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Signatures of multifractality in a periodically driven interacting Aubry-André model
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We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, interacting fermionic
chain with an incommensurate Aubry-André potential and a time-periodic hopping amplitude as a function of the
drive frequency ωD using exact diagonalization (ED). We find that the nature of the Floquet eigenstates change
from ergodic to Floquet-MBL with increasing frequency; moreover, for a significant range of intermediate ωD,
the Floquet eigenstates exhibit nontrivial fractal dimensions. We find a possible transition from the ergodic to this
multifractal phase followed by a gradual crossover to the MBL phase as the drive frequency is increased. We also
study the fermion autocorrelation function, entanglement entropy, normalized participation ratio (NPR), fermion
transport, and the inverse participation ratio (IPR) as a function of ωD. We show that the autocorrelation, fermion
transport, and NPR display qualitatively different characteristics (compared to their behavior in the ergodic and
MBL regions) for the range of ωD which supports multifractal eigenstates. In contrast, the entanglement growth
in this frequency range tend to have similar features as in the MBL regime; its rate of growth is controlled by ωD.
Our analysis thus indicates that the multifractal nature of Floquet-MBL eigenstates can be detected by studying
autocorrelation function and fermionic transport of these driven chains. We support our numerical results with
a semianalytic expression of the Floquet Hamiltonian obtained using Floquet perturbation theory (FPT) and
discuss possible experiments which can test our predictions.
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I. INTRODUCTION

It is well known that noninteracting fermions in one-
dimension with short-range hopping exhibit localization
for arbitrary weak disorder potential [1,2]. In contrast,
fermion chains subjected to quasiperiodic potential exhibit
a localization-delocalization transition at a finite potential
strength [3–15]. Localization in such 1D fermion chains with
quasiperiodic potentials has been studied extensively in the
past [3–20]. In recent times, such systems have also been
experimentally realized using ultracold atom chains [21–24].
The simplest of such models with quasiperiodic potential is
termed as Aubry-André (AA) model [3–6]. The Hamiltonian
the AA model is given by

HNI = H0 + HA,

H0 = −J
2

∑
j

c†
j (c j+1 + c j−1),

HA =
∑

j

V0 cos(2πη j + φ)c†
j c j (1)

where c j denotes fermionic annihilation operator at site j,
n̂ j = c†

j c j is the corresponding fermion number operator, J
is the nearest-neighbor hopping amplitude of the fermions, η

is an irrational number usually chosen to be the golden ratio
(
√

5 − 1)/2, V0 is the amplitude of the AA potential, and φ is
an arbitrary global phase. The model exhibits a localization-
delocalization transition at V0 = J .

More recently, nonequilibrium dynamics of interacting
quantum systems has been extensively studied [25–33]. A
class of such studies has concentrated on periodic drive for
which the properties of the system is controlled by its Floquet
Hamiltonian [34]. The Floquet Hamiltonian HF of a periodi-
cally driven system contains information about its properties
at stroboscopic times nT , where T = 2π/ωD is the drive
period, ωD is the drive frequency, and n is an integer. This
feature stems from the fact the evolution operator for such
systems satisfy U (nT, 0) = exp[−inHF T/h̄], where h̄ is the
Planck’s constant. It is well known that an interacting quan-
tum systems without the presence of quasiperiodic potential
or disorder also undergoes dynamical localization [35–41],
exhibits dynamical freezing [42–47], and can display viola-
tion of eigenstate thermalization hypothesis (ETH) [48–51]
due to quantum scars [52–61] whose signature can also be
found using periodic drives [62,63]. However, the origin of
such drive controlled localization or ETH violation is quite
different from that found in traditional many-body localiza-
tion (MBL) [23,51,64–90].

The dynamics of noninteracting quasiperiodic systems has
also been studied recently [91–94]. It has been shown that
a driven noninteracting fermionic chain with an incommen-
surate Aubry-André potential and a time-periodic hopping
amplitude exhibits a dynamical transition separating single-
particle delocalized Floquet eigenstates from localized and
multifractal states in the Floquet spectrum. These multifrac-
tal Floquet eigenstates typically occur around the transition
frequency. Moreover, the driven quasiperiodic chain with AA
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potential, in contrast to its nondriven counterpart, displays a
sharp mobility edge separating the delocalized and localized
or multifractal states near the transition [93]. However, the fate
of these features remain unclear for the driven AA chain in the
presence of interaction.

In the absence of a drive, an interacting fermion chain with
quasiperiodic potential or random disorder undergoes a transi-
tion between ergodic to MBL phases. The MBL phase, which
breaks ergodicity of an interacting system and hence violates
ETH, has been extensively studied in the recent past; it is well
known that it leads to qualitatively different long-time behav-
ior of correlation functions which stems from the absence of
ergodicity [20,65,66,89,90]. Moreover, the transition between
the ergodic and MBL phases in 1D interacting systems has
also attracted recent attention. Several studies have shown
the existence of a multifractal phase [95–99] near the critical
point of MBL transition. The fate of such multifractality in
the thermodynamic limit remains an open question [100];
moreover, the existence of such states for driven interacting
quasiperiodic systems have not been studied so far.

The study of dynamics in systems near MBL transition
has also been discussed extensively in literature [90,101,102].
Several such experimental and theoretical studies have been
carried out for periodically driven MBL system both experi-
mentally and theoretically [85,103]. Moreover, slow dynamics
in the ergodic phase of a driven MBL in a kicked spin 1/2
Ising chain have been reported [104]. Recently a many-body
critical phase in the one-dimensional interacting AA model
was also predicted; such a phase turns out to have different
properties from both ergodic and MBL phases [95,105]. This
seems to suggest that such quantum system may host three
different phases in the thermodynamic limit [95,105]. Unusual
correlators have also been reported in nonequilibrium steady
states in strongly interacting AA model implying several dy-
namical phases between the much studied thermal and many
body localized phases [106]. However, none of these works
have studied the nature of the Floquet eigenstates near the
ergodic to MBL transition point.

In this work, we study a weakly interacting AA model
whose hopping strength is driven by a square pulse protocol.
We show that the Floquet Hamiltonian(HF ) for such a driven
system has extended ergodic eigenstates at low frequencies;
in contrast, they are many-body localized at large drive fre-
quency. Moreover, HF supports multifractal eigenstates over
a range of driving frequency ωD in the intermediate drive
frequency regime. Our results, within the range of system
sizes which could be numerically accessed, seem to indicate
a transition from the ergodic to this multifractal regime at
a critical drive frequency ωD = ωc followed by a gradual
crossover to the MBL phase as ωD is increased. The multifrac-
tal eigenstates that we obtain possess qualitatively different
characteristics from their ergodic and many-body localized
counterparts as is evident from computation of their IPR and
Shannon entropies. We note that such multifractal eigenstates
have been found for disordered many-body spin and inter-
acting AA Hamiltonians [95–97,106]; however, to the best
of our knowledge, they have not been reported earlier for
a periodically driven interacting model. Our study therefore
provides the possibility of tuning multifractality of quantum
many-body states using drive frequency.

The other results obtained from our study are as follows.
First, we study the dynamics of representative initial states
in different frequency regimes under the influence of the
driven Hamiltonian. We show that in the intermediate drive
frequency regime (which supports multifractal Floquet eigen-
states) they display nonergodic and non-MBL behavior. This
is evident from the study of both fermion autocorrelation
function and NPR. We find super-exponential decay of the
fermion autocorrelation functions, albeit to a nonzero value,
in this regime; the NPR also shows such intermediate behav-
ior. Second, we study the half-chain entanglement entropy S
which shows a S ∼ a ln t + b growth with a monotonically de-
creasing with ωD in the intermediate-frequency regime. This
growth happens at sufficiently long times; in this time range,
the fermion autocorrelation displays steady oscillation around
a constant value. Third, we find that the half-chain entangle-
ment of the multifractal eigenstate states show logarithmic
growth (S ∼ ln t) similar to their MBL counterparts; however,
the coefficient of ln t is controlled by average multifractal
dimension of the eigenstates and can be tuned by ωD. Fourth,
we discuss the steady state behavior of such a driven system.
In particular, we study the fermion autocorrelation function
and fermion density in the steady state starting from a domain
wall initial state (for which all particles are initially localized
to the left half of the fermion chain). Our results indicate
that both the autocorrelation and the steady state fermion
density displays a signature of the multifractal dimensions
and thus can be used to detect multifractal eigenstates. Fifth,
we compute the steady state number entropy starting from a
fermionic product state and discuss its behavior as a function
of the drive frequency. Sixth, we obtain a semianalytic Flo-
quet Hamiltonian using a Floquet perturbation theory (FPT)
which reproduces the qualitative features of the driven system
obtained using exact numerics. Our results thus constitutes
an analytic Floquet Hamiltonian which supports multifractal
many-body eigenstates. Finally, we discuss experiments that
can test our theory.

The plan of this paper is as follows. In Sec. II, we discuss
the drive protocol that we used throughout our work. Next, in
Sec. III, we chart out the phase diagram demonstrating the
existence of multifractal Floquet eigenstates for a range of
ωD. In Sec. IV, we study the short- and intermediate-time dy-
namics of the model. We also discuss the transport properties
of the fermions in the driven interacting AA chain beginning
from a domain wall initial state as well as the steady state
entanglement properties. This is followed by Sec. V where
we use FPT to compute a semianalytic, perturbative Floquet
Hamiltonian. Finally, in Sec. VI, we discuss the main results
and point out possible experiments which can test our theory.

