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Atom-in-jellium predictions of the shear modulus at high pressure
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Atom-in-jellium calculations of the Einstein frequency in condensed matter and of the equation of state were
used to predict the variation of shear modulus from zero pressure to ∼107 g/cm3, for several elements relevant to
white dwarf stars and other self-gravitating systems. This is by far the widest range reported electronic structure
calculation of shear modulus, spanning from ambient through the one-component plasma to extreme relativistic
conditions. The predictions were based on a relationship between the Debye temperature and shear modulus,
which we assess to be accurate at the o(10%) level, and is the first known use of atom-in-jellium theory to
calculate a shear modulus. We assessed the overall accuracy of the method by comparing with experimental
measurements and more detailed electronic structure calculations at lower pressures.
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I. INTRODUCTION

The shear modulus is a fundamental measure of the re-
sistance of matter to shear deformation, dictating the speed
of propagation of shear waves, contributing to the speed of
longitudinal waves, and governing the magnitude of deviatoric
stresses induced by shear strains, which are the driving force
for plastic flow. Although straightforward to measure at am-
bient pressure, the shear modulus is challenging to measure at
elevated pressures because of the difficulty of distinguishing
its contribution from that of the bulk modulus, i.e. volumetric
compression of the sample. However, the shear modulus is a
key aspect in understanding the response of solids to deforma-
tion at high pressure, which is typically dynamic. It represents
the first-order correction to the scalar equation of state (EOS)
to account for nonhydrostatic stresses. Technologically, the
high-pressure shear modulus is important in impacts and the
response of solids to explosions, as occur in weapon physics
and target response. Scientifically, it occurs in planetary seis-
mology and oscillatory modes of white dwarf and neutron
stars—at very different pressure regimes.

The shear modulus is usually predicted theoretically from
electronic structure calculations of single-crystal elastic mod-
uli, which are then averaged to estimate the shear modulus
of polycrystalline matter [1]. This approach is rigorous, but
it is subject to some difficulties in practice. If the appropri-
ate crystal structure is not represented accurately enough in
the electronic structure model, or contains internal degrees
of freedom for which the equilibrium parameter values are
not found precisely enough, the model of the crystal may
be unstable with respect to some distortions from the sup-
posed equilibrium, giving unphysical negative elastic moduli.
Because calculations of the elastic moduli usually break sym-
metries of the equilibrium structure, and several distortions of
the structure are needed to determine the elastic moduli, the
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computational effort involved is higher than for the EOS. For
these reasons, predictions of elastic moduli are generally less
extensive than are EOS.

Although single-crystal elastic properties are important
for some applications, most require a polycrystalline average
shear modulus. The properties of a polycrystalline ensem-
ble depend on the texture of the material, which introduces
another degree of freedom. The limiting cases of Voigt and
Reuss averaging—assuming that either the stress or strain is
equal over grains of different orientation—may be signifi-
cantly different [2].

We present a different and computationally efficient
method of predicting the shear modulus over a wide range of
states, avoiding most of these complications. This method can
be made to work with any approach to constructing the EOS
from which the ion-thermal contribution can be identified.
Here we use the atom-in-jellium method [3,4], which we have
recently been investigating as a particularly efficient approach
to predicting the EOS of elements over a wide range of states
[5,6]. In fact, we have found it possible to calculate the EOS
over eleven decades in mass density and ten in temperature,
the first application of a reasonably accurate electronic struc-
ture technique to span from ambient conditions to the core of
a white dwarf (WD) star [7]. The EOS and shear modulus pre-
dictions may be relevant to the study of the internal structure
of WDs by asteroseismology and to gamma ray bursts from
crustal quakes in magnetars.

