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Acoustic helical dichroism in a one-dimensional lattice of chiral resonators
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Circular dichroism and helical dichroism are intriguing chiroptical phenomena with broad applications in
optical sensing and imaging. Here, we generalize one of the phenomena-helical dichroism-to acoustics. We show
that a one-dimensional lattice of chiral resonators with loss can induce differential absorption of helical sounds
(i.e., acoustic vortices) carrying opposite orbital angular momentum (OAM). This acoustic helical dichroism
strongly depends on the rotation symmetry of the chiral resonators. Breaking the C4 rotation symmetry can
induce coupling between the opposite chiral dipole modes of the resonators. This leads to OAM band gaps
and non-Hermitian exceptional points near the Brillouin-zone center and boundaries, which together give
rise to significantly enhanced helical dichroism. The underlying physics can be well captured by an effective
Hamiltonian that quantitatively reproduces the complex band structures. The acoustic helical dichroism can find
important applications in acoustic OAM manipulations and chiral sound-matter interactions.
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I. INTRODUCTION

Chiroptical effects induced by the interaction of light with
chiral structures have attracted considerable interest due to
broad applications in physics, chemistry, and biology [1–5].
One intriguing chiroptical effect is circular dichroism (CD),
i.e., the differential absorption of right-handed circularly po-
larized and left-handed circularly polarized lights [6]. It has
been widely used to detect and analyze chiral structures,
including proteins [7], DNA, and pharmaceutical drugs [8],
and liquid crystals [9], as well as to control rotatory power
[10]. However, chiral optical interactions in nature are usually
very weak due to a significant size mismatch between the
chiral structures and light’s wavelength [5]. Therefore, various
artificial structures have been proposed to achieve strong CD
effects, including chiral metamaterials [10–14], chiral meta-
surfaces [15], and gyroid structures [16–18]. Interestingly, a
strong CD effect can also be realized by using an achiral metal
sphere excited by a linearly polarized light [19]. Akin to CD,
optical vortex beams (i.e., helical lights) carrying opposite
orbital angular momentum (OAM) can also manifest different
absorptions when interacting with chiral structures, which is
referred to as optical helical dichroism (HD) [5]. In contrast to
CD resulting from the coupling between electric and magnetic
dipoles [20], HD is attributed to the electric quadrupole mo-
ments induced by the interaction of optical OAM with chiral
structures [21], which has been verified theoretically [22–25]
and experimentally [26,27].

Despite the extensive study of CD and HD effects in op-
tics, the exploration of their counterparts in acoustics has not
been reported yet. Sound propagating in air/fluids is a lon-
gitudinal wave carrying no intrinsic spin angular momentum
[28,29], indicating the absence of an acoustic analog of optical
CD. However, sound can carry intrinsic OAM in the form
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of acoustic vortex beams (i.e., helical sounds) characterized
by a topological charge q [30–36], which can give rise to
many novel phenomena and applications similar to optical
OAM, such as acoustic micromanipulations [37,38], acous-
tic communications via OAM multiplexing [39], acoustic
spin-redirection geometric phase [40], and acoustic Fedorov-
Imbert linear shift [41]. An interesting question is whether
sound can have the phenomenon of HD. In this paper, we
report that a one-dimensional (1D) periodical lattice of chi-
ral resonators can induce differential absorption of opposite
helical sounds (i.e., helical sounds carrying opposite OAM),
which we refer to as acoustic HD. This phenomenon is at-
tributed to the interaction of acoustic OAM with the chiral
resonators. We show that the chiral resonators with ho-
mogenous loss respecting C4 rotation symmetry induce weak
acoustic HD. To achieve a large HD, we engineer the loss
region to break the C4 rotation symmetry and induce the
coupling of opposite chiral dipole states of the resonators.
This gives rise to OAM band gaps and non-Hermitian ex-
ceptional points (EPs), which can significantly enhance the
acoustic HD. We show that the underlying physics can be well
captured by an effective Hamiltonian taking into account the
chiral dipole bands of the 1D lattice. These results provide
new mechanisms to manipulate acoustic OAM (e.g., selective
absorption or transmission of acoustic OAM) and can trigger
more explorations of acoustic chiral-matter interactions.