II. THE HAMILTONIAN

We consider a lattice model that describes 1D fermions
with Aubry-André (AA) potential and nearest-neighbor
density-density interaction. The Hamiltonian for such a model
is

H = HNI +
∑

j

Vintn̂ j n̂ j+1, (2)
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where Vint is the interaction strength. We consider the half-
filling case for which the ratio of the numbers of fermions N
and the lattice sites L is fixed to N/L = 1/2. The Hilbert space
dimension is denoted by N . The system is driven by a periodic
square pulse drive protocol described by

J (t ) = −J0, t � T/2

= J0, t > T/2, (3)

where T = 2π/ωD is the time period. In this study we shall
restrict ourselves to the parameter regime Vint � J0. This is
done to ensure that the system remains in the ergodic phase in
the quasistatic limit.

In order to study the localization properties of the driven
chain in the Hilbert space, we first need to evaluate the
time evolution operator U (T, 0) = Tt exp[−i

∫ T
0 dtH (t )/h̄].

To this end, we define H± = H[J = ±J0]; the eigenvalues
and eigenvectors of H± is given by

H±|ξ±
m 〉 = ε±

m |ξ±
m 〉. (4)

In terms of these quantities and for the square pulse drive
protocol [Eq. (3)], U (T, 0) is given by

U (T, 0) = e−iH+T/(2h̄)e−iH−T/(2h̄)

=
∑
p,q

ei(ε+
p −ε−

q )T/(2h̄)c+−
pq |ξ+

p 〉〈ξ−
q |, (5)

where the coefficients c+−
pq = 〈ξ+

p |ξ−
q 〉 denote overlap between

the two many body eigenbasis. In what follows, we shall
compute ε±

m and |ξ±
m 〉 by exact diagonalization (ED). We also

use ED to obtain eigenvalues λm and eigenvectors |ψm〉 of
U (T, 0). The eigenspectrum of the Floquet Hamiltonian HF is
found from the relation U (T, 0) = exp[−iHF T/h̄]. Then one
can write

U (T, 0) =
∑

m

λm|ψm〉〈ψm|, λm = e−iεF
m T/h̄, (6)

where εF
m are the quasienergies which satisfy HF |ψm〉 =

εF
m |ψm〉.

The knowledge of U (T, 0) allows us to compute strobo-
scopic dynamics starting for an arbitrary initial state |ψinit〉.
The state at time tn = nT , where n is an integer is given by

|ψ (nT )〉 = U (nT, 0)|ψinit〉 =
∑

m

λn
mcinit

m |ψm〉, (7)

where cinit
m = 〈ψm|ψinit〉. Thus the expectation value of any

operator O at stroboscopic times are given by

〈ψ (nT )|O|ψ (nT )〉 =
∑

pq

c∗init
p cinit

q e−in(εF
q −εF

p )T/h̄〈ψp|O|ψq〉.

(8)

In the steady state, only the terms corresponding to p = q in
the sum (8) contribute leading to

〈O〉steady =
∑

p

|cinit
p |2〈ψp|O|ψp〉. (9)

We shall use these expressions for study of Floquet dynamics
in the subsequent sections.

III. PHASE DIAGRAM AND THE PROPERTIES OF
FLOQUET EIGENSTATES

In this section, we shall use the properties of the many-
body Floquet eigenvalues and eigenvectors to study the phase
diagram of the driven chain of length L [91,93] in the presence
of small interaction. First we shall present an exact numerical
study for L � 18 where we have used ED to obtain the exact
Floquet eigenvalues and eigenvectors.

A. Inverse participation ratio and fractal dimension

In order to study the drive induced transition from the
ergodic to the MBL phase in the many-body Fock space basis,
we calculate the inverse participation ratio (IPR) defined as

Im =
N∑

n=1

|cmn|4, (10)

where cmn = 〈n|ψm〉, |ψm〉 is a Floquet eigenstate and |n〉
denotes Fock states in the number basis. The IPR Im ∼ N−1(0)

in d = 1 for a ergodic (MBL) phase and thus acts as a measure
of localization of a many body eigenstate in the Fock space.
This property follows from the fact that a generic many-body
ergodic eigenstate of HF is expected to have finite overlap
with a large number of Fock states; in contrast, in the MBL
phase, it is almost diagonal in the Fock basis. Thus the behav-
ior of Im in the Fock space mimics that inverse participation
ratio of single particle Floquet eigenfunctions function in real
space for the noninteracting driven AA Hamiltonian studied
in Ref. [93].

The analysis of Im leads to the phase diagram shown in
top left panel of Fig. 1, where Im is plotted as a function
of eigenvector index m/N and ωD. The plot shows that
the driven AA model with interaction exhibits a transition
from the ergodic to the MBL phase. For low drive frequen-
cies h̄ωD/(πJ0) < 0.4, all Floquet eigenstates are ergodic
with Im ∼ (1/N ). A transition from ergodic eigenstates to
a phase where the eigenstates states with 0 < Im < 1 oc-
cur around h̄ωD/(J0π ) ∼ 0.4. These eigenstates (which have
0 < Im < 1) persist for a wide range of frequencies 0.4 �
h̄ωD/(πJ0) � 1.5. For h̄ωD/(πJ0) � 1.5, the Floquet eigen-
states become completely localized (Im 	 1) signifying the
onset of the MBL phase.

To study the nature of states having 0 < Im < 1, we com-
pute

I (q)
m =

N∑
n=1

|cmn|2q (11)

where Im ≡ I (2)
m . It is well known I (q)

m ∼ N−τq , where the
exponent τq is related to the fractal dimension Dq by Dq =
τq/(q − 1). We note that for MBL states, we expect Dq =
0, whereas for ergodic states, Dq = 1. The intermediate q
dependent values of Dq, that is Dq = τq/(q − 1), signify
multifractality while Dq is independent of q for a fractal
eigenstate.

To analyze the nature of the Floquet eigenstates further, we
first plot τ2 as a function of eigenvector index m/N and ωD in
the top right panel of Fig. 1. From this plot, we find the pres-
ence of ergodic and MBL states for low (h̄ωD/(πJ0) < 0.4)
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FIG. 1. (Top left) Plot of Im as a function of the normalized
many-body eigenfunction index m/N and ωD/(πJ0) showing the
localized/delocalized nature of the Floquet eigenstates |ψm〉 for
L = 14. (Top right) Plot of τ2 as a function of m/N (after sorting
in increasing order of Im) and ωD/(πJ0) showing the presence of
delocalized states for ωD/(πJ0) � 0.4, multifractal states for 0.4 �
ωD/(πJ0) � 1.5 and fully localized states for ωD/(πJ0) > 1.5. The
system sizes used for extracting τ2 are L = 10, . . . , 18 in steps of 2.
(Bottom left) Plot for ln Im vs ln L used for extracting τ2 for several
representative frequencies for the state corresponding to m/N = 0.5.
The behavior of perfectly delocalized (green dots at ωD/(πJ0) =
0.025) and localized (red dots, ωD/(πJ0) = 3) can be distinguished
from that of a multifractal states (blue dots ωD/(πJ0) = 0.5). (Bot-
tom right) Plot of Dq as a function of ωD/(πJ0) for m/N = 0.5. We
have set J0 = 1, V0/J0 = 0.05, Vint/J0 = 0.025, scaled all energies
and frequencies in units of J0 (with h̄ set to unity). See text for
details.

and high (h̄ωD/(πJ0) > 1.5) drive frequencies respectively.
In between, one finds the state with 0 � τ2 � 1 signifying
their nonergodic and non-MBL nature. We note that for this
plot, we sort the eigenstates in the increasing value of Im.
Thus we find that the states, which had 0 � Im � 1, also have
0 � τ2 � 1; these states are natural candidate for multifractal
Floquet eigenstates.

In what follows, we extract τ2 from the plot of ln Im versus
lnN as shown in the bottom left panel of Fig. 1 for m/N =
0.5. For h̄ωD/(πJ0) = 3, the state is many-body localized and
we have τ2 ∼ 0 as evident from the flat red line in the bot-
tom left panel of Fig. 1. In contrast, at h̄ωD/(πJ0) = 0.025,
we have τ2 = 1 (a green line in the bottom left panel of
Fig. 1) signifying the ergodicity of the state. In between, at
h̄ωD/(πJ0) = 0.5, τ2 = 0.4 (a blue line in the bottom left
panel of Fig. 1) indicating the presence of nonergodic and
non-MBL nature of the state.

The plot of the multifractal dimension Dq is shown in
the bottom right panel of Fig. 1 for states corresponding to
m/N = 1/2. For all points in these plots, Dq is obtained from
values of τq that are, in turn, extracted from the correspond-
ing plots of ln Im versus lnN . From the plot, we find that
for 0.35 � h̄ωD/(πJ0) � 1.5, 0 � Dq � 1; this indicates the
presence of multifractal states in the spectrum. Other states
with different m/N also show similar features. The behavior

FIG. 2. (Left) Plot of S/ lnN as a function of ωD/(πJ0) showing
the presence of the ergodic to MBL transition at ωD/(πJ0) ∼ 0.44.
(Right) Plot of b1 as a function of ωD/(πJ0) showing b1 � 0 in
the ergodic phase, whereas b1 > 0 in the MBL phase. The plot
in the right panel shows that b changes sign at ωD/(πJ0) ∼ 0.45
suggesting a critical point. All other parameters are same as in Fig. 1.
See text for details.

of Dq shown in the bottom right panel of Fig. 1 indicates
that the driven fermion chain exits the ergodic phase for
h̄ωD/(πJ0) 	 0.4. We note here that our numerical analysis
shows that Dq is almost independent of q for q � 4; this indi-
cates the possibility of fractal nature of these states. However,
ascertaining this property would require computation of τq for
all q and we do not attempt this in the present work.