II. RELATION BETWEEN SHEAR MODULUS
AND ION-THERMAL EOS

Although it is considered most natural to express the ion-
thermal EOS of crystalline matter in terms of phonons, there is
a close connection with the elastic moduli, as they give the fre-
quencies of the acoustic modes. In the phonon approach, the
thermal energy of each phonon mode has the Bose-Einstein
form. The ion-thermal EOS can be found by integrating over
all the phonon modes [8]. However, many of the phonon
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modes are similar, and in integrating over the population the
details of any given mode become unimportant. It is common
in constructing even recent, rigorous, multiphase EOS to ex-
press the ion-thermal contribution as a few effective Debye
modes, or even a single mode. Average Debye modes can be
estimated from the density of phonon states or from the elastic
moduli. There is a one-to-one correspondence between elastic
moduli and the speeds of longitudinal and shear waves. De-
pending on the details of the approach adopted, including the
particular software implementation, there can be significant
advantages in deriving the ion-thermal energy from the elastic
moduli instead of phonon modes. Although elastic moduli
are susceptible to numerical instabilities as mentioned above,
phonon modes are usually even more susceptible, which can
result in a proportion of modes with unphysical, complex
frequencies, unless the assumed structure is at least metastable
at the instantaneous state and the equilibrium positions of
the atoms are found to sufficient precision. If the phonon
modes are calculated by making finite displacements of ions
from equilibrium, the symmetry of the crystal lattice is often
reduced even more than by the distortions used to calculate
elastic moduli. Phonon calculations often require the electron
wave functions to be constructed over a supercell of the lattice,
in order to reduce the effect of image displacements in a
periodic representation. These constraints can make phonon
calculations considerably more expensive than calculations of
elastic moduli.

If the ion-thermal EOS is represented by a single De-
bye mode, it is naturally related to a single shear modulus.
Compared to the calculation of the ion-thermal energy by
considering longitudinal and shear wave speeds instead of
elastic moduli, this approach is based on average wave speeds
instead of the average energy, i.e., at least in principle calcu-
lating an average over all directions and polarizations of the
elastic waves. There is a long history of relating the Debye
temperature θD to the shear modulus [9–11], and this approach
for predicting the ion-thermal energy is still in use [12]. Fol-
lowing Anderson [11],

θD(ρ) = h

kB

(
3NAρ

4π Ā

)1/3

ū, (1)

where h and kB are Planck’s and Boltzmann’s constants, re-
spectively, NA is Avogadro’s number, Ā is the mean atomic
weight, the average wave speed

ū =
(

1/u3
l + 2/u3

s

3

)1/3

, (2)

and the shear and longitudinal wave speeds are

us =
√

G

ρ
, ul =

√
B + 4G/3

ρ
. (3)

Relating the Debye temperature and the shear modulus relies
on a hierarchy of approximations, in this case that the material
is either elastically isotropic, or comprises a uniform distribu-
tion of grain orientations so as to give an isotropic average
response and the shear modulus is the Hill average [11].

Conversely, the shear modulus G may be estimated from
the Debye temperature θD and bulk modulus B. This cal-
culation involves inverting the function θD(B, G), which we

performed numerically by bracketing and bisection, defining
the bracket with factors β1 and β2 of B, where β1 � 1 and
β2 � 1. Another approach has been to ignore either B or
G and so make the expression for θD invertible [13]: θD ∝
ρ1/3√G/ρ. A similar cubic relation has been used to relate
the shear modulus to the elastic moduli rather than the Debye
temperature, in cubic crystals [14]. As well as predicting the
shear modulus for materials of interest using the complete
equation, we assess the accuracy of the approximate solution.

III. ATOM-IN-JELLIUM EQUATION OF STATE

The atom-in-jellium (AJ) model [3] of electronic struc-
ture in matter provides a computationally efficient way to
predict wide-ranging EOS models that provides B and θD

