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Linear response calculation with nonlocal van der Waals density functionals
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The linear-response approach with the nonlocal van der Waals density functionals is presented, considering
three kinds of perturbations: Atomic displacements, uniform electric fields, and strain. The formulas to compute
the response with respect to strain are derived for the van der Waals density functionals as well as for the gener-
alized gradient approximation. The linear-response method is implemented within the ultrasoft pseudopotential
scheme. The method is applied to weak-coupled layered materials, graphite and MoS2. The results support the
validity of the derived formulas and demonstrate the utilities of the linear-response method for weak-coupled
van der Waals systems.
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I. INTRODUCTION

Long-range van der Waals (vdW) forces play an important
role for sparse systems such as molecular solids, weak-
coupled layered materials, surface physisorption, and so on.
The local density approximation (LDA) [1–3] and semilo-
cal generalized gradient approximation (GGA) [4–6], which
are commonly adopted for the exchange-correlation (XC)
functional in density functional theory (DFT) calculations,
cannot describe this interaction properly [7]. To deal with
the long-range vdW interaction within DFT, nonlocal den-
sity functionals have been proposed [8–10] and successfully
applied to sparse systems [11]. An efficient interpolation for-
mula for a double spatial integral of the nonlocal functionals
has been also presented [12,13], which provides remarkable
reduction of the computational cost.

In DFT calculations, the total energy is the most funda-
mental quantity and the derivatives of it are closely related
to various properties of a material. A simple way to compute
the second derivatives of the total energy is a finite-difference
(FD) approach in which they are computed from numerical
differentiation of the first derivatives by applying small pertur-
bations to a system. Alternatively, the linear-response (LNR)
methods [14–21] have been developed to compute them in
an accurate and efficient manner. The LNR approach has
several advantages over the FD method. The uniform electric
field, which does not satisfy a periodic boundary condition,
can be treated by taking a long-wavelength limit analyti-
cally [15,22,23]. The phonons with finite wave vectors can
be calculated with the unit cell using the phase factorization
approach [15]. When the LNR calculations are completed, one
can access total-energy derivatives up to the third order such
as phonon anharmonic couplings [24] and Raman suscepti-
bility tensors [23]. The phonon calculation using the LNR
method has already been extended to treat the vdW density
functionals [25].

In this paper, I report the LNR method with the vdW
density functionals considering three kinds of perturbations:

*miwa@cmp.tytlabs.co.jp

Atomic displacements, uniform electric fields, and strain. For
the strain perturbation, the previous studies [26,27] support
only the LDA functionals. Thus, the expressions to compute
the response with respect to strain are derived for the vdW
density functionals as well as the GGA functionals. Since
van der Waals solids are generally very soft, one must pay
attention to numerical precision of stresses and atomic forces
when the elastic constant tensor is calculated using the FD
method. The LNR method enables an accurate and efficient
treatment of soft materials due to direct evaluation of the
response to strain. The present LNR method is implemented
within the ultrasoft pseudopotential scheme [23,28–30].

The rest of this paper is organized as follows: The for-
mulas to compute the response to external perturbations are
presented in Sec. II. In Sec. III, the method is applied to
graphite and molybdenum disulfide (MoS2). Section IV gives
a summary of this study.

II. METHODOLOGY

A. Linear-response method

When an external perturbation λ is imposed on a sys-
tem, the first-order change of the Kohn-Sham Hamiltonian
dH
dλ

is induced. This causes the first-order change in the
wave function d�n

dλ
and then in the charge density dρ

dλ
. In the

LNR method, these three quantities are computed by self-
consistently solving the Sternheimer equation [31,32]. The
mixed second derivative of the total energy respect to two
perturbations can be calculated from the nonstationary expres-
sion [16] if the response to one of the two perturbations is
available. To compute the mixed third derivative of the total
energy, all the related responses are required.