B. Shannon entropy

To further establish the presence of the ergodic, multi-
fractal, and MBL phases as a function of frequency and to
find out the nature of the transition between them, we study
the Shannon entropy of the Floquet eigenstates. The Shannon
entropy of the mth Floquet eigenstate is given by

Sm = −
∑

m

|cmn|2 ln |cmn|2, S = 1

N
∑

m

Sm, (12)

where S is the mean entropy. We note that for h̄ωD/(πJ0) �
1, cmn 	 δmn leading to Sm 	 0; thus S → 0 indicates many-
body localized eigenfunctions. In contrast for h̄ωD/(πJ0) �
1 when all Floquet eigenstates are ergodic, cmn 	 1/

√
N for

all m leading to the maximum entropy of S = Smax 	 lnN .
The left panel of Fig. 2 shows the plot of Shannon entropy

normalized by lnN as a function of h̄ωD/J0 for different sys-
tem sizes. Note that the plots for different system sizes cross
each other around h̄ωD/J0 ∼ 0.43π ; this seems to indicate
a transition between the ergodic and multifractal phases. To
understand this feature further, we note that the functional
form of S can be written as [96]

S = D1 lnN + b1, (13)

where D1 is the fractal dimension. It is known that b1 is
expected to change sign at the transition from ergodic to MBL
phase. This results in a crossing point between the curves of
S of different sizes at the critical frequency [96]. The plot of
b1 is shown in the right panel of Fig. 2. It indicates that in the
delocalized phase, b1 < 0 whereas in the MBL phase, b1 > 0.

It is also instructive to study the fluctuations of entan-
glement entropy [85], as they have been shown to provide
a useful probe of the delocalization to MBL transition. The
fluctuations of S is defined as

�S =
√

〈(S − 〈S〉)2〉. (14)
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FIG. 3. Plot of �S as a function of (πJ0)/ωD showing that
the transition from the ergodic to multifractal phase takes place at
πJ0/ωD ∼ 2.3 or ωD/J0 ∼ 0.434π . All other parameters are same
as in Fig. 1. See text for details.

It is known that �S is small deep inside both the ergodic
and MBL phases. In the ergodic phase, all Floquet eigenstates
are highly entangled with S = Smax. Thus the system exhibits
small fluctuation around this value. In the MBL phase, S
follows an area law and is hence small (compared to that in the
ergodic phase where it follows volume law). In addition, since
all states have low S, the fluctuations are small. In contrast, at
the transition S has a broad distribution leading to maximal
value of �S. Thus, the delocalization to MBL transition can
be detected by the location of the peak in �S.

Figure 3 shows the plot of �S as a function of πJ0/h̄ωD

and confirms that such a peak appears at (πJ0)/h̄ωD ∼ 2.3.
We note that the peak gets sharper with increasing system
size with a slight shift towards higher T ; this indicates that
a drive may possibly induce a transition between ergodic and
nonergodic(multifractal) states which shall survive for larger
L. Combining the results of Dq and �S, we seem to find
that within the finite system sizes that we can access, there
is possible transition around h̄ωD/(πJ0) 	 1/2.3 = 0.434. A
more definite characterization of this possible transition would
require access to larger system size which is outside the scope
of the present work.

IV. QUANTUM DYNAMICS

In this section, we discuss dynamical signatures for the
multifractal states in the region of intermediate frequencies.
We divide this section to study three different timescales,
namely, short-, intermediate-, and long-time steady state. We
analyze the behavior of different correlation functions and
entropies in different regimes. This analysis is expected to be
useful from an experimental standpoint since achieving short-
time coherent dynamics is easier in experiments. Thus the
signatures of multifractal states visible in those time-scales,
if any, is much easier to detect experimentally.

A. Short-time dynamics

In this section, we shall study the evolution of a product
initial state in the basis of H in the short-time regime, n0 <

102 cycles. We look for possible signatures of multifractal
eigenstates of HF in dynamics which are different from the

FIG. 4. Plot of the temporal autocorrelation function as a func-
tion of number of cycles n0. (Left) Solid lines correspond to
ωD/(πJ0) = 0.1 (ergodic phase), while the dashed lines pertains
to ωD/(πJ0) = 2.5 (MBL phase). (Right) Solid lines correspond to
ωD/(πJ0) = 0.4 near the transition from the ergodic to the multi-
fractal regime, while the dashed lines pertains to ωD/(πJ0) = 0.7
(multifractal regime). All other parameters are same as in Fig. 1. See
text for details.

dynamics induced by either ergodic and MBL eigenstates.
Unless otherwise mentioned, all the quantities in this section
are calculated by averaging over N0 product initial states. We
choose N0 = 500 for sizes L = 12, 14, N0 = 100 for sizes
L = 16, 18, and N0 = 18[20] for L = 20[22]. We have chosen
N0 such that the error bars are smaller than the size of points.
To evolve the system, we have used standard Krylov subspace
techniques [107].

We show several features that appear to be intermediate
between ergodicity and MBL in the range of frequencies
where multifractality appears in the Floquet spectrum. These
features are present for all L studied here and their presence
is therefore expected to be independent of L at least for the
range of system sizes studied in this work. It is important to
note that while the eigenstate properties are calculated for size
L = 10–18, the absence of significant deviation in results for
all L � 22 seems to justify our claim of the presence of a
nonergodic multifractal regime for larger system sizes than
what can be accessed by ED.

1. Autocorrelation function

In order to distinguish between ergodic, multifractal, and
MBL phases, we resort to the measurement of temporal
autocorrelation function. The autocorrelation function is a
measure of retention of memory of system’s initial state [76]
and is given by

A j (t ) = (2〈n̂ j (t )〉 − 1)(2〈n̂ j (0)〉 − 1), (15)

where A j (t ) is the temporal autocorrelator at site j and time
t = n0T and 〈n j (t )〉 = 〈U †(n0T, 0)n j (0)U (n0T, 0)〉 is the ex-
pectation value of fermion number operator at site j and time
t = n0T . We average this single site operator over different
sites and over different random product initial states

A(t ) = 1

L

[
L∑

j=1

A j (t )

]
, (16)

where the square brackets indicate initial state averaging.
We can distinguish between the three phases using the A

versus n0 plot as indicated in Fig. 4 where n0 denotes the num-
ber of drive cycles. It is known that for short-range systems, A
displays exponential decay in the ergodic phase. This behavior
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FIG. 5. Plot of the temporal autocorrelation function as a func-
tion of ωD/(πJ0) after a fixed number of cycles n0 = 80 for different
L. All other parameters are same as in Fig. 1. See text for details.

is seen at low frequencies h̄ωD/(πJ0) = 0.1, as shown in the
left panel of Fig. 4 (solid lines). The temporal autocorrelation
function reduces to 1/L rapidly over a short interval of time.
Due to the long range nature of the Floquet Hamiltonian,
the decay deviates a bit from the usual exponential decay. In
contrast, in the MBL phase at h̄ωD/(πJ0) > 1.5, the system
is supposed to retain the memory of it’s initial state for a
very long time. For short timescales (n0 � 100) studied in this
section, the autocorrelation does not decay significantly. This
feature is seen at a high frequency of h̄ωD/(πJ0) = 2.5 in the
left panel of Fig. 4 (dashed lines).

For the region of multifractal frequencies, it is not im-
mediately clear how A should behave as the wave functions
are extended but the system cannot be called ergodic. Our
numerical result in the right panel of Fig. 4 shows that for
h̄ωD/(πJ0) = 0.4 (solid line) and 0.7 (dashed line), A shows
a decay initially but then oscillates around a value which is
intermediate to 1/L and 1. The value of ωD, which controls
the multifractal dimensions of the eigenstates of HF , has effect
on both the rate of the decay of A and its final value. This
will be analyzed in details in subsequent sections. We note
that for all L considered,there is no significant finite size
effect as can be seen from Fig. 5. Thus the behavior of A(n0)
shown by Figs. 4 and 5 definitely points to the presence of the
nonergodic and non-MBL phases in the region of intermediate
drive frequencies which supports multifractal eigenfunctions
of HF .

2. Normalized participation ratio

One of the most common quantity to characterize
delocalization-MBL transition is the measurement of the nor-
malized participation ratio (NPR) which provides information
about the volume of phase space explored by the system
during dynamics [76]. The NPR is defined as

N (m)
p (t ) = 1

Pm(t )N , ζ (m)(t ) = ln N (m)
p (t ), (17)

where N is the Hilbert space dimension, t ∈ n0T , and Pm(t ) =∑
n |dn(t )|2m is the dynamical IPR. In Eq. (17), dn(t ) =

〈χn|ψ ′〉, where |ψ ′〉 = U (n0T, 0)|ψinit〉 and |χn〉 are the com-
putational basis states. Here we choose several initial states
|ψinit〉 and average ζ (m)(t ) over all such initial states. Also,

FIG. 6. Plot of ζ as a function of n0 for ωD/(πJ0) = 0.1 corre-
sponding to the ergodic regime (top left panel) and ωD/(πJ0) = 0.4
near the transition from the ergodic to multifractal regime (top right
panel). The bottom left panel corresponds to ωD/(πJ0) = 0.7 (mul-
tifractal regime) and the bottom right panel pertains to ωD/(πJ0) =
2.5 (MBL phase). All other parameters are same as in Fig. 1. See text
for details.

for the rest of this section, we shall denote ζ (t ) = [ζ (2)(t )] for
clarity.