and is thus convenient for making wide-range predictions
of the shear modulus. For convenience, we summarize key
aspects of the AJ model. The AJ model approximates con-
densed matter by considering a single atom surrounded by a
medium comprising a constant positive charge density rep-
resenting neighboring nuclei, and a compensating constant
negative charge density representing the electrons associated
with those nuclei: the “jellium.” Wave functions are calcu-
lated explicitly for the electrons associated with the nucleus,
with radial symmetry over an otherwise empty spherical
cavity in the jellium, of the Wigner-Seitz volume. This is
a geometrically-simplified version of the muffin-tin model,
in which the electron states are calculated within a polyhe-
dral cavity with mirror boundary conditions. In Liberman’s
AJ model [3], the electron wave functions are represented
with a spherical Bessel function basis set centered on the
nucleus. The electronic wave functions are spinless but the
Dirac Hamiltonian is used and so relativistic contributions
to the kinetic energy are included, significant at high atomic
number or extremely high compression or temperature. The
Coulomb potential is calculated self-consistently with the
electron wave functions at each density and temperature. The
Kohn-Sham exchange functional is used and correlation is
neglected. All electrons are treated explicitly, so the method
does not suffer from the complications of pseudopotential
approaches where the number of electrons subsumed into the
pseudopotential must change over wide ranges of compres-
sion. At finite temperature, a fractional average occupation is
used for each electron state, so the method is average-atom
rather than considering populations of atoms with integer
occupations of each state. Because of the simplified geo-
metrical treatment of the local environment of the atom, AJ
theory was originally considered to be appropriate for matter
in the fluid-plasma regime at compressions and temperatures
significantly above ambient. However, some researchers mis-
trusted the average-atom predictions of thermal ionization,
which gave localized perturbations along the shock Hugoniot
in comparison to Thomas-Fermi theory, suspecting that these
effects would be less pronounced in real matter comprising
a population of different, discrete states of excitation [15].
The AJ method was thus not adopted widely for predicting
EOS, as it was considerably more expensive computation-
ally than Thomas-Fermi theory. Recently, path integral Monte
Carlo calculations gave predictions of the EOS and shock
Hugoniot in the dense plasma regime which validated the AJ
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calculations [5], demonstrating that the average-atom treat-
ment with a simplified geometrical environment for the atom
was adequate. Following its development for wide-ranging
electronic structure predictions, AJ theory was extended [4]
using perturbation theory to calculate the restoring force on
the nucleus for displacements from the center of the cavity
in the jellium, and hence the Einstein temperature θE for
oscillations of the nucleus. θE was used to estimate the De-
bye temperature θD by equating the thermal energy or mean
squared displacement. This approach can be used to predict
the ion-thermal EOS in the solid state, using a generalized
Debye model: a counterintuitive capability for an approach
otherwise more appropriate for the dense fluid and plasma.
We subsequently developed an approach to predict the re-
duction in ionic heat capacity from 3 to 3/2kB per atom as
the temperature increases above melting [6], making a more
natural and complete link between AJ theory and the EOS in
the fluid-plasma regime. The different methods of calculating
θD from θE gave significantly different predictions of the shear
modulus. We found that the displacement calculation gave
results which, compared with a range of experimental data,
theoretical predictions, and previous models for a variety of
elements at pressures up to ∼0.1 TPa, were systematically
lower by a factor ∼3, whereas the energy calculation was
more consistent, so we used the latter for all the results re-
ported here.

The shear modulus is expected to be a function of both
mass density ρ and temperature T . Strength models often
express the shear and flow stress, G and Y , in terms of pressure
p instead of ρ. However, most materials expand with temper-
ature along an isobar, so ∂G/∂T |ρ is typically smaller than
∂G/∂T |p, and so we prefer to consider G(ρ, T ). Unusually,
the AJ calculation gives θD(ρ, T ) [5], so it can be used to
predict the temperature-dependence of G as well as the den-
sity dependence. Trial calculations indicated that the variation
with T was not much greater than the numerical noise in the
AJ solution for θD, and we do not consider it further here.

In order to study the limiting trends as the atoms are com-
pressed closely enough for all the electrons to be unbound, the
one-component plasma (OCP) limit, we based the shear mod-
ulus calculations on AJ EOS models of H, He, C, O, Ne, and
Mg, constructed previously for WD studies [7]. The WD EOS
calculations were performed to a mass density o(107) g/cm3,
which is four orders of magnitude higher than usual for
general-purpose EOS [16,17], and a temperature 106 eV, an
order of magnitude higher than usual. The shear moduli de-
duced are thus applicable at least in principle to WDs and the
crust of neutron stars. We also calculated the shear modulus
for Fe, as an intermediate-Z element of astrophysical impor-
tance whose strength has been relatively well studied. The
Fe shear modulus was calculated from a standard-range AJ
tabulation. The numerical solution of the AJ electron wave-
function must be performed at a finite, nonzero temperature.
As discussed previously [5], the original AJ solver exhibited
numerical problems at temperatures below 1 eV, which we
circumvented by a modified method of solution, constructing
EOS tabulated down to an arbitrary ∼10 K, chosen to be lower
than any application we were aware of for those EOS. For our
WD EOS study [7], we tabulated the EOS down to an arbitrary
1 K, chosen to be below the cosmic background temperature
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FIG. 1. 1-K isotherm from AJ calculation.

and thus lower than likely to be needed for any astrophysical
application. Variations in the EOS below this level are very
small, and far less than the inaccuracy in the AJ method.
In all cases, B and θD were taken at the lowest temperature
calculated in the AJ EOS, 1 K.