We organize the paper as follows. In Sec. II, we describe
the 1D lattice of chiral resonators and the properties of the
band structures and eigenmodes. In Sec. III, we discuss the
acoustic HD effect in two types of lossy lattice with C4 and
C2 symmetry, respectively, where the symmetry is determined
by the loss region. The physics for the HD effect is illustrated
in Sec. IV using an effective Hamiltonian that can reproduce
the band structures of the C4 and C2 systems. To further verify
our theory, in Sec. V, we consider another type of lattice with
C2 symmetry determined by the unit cell’s geometry. We draw
the conclusion in Sec. VI.
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FIG. 1. (a) Unit cell of the 1D chiral lattice. (b) A cutaway view
of the chiral resonator. The inner blades are colored in yellow. The
outer blades and the shell are colored in blue. The geometric param-
eters are r = 0.285 cm, t = 1.5 cm, R = 2.5 cm, and h = 1.25 cm.
(c) Band structure of the 1D chiral lattice. The eigenpressure fields
of the second and third bands at ka/π = 0.2 are shown in (d) and (e),
respectively. The green arrows indicate the rotation direction of the
pressure fields.

II. 1D LATTICE OF CHIRAL RESONATORS

We consider a 1D periodical structure along the z direction
with the unit cell shown in Figs. 1(a) and 1(b). The unit cell
consists of a right-handed chiral resonator (filled with air) with
eight tubes that introduce coupling between nearby unit cells.
Figure 1(a) shows the air domain of the unit cell. Figure 1(b)
shows a cutaway view of the solid shell and blades of the
chiral resonator (the solid shells of the tubes are not shown),
where the internal (yellow) and external (blue) blades segment
the air inside the resonator. We assume hard boundary con-
ditions at all solid-air interfaces. Such an internal structure
of the resonator enables subwavelength resonances via space
coiling. The blades are twisted by π/2 to introduce chirality
into the resonator that breaks the inversion symmetry. The

cylindrical resonator has a radius of R = 2.5 cm and a height
of h = 1.25 cm. The tubes have radii of r = 0.285 cm and a
height of t = 1.5 cm.

We conducted full-wave simulations of the periodic struc-
ture and computed its band structures using a finite-element
package COMSOL MULTIPHYSICS [42]. The results are shown in
Fig. 1(c) for the lowest three bands, where k is the magnitude
of the wave vector along the z direction, and a = 2t + h is
the lattice period. The first band extending to the static limit
corresponds to a monopole mode that has a constant phase
of pressure inside the resonator at k = 0. The second and
third bands correspond to two chiral dipole modes carrying
opposite OAM. The two bands are degenerate at k = 0 as a
result of the C4 rotation symmetry. At k �= 0, the two bands
have split due to the inversion symmetry breaking of the
chiral resonator. Figures 1(d) and 1(e) show the eigenpressure
fields of the opposite chiral dipole modes at ka/π = 0.2. The
blue and red colors denote negative and positive pressures,
respectively. The green arrows show the circulating directions
of the pressure field as time elapses. Clearly, the modes are
of dipole nature and have opposite chirality, i.e., they carry
opposite OAM. Importantly, the dipole modes are transverse
(perpendicular to the propagating direction) and give rise to
a transverse sound. The rotation of the pressure fields can be
realized by selectively exciting the chiral dipole modes using
four input ports with proper phases (see the details in Sec. III).
In the following, we will focus on the interaction of helical
sounds with the chiral lattice at the frequencies of the dipole
modes and characterize their different absorption properties.