We note that ζ (t) denotes the fraction of the configuration
space that the system explores. In the delocalized phase, we
expect ζ (t ) to be independent of L and to reach the maximum
value of zero when the system is uniformly ergodic. In the
high-frequency regime, when the system is in a MBL phase,
ζ (t ) varies with L. Figure 6 shows the plot of ζ as a function
of number of drive cycles n0 for different frequencies. For
h̄ωD/(πJ0) = 0.1, in the delocalized region, as shown in the
top left panel of Fig. 6, Pm → 1/N and hence ζ → 0. The
plots for various system sizes therefore converge together to
a L-independent near-zero value signifying ergodicity. In con-
trast, in the localized region, Im → 1 and hence ζ → − lnN .
Thus ζ varies with L as shown in the bottom right panel of
Fig. 6 for h̄ωD/(πJ0) = 2.5.

In the intermediate-frequency regime, as shown for
h̄ωD/(πJ0) = 0.4(0.7) in top right(bottom left) panel of
Fig. 6, we find − lnN < ζ < 0. This behavior, seen through-
out the intermediate-frequency range, shows that the phase
space exploration originating from multifractal eigenstates of
HF is faster than that due MBL eigenstates but slower than the
ergodic ones. If the frequency is closer to the ergodic region
where τ2 is closer to unity, ζ for different L converge with
increasing ωD. However, this behavior is different from the
complete convergence found for ergodic Floquet eigenstates.
As the drive frequency is increased, τ2 obtained from eigen-
states of HF decreases. This leads to an increased separation
(at the timescales studied here) of ζ for different L; moreover,
the magnitude of change of ζ becomes smaller compared
to the initial value. This intermediate behavior of ζ also points
to the presence of nonergodic and non-MBL states in agree-
ment that seen from analysis of A.
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3. Entanglement entropy

In this section, we introduce half-chain von-Neumann en-
tanglement entropy [109], denoted by SvN for the driven chain.
SvN can be defined in terms of the reduced density matrix
ρA of the chain after n0 drive cycles. This is computed by
tracing out the density matrix ρ = |ψ (n0T )〉〈ψ (n0T )| (where
|ψ (n0T )〉 = U (n0T, 0)|ψinit〉) over half the chain. In terms of
this reduced density matrix ρA, one then obtains

SvN (n0T ) = −Tr[ρA(n0T ) ln ρA(n0T )]. (18)

For MBL states, SvN (n0T ) ∼ ln n0 if one starts from a ho-
mogeneous initial state[75,79,110]; in contrast SvN ∼ n0 for
ergodic states. For systems that support multifractal states
there have some studies of how multifractal dimensions of
states determine the entanglement entropy [108]. For the
present case, we note that the driven interacting fermion chain
supports Floquet eigenstates of different multifractal dimen-
sions controlled by ωD. Moreover, for a fixed ωD, it supports
a spectrum of τ2 (Fig. 2). This suggests that the behavior of
SvN for such eigenstates may be unconventional. However,
one requires to probe into much larger timescales than that
discussed in this section to probe the precise n0 dependence
of SvN . This will be addressed in the next section where we
discuss intermediate-time behavior. Moreover, the measure-
ment of SvN in experiments is a difficult task. In contrast, very
recently, a different kind of entropy called number entropy has
been shown to be experimentally measurable [112]. We shall
therefore study the short-time behavior of the number entropy
in the rest of this section.

In systems where the total particle number is conserved
(which holds for the present case), the von-Neumann Entropy
can be split into two parts [112]:

SvN = Sc + SN , (19)

where Sc is the configuration entropy and SN is the number
entropy. SN characterizes particle number fluctuation in the
subsystem under consideration and is defined as

SN = −
∑

n

p(n) ln p(n), (20)

where p(n) is the probability of finding n fermions within
the subsystem (half chain for our case). It is expected that in
ergodic phase, SN ∼ ln t . Moreover, it was numerically shown
recently that in MBL phase (in contrast to the previously
prediction of system size independent saturation), SN ∼ ln ln t
[111], with a hint at a possible ergodic phase at long times.
However,a further study points [113] out that such a slow
growth possibly vanishes at large disorder and steady state
quantities show features consistent with localization of the
system at high disorder. The study of the temporal dependence
of SN to confirm such ln t (or ln ln t) behavior and steady state
behavior will be taken up in the following sections. Here,
we plot SN as a function of the number of drive cycles n0

for different representative drive frequencies at short times
and discuss whether there are any markers of the multifractal
phase. The solid lines in the left panel of Fig. 7 shows the be-
havior of SN for h̄ωD/(πJ0) = 0.1 (ergodic regime); here SN

seems to display a fast logarithmic growth before it saturates
to an L dependent value. The dashed lines in the left panel of

FIG. 7. Plot of SN as a function of n0. The solid lines in the
left panel correspond to the ergodic phase (ωD/(πJ0) = 0.1) while
the dashed lines pertains to the MBL phase [ωD/(πJ0) = 2.5].
The solid lines in the right panel correspond to ωD/(πJ0) = 0.4
(near the transition from the ergodic to the multifractal regime) and
the dashed lines pertains to the multifractal phase [ωD/(πJ0) = 0.7].
All other parameters are same as in Fig. 1. See text for details.

Fig. 7 shows that for h̄ωD/(πJ0) = 2.5 (MBL phase) SN is
almost a constant.

In the multifractal region, for h̄ωD/(πJ0) = 0.4 (solid
line) and 0.7 (dashed line) as shown in the right panel of Fig. 7,
SN displays a sublogarithmic growth followed by oscillations
around a constant value. The amplitude of these oscillations
increases with L within the range of system sizes studied here.
These features distinguish the multifractal phase from both
the ergodic and the MBL phases and shows that SN carries
signature of the multifractal phase realized at intermediate
drive frequencies.

We conclude this section by reinforcing how the short-time
behavior of A and SN show differences in different regions of
the drive frequency. To this end, in the left panel of Fig. 8,
we plot A for L = 22 and several representative ωD. The
plot displays the nature of the decay of A in different drive
frequency regimes. The slope of the decay gradually decreases
with increasing frequency. The position of the first dip also
slowly shifts towards higher n0 with increasing ωD. Thus we
find that for sufficiently large n0, A settles to a frequency
dependent value. The right panel shows a plot of SN for the
same set of parameters and paints a similar qualitative picture.
However, in contrast to the behavior of A, here the change
of growth is much sharper. This can be attributed to the fact
that SN changes from logarithmic to sublogarithmic growth
with variation of ωD and grows very slowly in the nonergodic

FIG. 8. (Left) Plot of the temporal autocorrelation function
for different frequencies within the range 0.1 � ωD/(πJ0) � 2.5
(shown by the legend on the right panel) as a function of the number
of drive cycles n0. (Right) Similar plot of the number entropy SN as
a function of n0. All other parameters are same as in Fig. 1. See text
for details.
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FIG. 9. (Top left) Plot of SvN as a function of n0 for ωD/(πJ0) =
0.1 (ergodic regime). (Top right) Plot of SvN as a function of ln n0

for ωD/(πJ0) = 0.4 near the transition from the ergodic to the mul-
tifractal regime. (Inset) Plot of A for the same parameters. (Bottom
left) Same as top right panel but for ωD/(πJ0) = 0.55 (multifractal
regime). (Inset) Plot of A for the same parameters. (Bottom right)
Same as top right panel but for ωD/(πJ0) = 1.0 (MBL phase). All
other parameters are same as in Fig. 1. See text for details.

phase which is achieved at higher ωD. We note that growth rate
is frequency independent and we shall discuss this feature in
detail in the next section.

B. Intermediate-time dynamics

In this section, we discuss the dynamics of the driven
interacting AA chain at intermediate stroboscopic time, i.e.,
for n0 ∼ 103. This corresponds to a timescale which is an
order of magnitude higher than that of the last section. We
shall mainly concentrate on SvN , which shows scaling laws
in this time regime and also briefly discuss the behavior of
SN . Other quantities, such as A, do not show any additional
features and shall not be addressed here.