The pressure and bulk modulus were found to vary as
ρ5/3 at high compression, as expected for the OCP, and then
tended toward ρ3/2 in the extreme relativistic regime. These
behaviors are a product of the AJ calculation, not imposed as
an assumption. (Figures 1–3. Note that, when plotted over the
full range calculated, the low pressure behavior is difficult to
see, even on a logarithmic scale. Where we have truncated
graphs at lower compressions than the full range calculated,
the behavior beyond the upper limit follows the higher com-
pression trend shown, without any noteworthy features. Data
covering the full range are available online [18].)

The numerical solution of G(B, θD) performed reliably
over the full range of densities considered, for all elements
(Fig. 4). The simplified calculation neglecting B [13] gave
results typically 30% higher.

The resulting G(ρ) predictions were generated as tables.
For convenience, we obtained functional fits to the tabular
data: see Appendix.
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FIG. 2. Bulk modulus from AJ calculation.
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FIG. 3. Debye temperature from AJ calculation (from Einstein
temperature by equating energy); (a) 1-K isotherm from AJ calcula-
tion. Bulk modulus from AJ calculation.

It is challenging to make EOS measurements at the tera-
pascal range and above of materials that are solid at ambient
conditions, and even more so to measure the shear modulus.
For the elements considered here, our comparisons are pri-
marily against ambient measurements where available, and
otherwise against other models.

IV. PREVIOUS SHEAR MODULUS MODELS

Other models have been developed for the shear modulus
at high pressure. We summarize three of them, Steinberg-
Guinan, improved Steinberg-Guinan, and Straub, which are
based at least partly on electronic structure theory, and for
which results have been published for Mg, C, and Fe. We
also contrast these models and the present approach with the
Burakovsky-Greeff-Preston and finite strain models.

A. Steinberg-Guinan

The Steinberg-Guinan (SG) model [19] is widely used in
hydrodynamic simulations below 100 GPa and has the form

G = G0[1 + Ap/η1/3 − B(T − T0)] : η ≡ ρ/ρ0, (4)
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FIG. 4. Summary of AJ shear modulus predictions at 1 K.

where p is the pressure. Although developed for rela-
tively low pressures, it is constructed to asymptote toward
the compression-dependence of the one-component plasma
(OCP) limit, where the shear modulus varies as ρ4/3, if used
in conjunction with a Thomas-Fermi like EOS model in which
the pressure varies as ρ5/3. However, the material-dependent
parameters G0, A, and B are typically chosen to match low-
pressure data, and the absolute value of G is not constrained
to be correct in the OCP limit.

B. Improved Steinberg-Guinan

Improvements have been proposed to extend the SG model
to higher pressures either by adopting different parameter
values in high-pressure phases [20] or by modifying the de-
pendence on compression to transition to a different function
at high compressions [21]:

G = G0{ f (ρ)Gl + [1 − f (ρ)]Gh − B(T − T0)}, (5)

f (ρ) = {1 + exp [α(η(ρ) − ηc]}−1, (6)

Gl = 1 + Al p/η(ρ)1/3, (7)

Gh = Ah + Mhη(ρ), (8)

η(ρ) = ρ/ρ0. (9)

Typically, the high pressure term Gh is calibrated against
electronic structure calculations that extend into the terapascal
range, but do not explore the OCP limit. Ironically, it is the
low pressure term Gl that asymptotes to the expected OCP
behavior, but is masked by the softer, linear dependence on ρ

in Gh.
As the SG and improved SG (ISG) models depend on

the pressure as well as the mass density, an EOS is needed
when calculating the shear modulus. For consistency across
all models, we used the AJ EOS. The AJ method is typically
less accurate at pressures below a few tenths of a terapascal, so
other models may appear to be less accurate at low pressures
than used with alternative EOS.

C. Straub

In theoretical studies using early electronic structure pre-
dictions, it was observed that the variation of shear modulus
G with the lattice parameter a in cubic crystals such as W
behaves similarly to the bulk modulus B(a). A similar form
of fitting function was adopted as was used for the cold curve
energy E (a),

G = G0 + ga
a − a0

a2
e−g2(a−a0 ). (10)

Parameters were fitted to electronic structure data points
{ai, Gi} or to G0 and d ln G/d ln a [22]. Shear moduli have
been predicted in this way for a small number of elements
and included as tabulations of G(ρ) in the SESAME library of
material properties [16].