III. ACOUSTIC HELICAL DICHROISM

To demonstrate the phenomenon of acoustic HD, we con-
sider the 1D lattice consisting of ten unit cells shown in
Fig. 2(a). We excite the structure via the tubes on the left
side of the lattice and calculate the power transmission and
reflection coefficients by using COMSOL. For helical sound
with topological charge q = +1, the incident pressure at the
four input tubes has a phase of 0, 0.5π , π , and 1.5π in the az-
imuthal direction. For helical sound with a topological charge
q = −1, the above phases take an extra minus sign. To achieve
sound absorption, we introduce loss into the resonators by
adding an imaginary part to the speed of sound as v(1 + iα),
where v is the speed of sound in air and α characterizes the
loss strength. Let us denote the reflection and transmission
of power as R± and T±, respectively, where “±” denotes the
sign of the topological charge q carried by the input helical
sounds. Then, the absorption for sound with q = ±1 and the
differential absorption characterizing the acoustic HD can be
determined as

A± = 1 − R± − T±, (1)

�A = |A+ − A−|. (2)

We first consider the case with homogeneous loss intro-
duced into the chiral resonators, as shown by the inset in
Fig. 2(b), where the blue region of the resonator contains
loss. The C4 rotation symmetry is still maintained in this case.
The numerical simulation results for the reflection and trans-
mission coefficients are shown as solid and dashed lines in
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FIG. 2. (a) The 1D chiral lattice consisting of ten unit cells.
(b) Transmissions, reflections, and (c) absorptions of helical sounds
carrying opposite OAM. The loss is homogeneously added to all
the resonators, and the loss parameters α = 0.01. (d) Absorptions
of opposite helical sounds as a function of loss parameters α at
f = 1.8 kHz. The differential loss is multiplied by ten.

Fig. 2(b). We have set the loss parameters α = 0.01. As seen,
the reflections of opposite helical sounds, i.e., R+ and R−,
are almost identical, while the transmissions T+ and T− are
slightly different. The absorption coefficients obtained using
Eq. (1) are shown in Fig. 2(c) as solid blue and red lines. We
see that the absorptions of opposite helical sounds have small
differences within the frequency range (1.45 kHz, 2.04 kHz),
corresponding to the frequencies of the chiral dipole bands in

Fig. 1(c). The solid black line shows the differential absorp-
tion multiplied by ten, i.e., �A × 10. To understand whether
the weak HD is attributed to the small loss parameter α =
0.01, we calculated the absorption at the frequency of 1.8 kHz
while varying the value of α, and the results are shown in
Fig. 2(d). We see that, as α is enlarged, the absorptions of
opposite helical sounds first increase and then decrease. The
same trend is also found for the differential absorption, which
has a maximum value �A ≈ 0.01 at α = 0.01 (marked by
the dashed yellow line). Therefore, this lossy lattice with C4

symmetry cannot induce large HD.
We now consider the lattice with inhomogeneous loss in-

troduced into the chiral resonators, as shown by the inset
in Fig. 3(a), where only two sections (blued) of the chiral
resonator contain loss. The unit cell now possesses C2 rotation
symmetry. We simulated the transmission and reflection of the
lattice for helical sounds with topological charge q = ±1, and
the results are shown in Fig. 3(a) as the solid and dashed lines,
where the loss parameter is α = 0.22. We see that both the
transmission and reflection of q = +1 helical sound have a
resonance peak at f = 1.81 kHz, while the transmission and
reflection of q = −1 helical sound have a resonance peak at
f = 1.66 kHz. These peaks lead to a large acoustic HD, as
shown in Fig. 3(b) by the solid black line. Remarkably, the
HD can reach about 40% at the resonance frequencies. The
solid blue and red lines denote the absorption A± obtained
using Eq. (1), which shows a dip at corresponding resonance
frequencies. We also calculated the absorption as a function
of loss strength α at the fixed frequency f = 1.8 kHz, and the
results are shown in Fig. 3(c). Similar to the C4 system, as α

is enlarged, the absorptions of the helical sounds first increase
and then decrease. A similar feature is also observed for the
differential loss �A. The maximum value of �A appears at
α = 0.22, which is the value we set for computing the results
in Figs. 3(a) and 3(b). Apparently, the acoustic HD in this C2