For this section, we start from the Neel or CDW initial state
given by |ψ0〉 = |1010 . . . 〉. Such a choice is motivated by the
results of Ref. [114], where it has been shown that the inho-
mogeneities in the initial state cause changes in the ln t growth
of SvN . In fermionic systems the most homogeneous state
is expected to be the |000 . . . 〉 or |111 . . . 〉. However, such
initial states do not show any time evolution since the Floquet
Hamiltonian conserves the total particle number. Thus, in the
particle sector N/2, which constitutes the largest fraction of
the Hilbert space, the most homogeneous product state is the
CDW state. Starting from |ψ0〉, Fig. 9 shows the growth of
SvN with n0 for two different system sizes L = 16 and 24.
As seen from the top left panel for h̄ωD/(πJ0) = 0.1, SvN ,
in the ergodic phase, shows the expected initial linear growth
followed by saturation to a L dependent value. In contrast
in the MBL phase, as shown in the bottom right panel for
h̄ωD/(πJ0) = 1.0, we find a ln t growth of the entanglement,
albeit with a very small slope. We note that in the high-
frequency regime, each cycle represents a much smaller time
step; in addition, the higher frequency also causes inherent dy-
namical localization [41] which stretches the time the system

FIG. 10. (Left) Plot of SN as a function of n0 for h̄ωD/(πJ0) =
0.1 (ergodic regime) showing ln t behavior. (Right) Plot of SN as a
function of ln n0 for ωD/(πJ0) = 0.55 (multifractal regime) showing
that the number entropy grows slower than ln t in this regime. All
other parameters are same as in Fig. 1. See text for details.

requires to reach the steady state than that expected from an
equilibrium MBL setup. This shows up as large oscillations
in the plot. We also find that L = 16 shows slightly faster
growth in late times than L = 24 for higher frequencies. This
can be attributed to local effects of the Aubry-André potential
which become prominent due to localization(both dynamical
and many-body) as frequency is increased.

For the multifractal region as seen from the top right and
the bottom left panels of Fig. 9 [h̄ωD/(πJ0) = 0.45 and 0.55,
respectively], SvN is still found to follow a ln n0 growth. We
note that the ln n0 growth of SvN at these frequencies shows
up approximately at times after A has decayed towards its
long-time value. In this regime, A oscillates around a nonzero
frequency dependent steady state value. This signifies pres-
ence of two different timescales in the problem and shows
that the logarithmic growth of SvN need not be a feature just
of MBL states for which the autocorrelation does not decay.
Instead, it can also be feature of systems which are interme-
diate between ergodic and MBL. This points to a behavior
SvN ∼ a ln n0 + b with a and b dependent on ωD.

Next, in Fig. 10, we address the behavior of SN as a func-
tion of n0. The left panel of Fig. 10, for h̄ωD/(πJ0) = 0.1
(ergodic regime), we find a logarithmic increase in SN in the
same timescales where SvN increases linearly with n0 (Fig. 9).
We find that SN = 1.46 + 0.03 ln n0 provides an accurate de-
scription of the behavior of SN in the ergodic regime. It is to
be noted that the initial sharp rise in both SvN and SN is due
to local effects and is not the long-time behavior we intend
to study. In this long-time regime, the growth is expected to
be ∼ ln ln t as discussed in some recent MBL studies [115].
However, with the numerically accessible system sizes that
we have, while we can confirm that the entanglement growth
appears to be sublogarithmic (the black line in the right panel
of Fig. 10 shows a logarithmic fit), much larger system sizes
and timescales are required to determine the exact form of the
growth.

As seen from Fig. 9 the evolution of entropy can be
fit to SvN (n0) ∼ a ln n0 + b where a and b are frequency
dependent constants. We found that a decreases as the fre-
quency ωD is increased for 0.45 � h̄ωD/(πJ0) � 0.8 (in the
multifractal regime). a decreases sharply after the transition
(around h̄ωD/(πJ0) = 0.43) from the ergodic to the multi-
fractal regime. For h̄ωD/(πJ0) > 0.7 a approaches zero and
becomes almost independent of ωD signifying the onset of
MBL region.
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FIG. 11. (Left) Plot of SvN/L averaged over Int[9000/T ] −
Int[10000/T ] cycles as a function of ωD/(πJ0) for different L. The
plots indicate crossing at ωD/(πJ0) ∼ 0.45 for different L which
may signify a transition from the ergodic to multifractal regime.
(Right) Plot of SvN/L averaged over Int[9000/T ] − Int[10000/T ]
cycles as a function of L for representative frequencies. All other
parameters are same as in Fig. 1. See text for details.

Finally, we study the plot of Sav, which is average of SvN/L
over Int[9000/T ] � n0 � Int[10000/T ] cycles (where Int[x]
denotes nearest integer to x), as a function of frequency. The
corresponding plot is shown in the left panel of Fig. 11. Here,
instead of looking at equal number cycles n0, we study the
behavior of the quantities averaged over equal span of stro-
boscopic time n0T . This is done in the regime where n0T is
large compared to other timescales in the model. As seen from
the plot, we find a crossing around h̄ωD/(πJ0) ∼ 0.4. This is
indicative of the transition from the ergodic to the multifractal
regime as also seen earlier from the behavior of the Shannon
entropy. The presence of such a crossing may be understood
as follows. In this MBL regime, the system takes an exponen-
tially long time to reach the steady state where the average S
(Sav) obeys a volume law. Thus, for a fixed time, Sav decreases
with system size since it stays closer to its steady state value
for smaller L. In contrast, for the ergodic regime Sav reaches
its steady state value at relatively short times. Hence Sav yields
the steady state value which increases with L in this regime.
The fact that one finds a crossing between Sav for different
L is indicative of a length-scale independent transition point
between the ergodic and the multifractal regimes. Finally, we
note that Sav ∼ a0L in the steady state, which indicates that it
follows a volume law in this regime. However, a0 depends on
the drive frequency and approaches zero as we enter the MBL
regime. This is indicative of the large timescale required to
approach the steady state as discussed earlier.

C. Steady state

In this section, we study the steady state properties of
the system directly from the eigenfunctions of HF . While in
MBL regime it is extraordinarily difficult to experimentally
reach this state due to the enormous timescales, it is still an
important aspect to look at as features embedded in HF show
up most prominently in this regime. In what follows, we shall
study fermionic transport, autocorrelation function, and the
number entropy in the steady state.

1. Transport

To study transport in the system, we start from a domain
wall initial state defined in the fermion number basis by

|ψinit〉 = |n1 = 1, . . . nL/2 = 1, nL/2+1 = 0, . . . nL = 0〉,
(21)

FIG. 12. (Left) Plot of N0 as a function of j/L and ωD/(πJ0)
showing fermion density profile at all sites of the chain in the steady
state as a function of ωD/(πJ0). (Right) Plot of Nav(T ) as a function
of ωD/(πJ0) in the steady state showing 0 � Nav(T ) � 1 for 0.3 �
ωD/(πJ0) � 1.5. All other parameters are same as in Fig. 1. See text
for details.

where the system size L was considered to be an even inte-
ger (chain with even number of sites) and n j = 〈n̂ j〉 denotes
fermion occupation number on the jth site. The wave function
after n drive cycles is then given by

|ψ ′〉 = U (nT, 0)|ψinit〉 =
∑

m

cinit
m e−inεF

m T/h̄|ψm〉, (22)

where |ψm〉 denotes Floquet eigenstates with L/2 fermions
and cinit

m = 〈ψm|ψinit〉. Using this state, we study the following
quantities in order to further establish the MBL transition:

N0 j (T ) = 〈2(n̂ j − 1/2)〉,

Nav(T ) = 4

L

∑
j=1..L

〈(̂n̂ j − 1/2)〉2, (23)

where the average is taken with respect to the steady state
reached under a Floquet drive starting from |ψinit〉. In terms of
the Floquet eigenfunctions |ψm〉 and the overlap coefficients
cinit

m [Eq. (22)], these can be expressed as

N0 j (T ) =
∑

m

∣∣cinit
m

∣∣2〈ψm|2(n̂ j − 1/2)|ψm〉,

Nav(T ) = 4

L

∑
j=1..L

(∑
m

∣∣cinit
m

∣∣2〈ψm|(̂n̂ j − 1/2)|ψm〉
)2

.

(24)

We note that for the initial state |〈ψinit|2̂(n̂ j − 1/2)|ψinit〉|2 =
−1 for j < L/2 and |〈ψinit|2̂(n̂ j − 1/2)|ψinit〉|2 = 1 for j >

L/2, while for free fermions, the ground state with J0 � V0,
〈2(n̂ j − 1/2)〉 = 0. Thus Nav(T ) provides a measure of degree
of delocalization of the driven chain. A similar reasoning
shows that N0 j → 0 for all sites in the delocalized regime
and N0 j = 1[−1] for j < [>]L/2 in the localized regime; in
contrast, in the presence of a mobility edge, N0 j takes values
between 0 and 1 at different sites.

A plot of N0 as a function of j/L and ωD, shown in the left
panel Fig. 12, indicates that the transition from the ergodic
to the multifractal and MBL regions leaves it signature in
fermion transport. We find that the steady state value of N0

in the MBL (high-frequency) regime is ∼ ± 1 for the left
and right halves of the chain, respectively. This indicates that
the steady state is close to the initial state as expected in the
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FIG. 13. (Left) Plot of As as a function of j/L and ωD/(πJ0)
showing the autocorrelation at all sites of the chain in the steady
state as a function of ωD/(πJ0). (Right) Plot of Aavg

s as a function of
ωD/(πJ0). All other parameters are same as in Fig. 1. See text for
details.

MBL regime. In contrast, N0 = 0 for all j/L in the ergodic
(low-frequency) regime which indicates that the system has
reached the infinite temperature steady state as expected for
a driven ergodic many-body system. In between, the system
displays a range values of N0 for different j which indicates
the intermediate behavior in the multifractal regime. This
is also reflected in the plot of Nav which shows a kink in
the multifractal regime and indicates a transition between
the localized and delocalized regimes. We note here that the
steady state localization here happens due to both MBL nature
of the Floquet eigenstates and dynamical localization due to
the drive; thus fermion transport may not solely reflect MBL
properties in the high-frequency regime.