D. Burakovsky-Greeff-Preston

The Burakovsky-Greeff-Preston (BGP) model uses the
density dependence of the Grüneisen parameter, the Linde-
mann melting law, and an approximate relationship between
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shear modulus and the melting temperature Tm(ρ),

G(ρ, Tm(ρ)) ∝ ρTm(ρ), (11)

to derive an expression for the shear modulus [23]:

G(ρ, T ) = G(ρr, 0)

(
ρ

ρr

)4/3

exp

{∑
i

2γi

qi

(
1

ρ
qi
r

− 1

ρqi

)}

×
(

1 − β
T

Tm

)
. (12)

As with the SG model, the BGP model is formulated ex-
plicitly to asymptote to the OCP-like ρ4/3 behavior at high
compression, and also like the SG model does not specify the
magnitude in this limit independently of the dependence at
low compressions. Parameters for the BGP model have not
been reported for the elements considered here, though we
have compared AJ predictions with BGP calibrations for other
elements, with variable degrees of consistency [24]. We tried
fitting the BGP model to our AJ predictions but were not able
to obtain a wide-ranging match for any of the present set of
elements.

E. Finite strain

“Finite strain” models have been developed for the pressure
and shear modulus as a function of compression, particu-
larly for materials of interest in planetary science [25,26].
This approach is based on making a Taylor expansion in
pressure or compression about the ambient reference state,
often constrained to asymptote to theoretically based be-
havior at high compression, such as Thomas-Fermi. The
low-pressure behavior may be fitted to limited-range elec-
tronic structure calculations or empirical behavior such as
that inferred from seismic wave propagation through the
Earth; the problem here is that the precise composition
of matter deep inside a planet is unknown. As has been
recognized [25], adopting a low-order functional form that
asymptotes to any given high-compression limit is unreli-
able as physical behavior at intermediate compressions—such
as the compression-induced ionization of successive electron
shells—is not captured.

V. DISCUSSION

The AJ method is known to be inaccurate at low pressure
in comparison with multi-ion electronic structure techniques,
and the derived calculation of shear modulus involves unquan-
tified approximations. In particular, the AJ method does not
account for angular forces such as occur in molecular bonds.
It is interesting to compare with a recent analysis invoking
the shear contribution to the longitudinal sound speed cl in
atomic matter, and comparing with high-fidelity electronic
structure calculations of H [27]. cl calculated from the AJ
shear and bulk moduli agrees very well at low pressures
with the theoretical analysis, to which multi-ion electronic
structure calculations asymptote as H2 molecules dissociate
on compression. However, we find that cl is dominated by the
contribution from B for H in this regime, G being ∼50 times
smaller than B.
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FIG. 5. Comparison of AJ shear modulus prediction with ob-
served and calculated behavior for C, including pseudopotential
based multi-ion calculations (PS) [2] and ISG model [21]. Pseu-
dopotential predictions demonstrate possible range of shear modulus
related to texture, and localized reductions in shear modulus associ-
ated with mechanical instability at a phase transition.

For C, the AJ shear modulus falls well below the ob-
served value for diamond at STP, which is not surprising
for a structure stabilized by directional bonding. The pre-
diction passes through our recent pseudopotential predictions
[2] above 10 g/cm3, crossing the Hill average just below
20 g/cm3 where the diamond structure was predicted to start
to become unstable, and at higher compressions is more con-
sistent with an extrapolation of the Voigt polycrystal average
in diamond (Fig. 5).

For Mg, which adopts the hexagonal close-packed struc-
ture at low pressures, the AJ shear modulus reproduces the
observed STP value to within a few percent. It follows the
SG model quite closely over a wide pressure range. The SG
model appears to have a discrepancy at low pressures; as
discussed above, this is an artifact caused by using the AJ
EOS to calculate the pressure, and is an example of better
performance of electronic structure calculations in predicting
derivatives of pressure than for the pressure itself [28]. The
AJ prediction becomes quite close to the SG model above
10 g/cm3 (∼1 TPa), and as the compression increases further,
the AJ shear modulus gradually becomes a few tens of percent
stiffer than the SG. The SG model in this regime is constrained
only by its asymptotic form, and this result is an example
of the SG model performing remarkably well. Mg exhibits
solid-solid phase transitions [29,30], but the observed and pre-
dicted structures are close-packed structures or perturbations
of simple structures stabilized by interactions between inner
electrons at high pressures, and the AJ calculation is likely to
be reasonable for bulk average mechanical properties (Fig. 6).

