts:

J(t ) =
∫

BZ
vm[k(t )]nm(k, t )d2k

=
∫

BZ
∇kεm[k(t )]nm(k, t )d2k

+
∫

BZ
E(t ) × �m[k(t )]nm(k, t )d2k

= Jv (t ) + JBC(t ), (6)

where Jv (t ) represents the intraband current generated by
group velocity of the mth band, JBC(t ) corresponds to the
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(a)

(b)

FIG. 7. Harmonic spectrum from monolayer MoS2 driving by
linearly polarized laser field with θ = 60◦. (a) The perpendicular
(cyan solid line) and parallel (red dashed line) components of high
harmonics obtained by solving three-band SBEs in VG. (b) The
harmonic spectrum obtained by the 2D single-band model. The cyan
line and red line represent the harmonic components of JBC(t ) and
Jv (t ), respectively.

anomalous intraband current generated by the transverse
velocity-induced by Berry curvature.

To gain insights on the effect of Jv (t ) and JBC(t ), we as-
sume a uniform distribution of carriers, i.e., nv[k(t )] ≈ 1, and
perform single-band (valence band) calculations. As shown
in Fig. 7, even if the distribution of carriers is ignored, our
single-band simulations still capture the essential features of
the effect of the group velocity of valence-band and Berry
curvature: Berry curvature induces a transverse current and
hence the even harmonics, while the group velocity of the
valence band only causes odd-order harmonics [12,28,50].

When 1 : 2 CRB fields are used, as shown in Fig. 8(a),
both the Berry curvature and group velocity of the valence
band contribute to the generation of odd and even harmonics.
Figures 8(b) and 8(c) show that whether it is the harmonic
generated by Berry curvature or the harmonic generated by
group velocity of valence, its ellipticity is sensitively depen-
dent on ε1. This result can be understood as follows: At
different ε1 the vector potentials of the fields have different
Lissajous figures, leading to different reciprocal space tra-
jectories, as shown in Fig. 1, the energy landscape or Berry
curvature felt by carriers with different reciprocal space tra-
jectories have different values, resulting in different intraband
currents, and thus the harmonic ellipticities are sensitive to
ε1. Note that, based on these single-band simulations, we
cannot quantitatively judge which of the Jv (t ) and JBC(t ) is
dominated. On the contrary, the emission process of interband
harmonics follow the one-photon valley-contrasting selection
rules. As shown in Fig. 1(c), the DCP have values close to 1
(−1) in a large neighborhood of the K (K ′) point. Although
different reciprocal space trajectories lead to different posi-

(a)

(b)

(c)

FIG. 8. (a) Harmonic spectrum from monolayer MoS2 driving
by 1 : 2 CRB fields with (σ+, σ−) configuration and θ = 60◦ ob-
tained by the 2D single-band model. The cyan line and red line
represent the harmonic components of JBC(t ) and Jv (t ), respectively.
(b) Ellipticity of harmonics components induced by JBC(t ) driven
by 1 : 2 CRB fields with (σ+, σ−) configuration with ε2 = 1.0 and
ε1 = 0.3, 0.5, 0.7, 1.0, respectively. (c) The same as panel (b) but for
harmonics components induced by Jv (t ).

tions of recombination, there is a great possibility that the
DCP at different positions of recombination have the same
value. For this reason, the harmonics of interband mechanism
are insensitive to the ellipticity of the driving field.

The interband mechanism of the 3nth harmonics are for-
bidden by the GCD rule, the only physical origin of 3nth
harmonics is the intraband current. The above analysis implies
that its ellipticities are sensitive to ε1. This is exactly the
characteristic of the 3nth harmonics obtained by the SBEs
simulations (shown in Fig. 6). Unlike the 3nth harmonics,
both interband and intraband mechanisms contribute to the
(3n + 1)th and (3n + 2)th harmonics. If and only if the inter-
band mechanism is dominant, the sensitivity of the ellipticities
of the intraband harmonic to the drivers ellipticity will be
masked; this is exactly the characteristic of the (3n + 1)th
and (3n + 2)th harmonics obtained by the SBEs simulations.
Indeed, SBEs simulations show that the intensity of the (3n +
1)th and (3n + 2)th harmonics is about three orders of magni-
tude higher than that of the 3nth harmonics (shown in Fig. 1).

The above analysis implies that the insensitivity of the
harmonic ellipticity to the driver’s ellipticity reveals unique
fingerprints of VSCD in the harmonic spectra of monolayer
MoS2.
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IV. CONCLUSION

In summary, we show that the efficient generation of
CHHs can be achieved in monolayer MoS2 with 1 : 2 CRB
fields. The primary spectral characteristic is that the inter-
band harmonics come in pairs with opposite helicity. The
distinguishing feature is the emission of intraband 3n (n ∈
N) harmonic orders due to the broken inversion symmetry.
Specifically, both the valley selection caused by the trefoil
orientation relative to the lattice and the valley selection of
harmonic orders via valley-contrasting selection rule are ob-
served. For the purpose of structural probing, we show that
it is preferable to use above-gap, interband harmonics. Ac-
cording to the dynamical symmetry analyses, the combination
of the LP excitation scheme and CRB excitation scheme is
sufficient to decode the possible rotation symmetries of the

crystal (Cm, m = 1, 2, 3, 4, 6). Moreover, the insensitivity of
the harmonic ellipticity to the driver’s ellipticity unveils the
unique fingerprints of the VSCD in HHG. In the future, the
controllable valley polarization may allow for the production
of the helicity-selective harmonics, as well as the generation
of isolated circularly polarized attosecond pulses. The present
work offers a route to strong-field valley-selected processes in
2D materials with broken inversion symmetry.
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