2. Autocorrelation function

We define the steady state autocorrelation function at site j
as

A j
s = (

2ns
j − 1

)(
2n0

j − 1
)
, (25)

where

ns
j =

∑
m

∣∣cinit
m

∣∣2〈ψm|n̂ j |ψm〉

the steady state value of 〈n̂ j〉 and n0
j = 〈ψinit|n̂ j |ψinit〉 is the

initial value. We average this single site operator over different
sites to compute Aav

s = 1
L

∑
j A

j
s .

The left panel of Fig. 13 shows the plot of steady state value
of the autocorrelation function as a function of j and ωD. This
value is computed by averaging over N0 = 50 product initial
states in the basis of H for L = 10–14 and N0 = 10 such states
for L = 16. Below h̄ωD/(πJ0) ∼ 0.25, the value of autocor-
relator remains zero indicating ns

j = 1/2 for all j in the steady
state. In contrast at high drive frequencies, one expects ns

j 	
n0

j leading to Aav 	 1. In between 0.25 < h̄ωD/(πJ0) < 1,
the behavior is intermediate to that of delocalized or MBL
phase. Thus 0 < As < 1 indicates that the system is in a
multifractal phase. As the frequency is increased beyond that,
As → 1 indicating the onset of localization. As before, we
point out that this localization receives contribution from both
the MBL nature of the Floquet eigenstates and the dynamical
localization due to the drive.

FIG. 14. (Left) Plot of 〈Ss
N 〉 as a function of ωD/(πJ0) showing

the decrease in number entropy with increasing frequency. For sizes
L = 10, 12, 14, we have averaged over all possible product initial
states, for L = 16 we have averaged over several random product
states such that the error bar is smaller than line width. (Right) Plot of
SN vs ωD/(πJ0) for |ψinit〉 being the Neel state. All other parameters
are same as in Fig. 1. See text for details.

3. Number entropy

In this section, we shall show the steady state behavior of
SN denoted by Ss

N . We divide the system into two subsystems
A and B and we integrate over subsystem B. To compute the
number entropy, we first denote the states in the fermion num-
ber basis as |χk〉. Since these are eigenstates of the number
operator, for each of them, one can compute the total number
of fermions n in subsystem A: nAk = ∑

j∈A〈χk|n̂ j |χk〉. Using
the notation of Eq. (22), we can write in the steady state∣∣ds

k

∣∣2 = |〈χk|ψm〉|2 =
∑

m

∣∣cinit
m

∣∣2|〈χk|ψm〉|2. (26)

Using Eq. (26), we can then obtain

ps(n) =
∑
k=k′

∣∣ds
k

∣∣2
,

Ss
N = −

∑
n

ps(n) ln ps(n),
〈
Ss

N

〉 = 1

N

N∑
i

Ss
N (i), (27)

where k′ denotes all states with nAk = n. Here, 〈Ss
N 〉 denotes

averaged number entropy where the average is taken over N
product states. For an initial Neel state, we denote the entropy
by Ss

N since no averaging is involved.
Figure 14 shows the steady state behavior of SN for dif-

ferent drive frequencies. The left panel shows the average
behavior when we take � product states: |ψinit〉 = |χ�〉. We
compute 〈Ss

N 〉 by averaging over these states. In the low-
frequency regime where ergodicity is expected, 〈Ss

N 〉 is large
and monotonically increases with L. However with increasing
frequency as the system becomes nonergodic, it decreases
and there is no clear monotonicity with L. This is similar
to the behavior seen in Ref. [115]. A similar behavior is
also seen on the right panel where |ψinit〉 is taken to be the
Neel state. For these plots, we have chosen the AA potential
to be Vj = V0 cos(2πη j + φ) and have averaged over φ to
smoothen out possible local fluctuations. These local fluctu-
ations tend to arise in SN at high frequencies as the steady
state values heavily depend on the local potentials near the
half-chain cut. To prevent this from affecting our overall
result, we perform the averaging in this scenario. From the
plot, we find that at large drive frequencies (i.e., in the local-
ized regime), the steady state curves for different L almost
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overlap. In contrast, in the ergodic regime, there is a clear
increase of SN with system size. The plot confirms that the
system is localized at high frequencies but not at intermediate
frequencies.

V. FLOQUET PERTURBATION THEORY

In this section, we aim to obtain a semianalytic, albeit
perturbative, understanding of several features of the driven
interacting AA model found via exact numerics using a Flo-
quet perturbation theory which is known to provide accurate
results at intermediate frequencies provided that the term in
H (t ) with largest amplitude is treated exactly [34,41]. In the
present case, since J0 � V0,Vint , one needs to treat the drive
term exactly. Thus one obtains

U0(t, 0) = eiJ0t
∑

k εk n̂k ,/h̄, t � T/2,

= eiJ0(T −t )
∑

k εk n̂k/h̄, t � T/2, (28)

where U0 is the exact evolution operator corresponding to
H = H0 = J0

∑
k εkn̂k and εk = −2 cos k for the fermion

chain with nearest-neighbor hopping. From Eq. (28), we find
that U0(T, 0) = I indicating H (0)

F = 0.
Next, we compute the first-order Floquet Hamiltonian H (1)

F .
To this end, we note that within first-order perturbation theory,
the correction to the evolution operator is given by [34]

U1(T, 0) = −i

h̄

∫ T

0
dtU †

0 (t, 0)(H1 + HA)U0(t, 0),

H (1)
F = i

T
U1(T, 0). (29)

The computation of H (1)
F can be done in a straightforward

manner following the method discussed in Refs. [34,41]. The
matrix elements of H (1)

F between Fock states in momentum
space, denoted by |nk〉 = |n(1)

k1
. . . ..n(N )

kN
〉, are given by

〈ni|H (1)
F |n f 〉 = V0

∑
q,k1

2h̄(1 − eiTJ0α1(k1,q)/h̄)

TJ0α1(k1, q)
f (q)δni

k1
,n f

k1+q−1

+Vint

∑
k1,k2,q

2h̄(1 − eiTJ0α2(k1,k2,q)/h̄)

TJ0α2(k1, k2, q)
e−iqδ

n
k1
i ,n

k1
f −1

δ
n

k2
i ,n

k2
f −1

δ
n

k2−q
f ,n

k2−q
i +1

δ
n

k1+q
f ,n

k1+q
i +1

,

α1(k1, q) = cos k1 − cos(k1 + q), α2(k1, k2, q) = cos k1 + cos k2 − cos(k1 + q) − cos(k2 − q), (30)

where f (q) = ∑
j exp[−i jq] cos(2πη j). We note that for

T → 0, the Floquet Hamiltonian reduces to that obtained
from the first-order Magnus expansion H (1)

F (T → 0) 	
Hmagnus

F = HA + H1. However, at intermediate frequencies,
the frequency dependence of H (1)

F is much more compli-
cated. Moreover, a similar calculation shows that U2(T, 0) =
U1(T, 0)2/2; thus H (2)

F = 0 and H (1)
F represents the sole contri-

bution to HF to O(T 2). These features allow one to expect that
it shall provide at least qualitatively accurate description of the
dynamics of the system at intermediate drive frequencies.

Next, we use Eq. (30) to numerically compute matrix el-
ements of H (1)

F between Fock states in the position basis. A
numerical diagonalization of the matrix thus obtained yields
the eigenvalues and eigenvectors (in the real space Fock basis)
for comparison with our exact results.

The results obtained from the above-mentioned procedure
is depicted in Fig. 15. From Fig. 15, we find that the results
obtained from FPT agrees with those from exact numerics dis-
cussed in Sec. III. The top left panel of Fig. 15 shows the plot
of Im, obtained from eigenvectors of H (1)

F using Eq. (10), as a
function of ωD. The top right panel shows the corresponding
plot for τ2. We find that both the plots show similar multifrac-
tal behavior as seen in Figs. 1 and 2 within similar range of
ωD/(πJ0). In particular, we find that the eigenvectors of H (1)

F
exhibit delocalized eigenstates for ωD/(πJ0) � 0.45, mul-
tifractal eigenstates states for 0.45 � ωD/(πJ0) � 1.5 and
localized eigenstates for ωD/(πJ0) > 1.5. The plot of Dq as a
function of ωD, shown in the bottom left panel of Fig. 15, also
shows qualitatively similar behavior to that obtained from ED
shown in the bottom right panel of Fig. 1; however, we note

that the change in Dq signifying the transition to multifractal
phase is seen around h̄ωD/(πJ0) 	 0.6. Thus the position of
the transition is not accurately captured by H (1)

F . Nevertheless,
H (1)

F does predict the transition to the multifractal phase as
seen in the bottom right panel of Fig. 15, where a plot of �S
as a function of ωD shows a distinct peak. The peak becomes
sharper with increasing L which is consistent with the result
obtained from ED. Thus we conclude that H (1)

F , computed
using FPT, constitutes a semianalytic Floquet Hamiltonian
which shows a transition from ergodic to multifractal regime
at intermediate frequencies.

VI. DISCUSSION

In this work, we have studied a driven fermionic chain
with an AA potential and nearest neighbor density-density
interaction between the fermions. Our analysis constitutes a
detailed study, both numerical and semianalytic, of the Flo-
quet Hamiltonian of such a system as a function of drive
frequency in the limit of large drive amplitude.