Fe exhibits solid phases, the low-pressure bcc structure
being stabilized by magnetism, which the AJ model does not
capture. The shear modulus of Fe at STP depends on the C
content: low-C steels tend to be less rigid, and the AJ shear
modulus lies relatively close to the lower reported values at
STP. The Straub model is more consistent with C-rich Fe at
low pressures, then passes through the AJ calculation around
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FIG. 6. Comparison of AJ shear modulus prediction for Mg with
STP measurement and SG model.

4 TPa and lies well below at higher pressures. A SG cali-
bration has been made for Fe at pressures of a few hundred
gigapascals using multi-ion electronic structure calculations
[31]. The AJ shear modulus intersects this model around
200 GPa and lies well below it at higher pressures. We suggest
that these comparisons on balance favor the AJ calculation
over a wide range of pressures (Fig. 7).

Shear modulus predictions based on multi-ion electronic
structure are more accurate in principle than the AJ pre-
dictions presented here. However, in practice, differences in
technique and the need to calculate and combine multiple
elastic moduli mean that larger variations are commonly seen
[2], and it has been difficult to generate wide-range predic-
tions of shear modulus. Also, multi-ion calculations must
be performed in a mechanically-stable phase, involving extra
effort to identify an appropriate phase at each state. Dynamic
loading experiments have commonly been performed outside
the range of meaningful estimates of the shear modulus: this
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FIG. 7. Comparison of AJ shear modulus prediction for Fe with
STP measurements and models, including the Straub model which
is SESAME table 32140 [32] and the ISG model derived from multi-
ion electronic structure calculations to the hundred gigapascal regime
[31].

is no longer necessary for elements [33]. In high-pressure
experiments, material strength is often a small effect in re-
sponse dominated by the scalar EOS, and uncertainties ∼10%
in shear modulus appear correspondingly smaller in the over-
all response of the material. Because most materials are
elastically anisotropic at some level, the effective shear mod-
ulus depends on the microstructural texture of the material,
which may evolve during dynamic loading. Compared with
microstructural effects (Fig. 5), an uncertainty ∼10% is po-
tentially insignificant.

VI. CONCLUSIONS

Shear moduli were predicted for condensed matter from
zero pressure to beyond the OCP regime using predictions
of the bulk modulus and θD from AJ theory. Although the
predicted shear moduli are likely to be inaccurate for crystal
structures stabilized by angular forces, which are not captured
by AJ theory, they appear to be a reasonable choice over a
wide range of compressions when a more rigorous model is
not available. The likely accuracy of the shear modulus pre-
dictions reflects the uncertainties in the underlying methods:
the approach adopted here could be used with more accurate
treatments of electronic structure when the corresponding cal-
culations of elastic moduli are not available, for instance for
alloys and compounds.

Electronic structure calculations using the AJ method
are often inaccurate around zero pressure, but appear to
be accurate above a few hundred gigapascals, depending
on the element. The method is valid to extreme relativistic
conditions—beyond the OCP regime – of density and temper-
ature. AJ does not capture crystal structures and directional
bonding: it is likely to be inaccurate in low-pressure structures
or around phase transitions, maybe by ∼100%. As with other
pressure derivatives, the shear modulus otherwise seems to be
predicted more accurately than the absolute pressure. Aside
from numerical noise in the nuclear perturbation calculation,
the calculation of θD is an approximate average. The inaccu-
racy may be of order 10%, though predicted trends are likely
to be better.

The likely performance correlates with the crystal struc-
ture. Non-close-packed structures at low pressure are repre-
sented poorly in the AJ electron model, so the ion model
and EOS are likely to be inaccurate. AJ typically fails to pre-
dict bound matter at the observed zero-pressure density. The
shear modulus is then also likely to be inaccurate, except for
fortuitous cancellations of error. Close-packed structures are
captured reasonably in the AJ electronic model, particularly
at elevated pressure, so the ion model and EOS are likely
to be reasonable, as is the shear modulus. The performance
is probably similar for amorphous and glassy structures. For
lower-symmetry structures at high pressure, when these are
perturbations to, or stacking faults in, close-packed structures,
the quality of shear modulus predictions is likely to be sim-
ilar to that for the close-packed structures. Open structures
stabilized by strong directional bonds are likely to be less
accurate. In unstable and mixed phases, the shear modulus
may be small, which is not captured in the AJ predictions.
The performance should not however be affected by whether
a structure is metastable or not.
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FIG. 8. Comparison of AJ shear modulus predictions for H with
fits.