system is much stronger than that of the C4 system in Fig. 2.
We will show that the strong acoustic HD can be attributed
to the combined effect of OAM band gaps and non-Hermitian
EPs. The different values of T+ and T− in Fig. 3(a) suggest
that the chiral lattice can be employed to generate helical
sound with achiral excitation. As a demonstration, we excite
the lattice by setting the phase of the pressure at four input
tubes to be 0, 0, π , and π , respectively, corresponding to a
“linearly” polarized input sound. The amplitude and phase
of the transmitted pressure at f = 1.81 kHz are shown in
Figs. 3(d) and 3(e). We notice that the pressure amplitude has
an approximate doughnut shape with zero value in the center,
and the phase pattern shows a 2π variation in the azimuthal di-
rection. These confirm the generation of q = +1 helical sound
in the transmitted field. The distortion of amplitude donut is
attributed to the residue sound with q = −1. We note that
similar property also exists in the reflected sound, as indicated
by the different values of R+ and R− at the frequencies of the
dipole bands in Fig. 3(a).

IV. COMPLEX BAND STRUCTURES AND EXCEPTIONAL
POINTS

To understand the underlying physics of the acoustic HD,
we study the complex band structures of the 1D lattice with
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FIG. 3. (a) Transmissions, reflections, and (b) absorptions of he-
lical sounds carrying opposite OAM. The loss is selectively added to
two opposing sections of the chiral resonators, and we set α = 0.22.
The red and blue ribbons mark the OAM gaps (see main text for
definition). (c) Absorption of opposite helical sounds as a function
of the loss parameter α at f = 1.8 kHz. (d) The amplitude and (e)
phase of output pressure field under the excitation of a “linearly”
polarized input sound for α = 0.22 and f = 1.82 kHz.
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FIG. 4. (a) The real part and (b) the imaginary part of the com-
plex band structure for the C4 system with α = 0.01. The right insets
show the zoom-ins of the bands near the zone center and boundaries,
as indicated by the black rectangles in (a) and (b). (c) Eigenfre-
quencies corresponding to the second and third bands plotted in the
complex plane. The red (blue) color denotes eigenstates with positive
(negative) OAM. The right inset is a zoom-in showing the difference
of the eigenfrequencies.

damping. We first consider the lossy lattice with C4 sym-
metry corresponding to the case of Fig. 3. The numerically
computed complex band structures for α = 0.01 are shown in
Figs. 4(a) and 4(b), respectively. We notice that the real and
imaginary parts of eigenfrequencies have a similar structure.
The imaginary parts are positive because of the time-harmonic
convention eiωt adopted in numerical simulations. The right
insets (labeled as A and B) show the zoom-ins of the bands
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FIG. 5. (a) The real part and (b) the imaginary part of the com-
plex band structure for the C2 system with α = 0.01. The right insets
show the zoom-ins of the bands near the zone center and boundaries,
as indicated by the black rectangles in (a) and (b).

near the zone center and boundaries, as marked by the black
rectangles inset B corresponds to the composition of two
zoom-in regions in Fig. 4(a)]. We see that both the real and
imaginary parts are degenerate at the zone center and bound-
aries, which is protected by the C4 rotation symmetry of the
lattice and indicates vanished coupling between the opposite
chiral dipole modes.

To understand the weak HD in Fig. 2, we plot the eigenfre-
quencies of the second and third bands in the complex plane,
as shown in Fig. 4(c). The solid (dashed) lines correspond
to the second (third) band. The red (blue) color denotes a
positive (negative) OAM carried by the corresponding eigen-
states (i.e., chiral dipole modes), as labeled by a “+” (“−”)
sign in the figure legend. We notice that the OAM carried by
the eigenstates of each band can change the sign because the
group and phase velocities can change their relative sign [29].
The right inset in Fig. 4(c) shows a zoom-in of the complex
eigenfrequencies, from which we observe a small separation
between the red and blue lines. Therefore, under the excitation
of input helical sounds within this frequency range, the chiral
dipole modes with opposite OAM have different damping.
This gives rise to the differential absorption of input helical
sounds with opposite OAM, i.e., the acoustic HD.