We have shown that such a driven system supports mul-
tifractal many-body Floquet eigenstates for a range of drive
frequencies in the intermediate drive frequency regime. We
find that the eigenstates are ergodic in the low frequency and
many-body localized in the high drive frequency regime. In
between, for system sizes accessible in our numerics, results
indicate a possible transition from the ergodic to multifractal
phase at ωD = ωc 	 0.43J /h̄. Upon further increasing the
drive frequency, the eigenstates become many-body localized
via a smooth crossover. The presence of the transition from
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FIG. 15. (Top left) Plot of Im as a function of the normalized
many-body eigenfunction index m/N and ωD/(πJ0) showing the
localized/delocalized nature of the Floquet eigenstates |ψm〉 for
L = 14. (Top right) Plot of τ2 as a function of m/N (after sort-
ing in increasing order of Im) and ωD/(πJ0) showing the presence
of delocalized states for ωD/(πJ0) � 0.45, multifractal states for
0.45 � ωD/(πJ0) � 1.5 and localized states for ωD/(πJ0) > 1.5.
The system sizes used for extracting τ2 are L = 10, . . . , 16 in steps
of 2. (Bottom left) Plot of Dq as a function of ωD/(πJ0) for m/N =
0.5. (Bottom right) Plot of �S as a function of (πJ0)/ωD. All these
plots has been done using FPT and parameters are same as in Fig. 1.
See text for details.

ergodic to the multifractal phase seems likely due to two
reasons. First, the plot of entropy fluctuation �S as a function
of T shows a peak at the transition which gets sharper with
increasing system size. Second, b1 [Eq. (13)] changes sign at
this point which is indicative of a transition from the ergodic
phase. However, we need that one needs finite size numerics
with larger system sizes to settle this issue; this has not been
attempted in this work.

Our analysis indicates that several dynamic quantities that
we study can distinguish between the multifractal ergodic
and MBL phases. These include the fermion autocorrelation
function and the short-time behavior of the normalized partic-
ipation ratio. The former quantity decays sharply to zero in the
ergodic phase due to the spreading of the system in the Hilbert
space. In the MBL phase, it remains close to its initial value
since the system retains its initial memory. In the multifractal
phase, we find an initial sharp decay of the autocorrelation
function, followed by oscillation around a steady state value
which is intermediate between its ergodic (zero) and the MBL
(unity) counterparts. The latter quantity shows system-size
independent behavior as a function of the number of drive
cycles in the ergodic phase and displays a clear L dependence
in the MBL phase. In contrast, it shows intermediate behavior
with oscillations as a function of n0 in the multifractal phase.
We note that in contrast, the entanglement entropy and the

number entropy do not distinguish between the multifractal
and the MBL eigenstates.

We have also studied steady state properties of the driven
system, starting from a domain wall initial state, by computing
transport properties, autocorrelation function, and the num-
ber entropy. We find all of these quantities reflect a change
from localized to delocalized regime as a function of drive
frequency. However, the localization seen in transport also re-
ceives contribution from dynamical localization at high drive
frequencies [41]. We also find that near the transition fre-
quency, the distribution of the number density of fermions in
the steady state acquires a large width; this suggests a possible
signature of the multifractal regime in fermion transport. A
similar feature is seen in the steady state value of autocorre-
lation function which satisfies 0 < As < 1 in the multifractal
phase; this is in sharp contrast to its values zero and unity in
the ergodic and MBL phases, respectively. The plot of steady
state number entropy also show a sharp drop at the transition
which becomes sharper with increasing L.

We have also obtained similar qualitative features for the
driven fermionic chain from a semianalytic, albeit perturba-
tive, Floquet Hamiltonian computed using FPT. Remarkably,
this perturbative Floquet Hamiltonian reproduces multifrac-
tality of the Floquet eigenstates and also points towards a
transition from the ergodic to the multifractal regime. Our
results thus constitutes an analytic Floquet Hamiltonian which
support ergodic, multifractal and MBL eigenstates depending
on the drive frequency.

Our results could be relevant for ultracold interacting
fermions in the presence of an 1D optical lattice [33]. The
realization of the AA potential can be done using techniques
discussed in Refs. [23,24]. The drive can be implemented by
appropriate tuning of the strength of the laser used to create
the optical lattice. We suggest measurement of density-density
autocorrelation of the fermions. Our results suggest that the
short-time behavior of this autocorrelation function would be
sufficient to distinguish between the ergodic, MBL and the
multifractal phases. In particular, in the intermediate drive
frequency regime, we expect the autocorrelation function to
exhibit a sharp drop followed by oscillations around a finite
nonzero value.

The fate of the multifractal phase that we obtain in the
thermodynamic limit remains an open question. The phase
remains stable within the system sizes that we could access
within ED; however, it is possible that it might either shrink
for large L leading to a direct ergodic-MBL quantum phase
transition. An investigation of the stability of the multifractal
phase in the thermodynamic limit is beyond the scope of the
present paper. We note however, that the finite-sized chains
that we study in this paper may possibly be experimentally
realized using ultracold atoms in optical lattices.
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R.G. thanks M. Žnidarič for discussions and funding from
project J1-1698 Many-body transport engineering for finan-
cial support.

024301-12



SIGNATURES OF MULTIFRACTALITY IN A … PHYSICAL REVIEW B 105, 024301 (2022)

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958); E. Abrahams,
P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
Phys. Rev. Lett. 42, 673 (1979).

[2] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985).

[3] S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 3133 (1980).
[4] M. Ya. Azbel, ZhETF 44, 980 (1963) [Sov. Phys. JETP 17, 665

(1963)].
[5] M. Ya. Abzel, ZhETF 46, 929 (1964) [Sov. Phys. JETP 19, 634

(1964)].
[6] M. Y. Abzel, Phys. Rev. Lett. 43, 1954 (1979).
[7] J. Biddle, B. Wang, J. D. J. Priour, and S. Das Sarma, Phys.

Rev. A 80, 021603(R) (2009).
[8] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Phys.

Rev. A 75, 063404 (2007).
[9] R. Riklund, Y. Liu, G. Wahlstrom, and Z. Zhao-bo, J. Phys. C:

Solid State Phys. 19, L705 (1986).
[10] F. A. B. F. de Moura, A. V. Malyshev, M. L. Lyra, V. A.

Malyshev, and F. Dominguez-Adame, Phys. Rev. B 71,
174203 (2005).

[11] A. V. Malyshev, V. A. Malyshev, and F. Dominguez-Adame,
Phys. Rev. B 70, 172202 (2004).

[12] S.-J. Xiong and G.-P. Zhang, Phys. Rev. B 68, 174201 (2003).
[13] A. Rodriguez, V. A. Malyshev, G. Sierra, M. A. Martin-

Delgado, J. Rodríguez-Laguna, and F. Domínguez-Adame,
Phys. Rev. Lett. 90, 027404 (2003).

[14] S. Das Sarma, A. Kobayashi, and R. E. Prange, Phys. Rev.
Lett. 56, 1280 (1986).

[15] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601
(2010).

[16] X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L. Santos,
Phys. Rev. Lett. 123, 025301 (2019).

[17] D.-L. Deng, S. Ganeshan, X. Li, R. Modak, S. Mukerjee, and
J. H. Pixley, Ann. Phys. 529, 1600399 (2017).

[18] Z. Xu, H. Huangfu, Y. Zhang, and S. Chen, New J. Phys. 22,
013036 (2020).

[19] A. Jagannathan, Rev. Mod. Phys. 93, 045001 (2021).
[20] Sergej Flach et al., Europhys. Lett. 98, 66002 (2012).
[21] G. Roati, C. D. Errico, L. Fallani, M. Fattori, C. Fort, M.

Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature
(London) 453, 895 (2008).

[22] B. Deissler, M. Zaccanti, G. Roati, C. D. Errico, M. Fattori,
M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys. 6,
354 (2010).

[23] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. LÂ¨schen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch,
Science 349, 842 (2015).

[24] H. P. Luschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U.
Schneider, and I. Bloch, Phys. Rev. Lett. 119, 260401 (2017).

[25] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[26] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[27] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.

Rosenbaum, and D. Sen, Quantum Phase Transitions in Trans-
verse Field Spin Models: From Statistical Physics to Quantum
Information (Cambridge University Press, Cambridge, 2015).

[28] S. Lorenzo, J. Marino, F. Plastina, G. M. Palma, and T. J. G.
Apollaro Sci. Rep. 7, 5672 (2017).

[29] S. Mondal, D. Sen, and K. Sengupta, Quantum Quenching,
Annealing and Computation, edited by A. K. Chandra, A.

Das and B. K. Chakrabarti, Lecture Notes in Physics Vol. 802
(Springer, Berlin, Heidelberg, 2010), Chap. 2, p. 21; C. De
Grandi and A. Polkovnikov, ibid., Chap. 6, p. 75.

[30] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,
139 (2015).

[31] L. D’Alessio and A. Polkovnikov, Ann. Phys. 333, 19 (2013).
[32] L. D’Alessio, Y. Kafri, A. Polokovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[33] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008); L. Taurell and L. Sanchez-Palencia, C. R. Physique 19,
365 (2018).

[34] A. Sen, D. Sen, and K. Sengupta, J. Phys. Cond. Mat. 33,
443003 (2021).