We have also developed a functional form capable of rep-
resenting the AJ shear moduli over a wide range, although it
is not valid over the full range of the AJ calculations.
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APPENDIX A: FIT TO AJ PREDICTIONS

We tried using existing strength models to fit the AJ shear
modulus data, but did not manage to find parameter sets valid
over the wide range of density of the AJ calculations. This
is not to claim that reasonable fits are impossible to find,
but fitting involves iterative optimization of parameters with a
nonlinear dependence on the goodness of fit, which are often
susceptible to numerical problems. A more general structure
of model might involve a set of somewhat different functional
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FIG. 9. Comparison of AJ shear modulus predictions for H with
fits (detail at lower compression).
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FIG. 10. Comparison of AJ shear modulus predictions for He
with fit.
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FIG. 11. Comparison of AJ shear modulus predictions for C with
fit.
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FIG. 13. Comparison of AJ shear modulus predictions for Ne
with fit.
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FIG. 14. Comparison of AJ shear modulus predictions for Ne
with fits (detail at lower compression).
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FIG. 15. Comparison of AJ shear modulus predictions for Mg
with fits.
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FIG. 16. Comparison of AJ shear modulus predictions for Mg
with fits (detail at lower compression).

forms valid over restricted ranges of density, with a transition
function between each, as in the ISG model for diamond [21].
We were unable to determine significant parameter values for
a separate power dependence from the AJ shear modulus pre-
dictions at low density. Instead, reasonable fits were obtained
using a single value at the reference density and the switching
function itself to describe stiffening at low compression:

G(ρ) = G0 f (ρ) + G1

(
ρ

ρ0

)p1

[1 − f (ρ)], (A1)

where

f (ρ) = exp

(
−μ(ρ)

μt

)
: μ(ρ) ≡ ρ

ρ0
− 1, (A2)

and G0, G1, p1 and μt are parameters. This functional form
does not capture the AJ predictions in expansion, but this
region is explored little in practice as materials spall in ten-
sion, limiting the distension of the bulk material. In general,
this functional form does not represent the AJ shear modulus
to the OCP regime with satisfactory accuracy at intermediate
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FIG. 17. Comparison of AJ shear modulus predictions for Fe
with fit.
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TABLE I. Fitting parameters for AJ shear modulus.

ρ0 G0 μt G1 p1 Notes
(g/cm3) (GPa) (GPa)

H 0.5 14.5 3.0 82 1.43 � ρ0, which is arbitrary, and � 500 g/cm3

H 0.5 15 3.9 103 1.379 � ρ0, which is arbitrary, and � 5 × 105 g/cm3

He 0.5 0.3 26 55 1.390 � 2 g/cm3. ρ0 is arbitrary. G0 is consistent with zero
C 3.52 280 13 1.64 × 103 1.378 � 7 g/cm3

O 6 24 11.6 3.6 × 103 1.392 � ρ0, which is arbitrary
Ne 4.8 900 22 2.7 × 103 1.40 � 20 g/cm3. ρ0 is arbitrary
Ne 4.8 600 7.3 1.0 × 103 1.57 for 12 to 5000 g/cm3, ρ0 is arbitrary
Mg 1.738 3.0 × 104 140 8.0 × 102 1.39 � 100 g/cm3

Mg 1.738 19 1.8 87 1.73 for 3 to 1000 g/cm3

Fe 7.874 52.5 9.3 1.2 × 103 1.68

compressions, so the exponent p1 was included as a parameter
in a finite-range fit (Table I.)

Where possible, the STP values of ρ and G were used
as parameters, and low pressure AJ points were deweighted
or removed if necessary. Otherwise, such as where AJ fails
to capture solid phases with a significantly different shear
modulus, the AJ data were fitted as far down in pressure as
possible, G0 was fitted if necessary, and ρ0 was also adjusted if

needed to keep G0 > 0. The resulting models are not intended
for use at low pressure, though some are probably adequate
for practical purposes.

The fitted equation usually matches the AJ data to within
a few percent. Between numerical noise in the AJ calculation
and probably-physical structure not captured by the equation,
the deviation could be up to 20% in some places in most
models and 30% in a few (Figs. 8–17).
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