We now consider the lossy lattice with C2 rotation sym-
metry shown in Fig. 3(a). Figure 5 shows the numerically

computed complex band structures for α = 0.01. In contrast
to the C4 system, there are two EPs appearing at the zone
center and another two EPs appearing at the zone boundaries.
The right insets A and B in Figs. 5(a) and 5(b) show the
zoom-ins of the real and imaginary parts of the bands near the
EPs. We notice the typical bifurcation features of EPs: the real
parts are degenerate in the symmetry-breaking phase while
the imaginary parts bifurcate. These EPs can be considered
as derived from the diabolic points in the original lossless
system and thus are similar to the EPs emerged in coupled
waveguides [43,44] or EPs spawning from a Dirac point in
photonic crystals [45].

Figures 6(a) and 6(b) show the complex band structures
of the C2 system with a larger loss α = 0.22, corresponding
to the case of Figs. 3(a) and 3(b). We notice that the general
structure of the bands is similar to that in Fig. 5. However,
while the general features (e.g., bifurcations) of the EPs can
still be observed, there are partial gaps that appear near the
zone center and boundaries, making the EPs not well defined.
The gaps associated with the real parts of the bands in Fig. 6(a)
can be called OAM gaps since the lattice only allows the
propagation of one chiral dipole mode within the gaps. Such
OAM gaps are similar to the polarization gaps that have been
well studied in optical chiral metamaterials [46]. We apply
blue and red colors to label the two gaps in the insets A and
B. The frequency ranges of these OAM gaps are also marked
in Figs. 3(a) and 3(b). Noticeably, they agree with the peaks
of the acoustic HD. To understand this agreement, we plot the
eigenfrequencies of the dipole bands in the complex plane, as
shown in Fig. 6(c). Similar to Fig. 4(c), we use red (blue) color
to denote the eigenstates carrying positive (negative) OAM, as
labeled by a symbol of “+” (“−”) in the figure legend. We also
marked the ranges of the two OAM gaps using blue and red
ribbons. Remarkably, near the blue/red ribbon, the eigenfre-
quencies of opposite eigenstates have the largest differences
in the imaginary parts, which is attributed to the combined
effect of the EPs and the OAM gaps. This explains the large
acoustic HD in the frequency ranges labeled by the blue and
red ribbons in Fig. 3(b).

We now employ effective Hamiltonians to obtain a better
understanding of the physics associated with the EPs [45,47–
49]. For the homogeneous lossy lattice with C4 symmetry, the
effective Hamiltonian for the chiral dipole bands at k → 0 can
be expressed as

HC4 =
(

ω0 − iγ (vR + ivI )k
(vR + ivI )k ω0 − iγ

)
(3)

with complex eigenvalues:

ωC4 = ω0 − iγ ± k(vR + ivI ), (4)

where ω0 is the eigenfrequency of the chiral dipole modes at
k = 0 (corresponding to the degeneracy), vR and vI are the real
and imaginary parts of the group velocity, k is the magnitude
of the wave vector, and γ denotes the loss. As for the C2

system, the effective Hamiltonian is

HC2 =
(

ω0 − iγ1 + δ
2 (vR + ivI )k

(vR + ivI )k ω0 − iγ2 − δ
2

)
(5)
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FIG. 6. (a) The real part and (b) the imaginary part of the com-
plex band structure for the C2 system with α = 0.22. The right insets
show the zoom-ins of the bands near the zone center and boundaries,
as indicated by the black rectangles in (a) and (b). The red (blue)
ribbon denotes the OAM gap where the helical sound with positive
(negative) OAM can propagate inside the lattice. (c) Eigenfrequen-
cies corresponding to the second and third bands plotted in the
complex plane. The red (blue) color denotes eigenstates with positive
(negative) OAM.

with complex eigenvalues:

ωC2 = ω0 − i
(γ1 + γ2)

2

± 1

2

√
[δ − i(γ1 − γ2)]2 − 4k2(vI − ivR)2, (6)

where ±δ/2 describes the gap induced by the symmetry
breaking and γ1,2 denotes the loss of opposite chiral dipole
modes at k = 0. Here, γ1 �= γ2 due to the inhomogeneous loss
added to the chiral resonator.