[35] T. Nag, S. Roy, A. Dutta, and D. Sen, Phys. Rev. B 89, 165425
(2014).

[36] T. Nag, D. Sen, and A. Dutta, Phys. Rev. A 91, 063607
(2015).

[37] A. Agarwala, U. Bhattacharya, A. Dutta, and D. Sen, Phys.
Rev. B 93, 174301 (2016).

[38] A. Agarwala and D. Sen, Phys. Rev. B 95, 014305 (2017).
[39] D. J. Luitz, Y. Bar Lev, and A. Lazarides, SciPost Phys. 3, 029

(2017).
[40] D. J. Luitz, A. Lazarides, and Y. Bar Lev, Phys. Rev. B 97,

020303(R) (2018)
[41] R. Ghosh, B. Mukherjee, and K. Sengupta, Phys. Rev. B 102,

235114 (2020).
[42] A. Das, Phys. Rev. B 82, 172402 (2010).
[43] S. Bhattacharyya, A. Das, and S. Dasgupta, Phys. Rev. B 86,

054410 (2012).
[44] S. S. Hegde, H. Katiyar, T. S. Mahesh, and A. Das, Phys. Rev.

B 90, 174407 (2014)
[45] S. Mondal, D. Pekker, and K. Sengupta, Europhys. Lett. 100,

60007 (2012).
[46] U. Divakaran and K. Sengupta, Phys. Rev. B 90, 184303

(2014).
[47] B. Mukherjee, A. Sen, D. Sen, and K. Sengupta, Phys. Rev B

102, 075123 (2020).
[48] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[49] M. Srednicki, Phys. Rev. E 50, 888 (1994); J. Phys. A 32, 1163

(1999).
[50] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[51] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[52] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and

Z. Papic, Nat. Phys. 14, 745 (2018).
[53] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and

Z. Papic, Phys. Rev. B 98, 155134 (2018).
[54] K. Bull, I. Martin, and Z. Papic, Phys. Rev. Lett. 123, 030601

(2019).
[55] V. Khemani, C. R. Laumann, and A. Chandran, Phys. Rev. B

99, 161101(R) (2019).
[56] S. Maudgalya, N. Regnault, and B. A. Bernevig, Phys. Rev. B

98, 235156 (2018).
[57] T. Iadecola, M. Schecter, and S. Xu, Phys. Rev. B 100, 184312

(2019).
[58] N. Shiraishi, J. Stat. Mech. (2019) 083103.
[59] M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201

(2019).
[60] P. A. McClarty, M. Haque, A. Sen, and J. Richter, Phys. Rev.

B 102, 224303 (2020).

024301-13

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/PhysRevLett.43.1954
https://doi.org/10.1103/PhysRevA.80.021603
https://doi.org/10.1103/PhysRevA.75.063404
https://doi.org/10.1088/0022-3719/19/30/004
https://doi.org/10.1103/PhysRevB.71.174203
https://doi.org/10.1103/PhysRevB.70.172202
https://doi.org/10.1103/PhysRevB.68.174201
https://doi.org/10.1103/PhysRevLett.90.027404
https://doi.org/10.1103/PhysRevLett.56.1280
https://doi.org/10.1103/PhysRevLett.104.070601
https://doi.org/10.1103/PhysRevLett.123.025301
https://doi.org/10.1002/andp.201600399
https://doi.org/10.1088/1367-2630/ab64b2
https://doi.org/10.1103/RevModPhys.93.045001
https://doi.org/10.1209/0295-5075/98/66002
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nphys1635
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/s41598-017-06025-1
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1016/j.crhy.2018.10.013
https://doi.org/10.1088/1361-648X/ac1b61
https://doi.org/10.1103/PhysRevB.89.165425
https://doi.org/10.1103/PhysRevA.91.063607
https://doi.org/10.1103/PhysRevB.93.174301
https://doi.org/10.1103/PhysRevB.95.014305
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.1103/PhysRevB.97.020303
https://doi.org/10.1103/PhysRevB.102.235114
https://doi.org/10.1103/PhysRevB.82.172402
https://doi.org/10.1103/PhysRevB.86.054410
https://doi.org/10.1103/PhysRevB.90.174407
https://doi.org/10.1209/0295-5075/100/60007
https://doi.org/10.1103/PhysRevB.90.184303
https://doi.org/10.1103/PhysRevB.102.075123
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevLett.123.030601
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.100.184312
https://doi.org/10.1088/1742-5468/ab342e
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.102.224303


SARKAR, GHOSH, SEN, AND SENGUPTA PHYSICAL REVIEW B 105, 024301 (2022)

[61] D. Banerjee and A. Sen, Phys. Rev. Lett. 126, 220601 (2021).
[62] B. Mukherjee, S. Nandy, A. Sen, D. Sen, and K. Sengupta,

Phys. Rev. B 101, 245107 (2020).
[63] B. Mukherjee, A. Sen, D. Sen, and K. Sengupta, Phys. Rev. B

102, 014301 (2020).
[64] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.

321, 1126-1205 (2006).
[65] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[66] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[67] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.

Sondhi, Phys. Rev. B 88, 014206 (2013).
[68] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204 (2013).
[69] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 111,

127201 (2013).
[70] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B

90, 174202 (2014).
[71] T. Grover, arXiv:1405.1471.
[72] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. X 5,

041047 (2015).
[73] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Muller, and E.

Demler, Phys. Rev. Lett. 114, 160401 (2015).
[74] V. Khemani, S. P. Lim, D. N. Sheng, and D. A. Huse, Phys.

Rev. X 7, 021013 (2017).
[75] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.

109, 017202 (2012).
[76] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev.

B 87, 134202 (2013).
[77] J. A. Kjall, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett.

113, 107204 (2014).
[78] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Phys. Rev.

B 91, 140202(R) (2015).
[79] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. B 90,

174302 (2014).
[80] D. Pekker, G. Refael, E. Altman, E. Demler, and V.

Oganesyan, Phys. Rev. X 4, 011052 (2014).
[81] R. Modak and S. Mukerjee, Phys. Rev. Lett. 115, 230401

(2015).
[82] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103(R) (2015).
[83] W. De Roeck, F. Huveneers, M. Muller, and M. Schiulaz,

Phys. Rev. B 93, 014203 (2016).
[84] R. Modak, S. Ghosh, and S. Mukerjee, Phys. Rev. B 97,

104204 (2018).
[85] P. Ponte, Z. Papic, F. Huveneers, and D. A. Abanin, Phys. Rev.

Lett. 114, 140401 (2015).
[86] M. Znidaric, T. Prosen, and P. Prelovsek, Phys. Rev. B 77,

064426 (2008).
[87] S. J. Garratt and J. T. Chalker, Phys. Rev. Lett. 127, 026802

(2021).
[88] J. Lindinger, A. Buchleitner, and A. Rodriguez, Phys. Rev.

Lett. 122, 106603 (2019).

[89] H. Singh, B. Ware, R. Vasseur, and S. Gopalakrishnan, Phys.
Rev. B 103, L220201 (2021).

[90] A. Dutta, S. Mukerjee, and K. Sengupta, Phys. Rev. B 98,
144205 (2018).

[91] S. Roy, I. M. Khyamovich, A. Das, and R. Moessner, Scipost
Phys. 4, 025 (2018).

[92] S. Ray, A. Ghosh, and S. Sinha, Phys. Rev. E 97, 010101(R)
(2018).

[93] M. Sarkar, R. Ghosh, A. Sen, and K. Sengupta, Phys. Rev. B
103, 184309 (2021).

[94] L. Morales-Molina, E. Doerner, C. Danieli, and S. Flach, Phys.
Rev. A 90, 043630 (2014).

[95] Y. Wang, C. Cheng, X.-J. Liu, and D. Yu, Phys. Rev. Lett. 126,
080602 (2021).

[96] N. Mace, F. Alet, and N. Laflorencie, Phys. Rev. Lett. 123,
180601 (2019).

[97] D. J. Luitz, I. M. Khaymovich, and Y. Bar Lev, SciPost Phys.
Core 2, 006 (2020).

[98] Y. Prasad and A. Garg, Phys. Rev. B. 103, 064203 (2021).
[99] I. V. Protopopov, R. K. Panda, T. Parolini, A. Scardicchio,

E. Demler, and D. A. Abanin, Phys. Rev. X 10, 011025
(2020).

[100] A. Solórzano, L. F. Santos, and E. J. Torres-Herrera, Phys. Rev.
Research 3, L032030 (2021).

[101] S. Gopalakrishnan and S. A. Parameswaran, Phys. Rep. 862, 1
(2020).

[102] R. Modak and T. Nag, Phys. Rev. Research 2, 012074(R)
(2020).

[103] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch,
Nat. Phys. 13, 460 (2017).

[104] T. L. M. Lezama, S. Bera, and J. H. Bardarson, Phys. Rev. B
99, 161106(R) (2019).

[105] X. Li and S. Das Sarma, Phys. Rev. B 101, 064203
(2020).

[106] Y. Yoo, J. Lee, and B. Swingle, Phys. Rev. B 102, 195142
(2020).

[107] A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51, 2238 (1983).
[108] G. De Tomasi and I. M. Khaymovich, Phys. Rev. Lett. 124,

200602 (2020).
[109] R. Ghosh and A. Das, Phys. Rev. B 103, 024202 (2021).
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