We apply Eqs. (4) and (6) to fit the numerically obtained
complex band structures in the insets A of Figs. 4–6, from
which we obtain the values for the parameters in the effective
Hamiltonian. For the C4 system in Figs. 4(a) and 4(b), the
obtained parameters are γ = −14.12 Hz, vR = 11.71 m/s,
vI = 0.14 m/s, and ω0 = 1660.07 Hz. For the C2 system in
Figs. 5(a) and 5(b), the obtained parameters are δ = 0.06 Hz,
γ1 = −6.19 Hz, γ2 = −0.27 Hz, vR = 11.81 m/s, vI = 0.02
m/s, and ω0 = 1658.72 Hz. For the C2 system in Figs. 6(a)
and 6(b), the obtained parameters are δ = 29.18 Hz, γ1 =
−130.81 Hz, γ2 = −5.51 Hz, vR = 11.76 m/s, vI = 0.40
m/s, and ω0 = 1676.43 Hz. Here, the loss parameters take
negative values due to the time convention eiωt adopted in the
numerical simulations. The analytical fitting results are shown
as solid blue and red lines in the same insets. As seen, the an-
alytical results given by the effective Hamiltonians well agree
with the full-wave numerical results, demonstrating the valid-
ity of the effective Hamiltonians. The above analytical model
provides a clear physical picture for the stronger acoustic HD
in the C2 system. In the C4 system with homogeneous loss, the
eigenstates of the two bands at k = 0 are orthogonal and have
no coupling. The dampings of the eigenstates with opposite
OAM are approximately equal due to the homogeneous mate-
rial loss. In the C2 system with inhomogeneous material loss,
the symmetry breaking induces coupling and loss difference
between the eigenstates of the two bands at k = 0, leading
to the EPs and OAM gaps. The EPs induce bifurcations of
the imaginary parts of the eigenfrequencies, and the OAM
gap enables selective transmission of one eigenstate. These
together give rise to the enhanced acoustic HD in comparison
with that of the C4 system.

V. C2 LATTICE WITH HOMOGENEOUS LOSS

In the C2 lattice system in Fig. 3, the symmetry breaking is
induced by the inhomogeneous loss in the resonator, i.e., the
loss is only added to two opposing sections of the resonator.
To further understand the effect of the rotation symmetry, we
consider another type of C2 system shown in Fig. 7(a), where
the loss is homogeneously added to the whole resonator, and
the geometry of the resonator has a C2 rotation symmetry
since we set internal blades r1 �= r2. Figures 7(b) and 7(c)
show the imaginary and real parts of the complex band struc-
ture of this system, respectively. We notice that this system
does not give rise to EPs. Because of the C2 symmetry, the
chiral dipole bands have two OAM gaps, as indicated by the
blue and red ribbons in Fig. 7(c). Figure 7(d) shows the trans-
mission and reflection of opposite helical sounds for loss α =
0.02. As seen, in the frequency range of the polarization gaps
(denoted by blue and red ribbons), the differential reflection
and differential transmission reach the maximums. Figure 7(e)
shows the absorption of opposite helical sounds as a function
of loss strength α. Similar to the previous cases, the acoustic
HD first increases and then decreases with a maximum at
about α = 0.02. Figure 7(f) shows the absorptions of opposite
helical sounds, where the frequency ranges marked by the blue
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FIG. 7. (a) The unit cell with a geometry satisfying C2 rotation symmetry. The lengths of the outer blades are not equal: r1 �= r2 (r1 =
1.76 cm, r2 = 1.56 cm). (b) The real part and (c) the imaginary part of the complex band structure. (d) The transmission and reflection of
helical sounds carrying opposite OAM. We considered the 1D lattice with ten unit cells and α = 0.02. (e) The absorption of opposite helical
sounds as a function of loss parameter α. (f) The absorption of opposite helical sounds corresponding to the case of (d). (g) The complex
eigenfrequencies of the two dipole bands plotted in the complex plane. The red and blue ribbons in (d), (f), and (g) denote the OAM band gaps.

and red ribbons correspond to that in Figs. 7(c) and 7(d). As
expected, the maximum acoustic HD appears within the two
frequency ranges corresponding to the two OAM gaps. For
completeness, we also plot the eigenfrequencies of the dipole
bands in the complex plane, as shown in Fig. 7(g). Similar
to the case in Fig. 6(c), at the same value of Re(f), the value
of Im(f) for the eigenstates with opposite OAM are different,
indicating different losses of the two states. However, the
difference of Im(f) for the same Re(f) near the boundaries of
the OAM gaps is smaller compared with the case in Fig. 6(c),
due to the absence of the EPs-induced bifurcations. These
results confirm the important effect of structural symmetry on
the absorption of helical sounds.

VI. DISCUSSION AND CONCLUSION

In optical systems, strong HD can appear even if the ma-
terials of chiral structures contain homogeneous loss. This is
because the chiral structures break inversion symmetry and
the induced optical fields are in general different for incident
helical lights carrying opposite OAM. Since the absorption
strongly depends on the distribution of the fields, HD naturally
appears in such chiral structures. Our results in this paper
uncover a nontrivial counterpart of optical HD in acoustics. In
contrast to the optical HD, the acoustic HD can be very weak

in chiral structures with homogeneous material loss. Without
the coupling between the opposite chiral dipoles induced in
the structures, the absorption of incident helical sounds with
opposite OAM is similar. To enhance the HD, one can induce
the coupling between opposite chiral dipoles by breaking the
C4 rotation symmetry. In our system, this symmetry breaking
is realized by selectively adding material loss to the chi-
ral resonators or engineering the resonators’ geometry. The
first approach also benefits from the interesting physics of
non-Hermitian EPs, where the bifurcation of complex band
structures in the symmetry-breaking phase can also enhance
the acoustic HD. We emphasize that although a periodic lat-
tice of the chiral resonators is considered in this study, the
acoustic HD can also happen to a single chiral resonator,
except that the differential absorption will be smaller. We have
applied complex band structures and effective Hamiltonians
in k space to explain the observed phenomena. For a single
chiral resonator, such explanations are not applicable since
the resonator represents an open scattering system. In this
case, a microscopic picture based on multipole expansions
may be employed to understand its absorption properties, and
the associated physics remains to be explored. Experimental
demonstration of the proposed acoustic HD is possible. The
chiral resonators can be fabricated by using three-dimensional
printing and then assembled into a 1D lattice. Inhomogeneous
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loss can be introduced into the lattice by adding absorbing
materials (e.g., foams) to the selected domains of the chiral
resonators [i.e., the blue regions in the insets of Figs. 2(b) and
Fig. 3(a)]. The incident helical sounds can be generated by
using four speakers that couple to the four tubes of the res-
onator. The absorption can be determined from the measured
transmission and reflection of the structure.

In conclusion, we proposed a chiral lattice structure that
can selectively absorb helical sounds with opposite OAM. The
phenomenon represents the acoustic counterpart of optical
HD effect. We have shown that this acoustic HD strongly
depends on the rotation symmetry of the lattice. The structure
with C2 symmetry can give rise to a much larger HD com-
pared to the structure with C4 symmetry. This enhancement is

attributed to the OAM gaps and non-Hermitian EPs induced
by the coupling of opposite chiral dipole modes of the res-
onators. The results pave the way for further investigations
of chiral sound-matter interactions in artificial structures and
metamaterials. The proposed structures can also find impor-
tant applications in manipulations of acoustic OAM.
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