The DFT code used in this study has been developed by the
author. The LNR calculations with this code have already been
applied to various systems [23,29,30,33,34]. In this paper,
I focus on the linear response of the exchange-correlation
functionals. Detailed formulation of the other parts can be
found in the published LNR papers. I refer to Ref. [35] for the
phonon calculation, Ref. [23] for the electric-field perturba-
tion and the Raman susceptibility calculation, Ref. [27] for the
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strain perturbation, and Ref. [17] for the treatment of metallic
systems.

B. van der Waals density functional

Hereafter, I use the charge density ρ for the sum of the
valence charge density ρv and the partial core charge density
ρc [36]. The nonlocal correlation functional proposed by Dion
et al. [8] has the following form:

EvdW
c [ρ] = 1

2

∫∫
ρ(r)φ(q(r), q(r′), |r − r′|)ρ(r′) drdr′,

(1)

where φ is a nonlocal kernel, and q = q(ρ(r), g(r)) is a uni-
versal function that depends on the charge density ρ and its
gradient g = |∇ρ|. This nonlocal functional is combined with
the GGA exchange functional EGGA

x and the LDA correlation
functional ELDA

c to form the van der Waals density functional
for the XC energy,

Exc[ρ, g] = EGGA
x [ρ, g] + ELDA

c [ρ] + EvdW
c [ρ, g]. (2)

The double spatial integral of Eq. (1) requires considerable
computational effort. Román-Pérez and Soler [12] proposed
an efficient algorithm to evaluate it. A modified version was
also proposed by Wu and Gygi [13]. In their approaches, the
q function is discretized to Nq points, qn (n = 1, · · · Nq ), and
the kernel φ is computed on a two-dimensional grid of fixed
q values in advance. Then, the values of φ at r and r′ are
interpolated using a bilinear combination of the cubic splines
pn(q). In this study, the Wu-Gygi implementation is adopted,

which is free from a logarithmic singularity of φ at q(r) =
q(r′) = 0. Equation (1) is rewritten as

EvdW
c = 1

2

∑
mn

∫∫
θm(r)�mn(|r − r′|)θn(r′) drdr′, (3)

where

θn(r) = ρ(r)pn(q(r))

q(r)
, (4)

and

�mn(r) = qmqnφ(qm, qn, r). (5)

Since the q functions in �mn are fixed independent of r and r′,
the integral of Eq. (3) becomes a simple convolution that can
be calculated efficiently using the fast Fourier transform.

Applying the discretized technique proposed by White and
Bird [37], the correlation potential associated with EvdW

c is
obtained as

V vdW
c (r) =

∑
n

(
un

∂θn

∂ρ
−

∑
ξ

∇ξ un
∂θn

∂g

gξ

g

)
, (6)

where gξ = ∇ξρ and

um(r) =
∑

n

∫
�mn(|r − r′|)θn(r′)dr′. (7)

The discretized formula was also extended to the first deriva-
tive of the XC potential in the LNR calculation [38]. Applying
it, the first derivative of V vdW

c with respect to an external
perturbation λ is expressed as

dV vdW
c (r)

dλ
=

∫
δ2EvdW

c

δρ(r)δρ(r′)
dρ(r′)

dλ
dr′

=
∑

n

(
un

∂2θn

∂ρ2

dρ

dλ
+

∑
ξ

un
∂2θn

∂ρ ∂g

gξ

g
∇ξ

dρ

dλ
−

∑
ξ ′

∇ξ ′

{
un

∂2θn

∂ρ ∂g

gξ ′

g

dρ

dλ

+
∑

ξ

un

(
∂2θn

∂g2

gξ ′gξ

g2
+ ∂θn

∂g

(
δξ ′ξ

g
− gξ ′gξ

g3

))
∇ξ

dρ

dλ

}
+ ∂θn

∂ρ
tλ
n −

∑
ξ

∇ξ

∂θn

∂g

gξ

g
tλ
n ,

)
, (8)

where dρ

dλ
is the first-order charge density and

tλ
m(r) =

∑
n

∫
�mn(|r − r′|)

(
∂θn(r′)

∂ρ

dρ(r′)
dλ

+
∑

ξ

∂θn(r′)
∂g

gξ (r′)
g(r′)

∇ξ

dρ(r′)
dλ

)
dr′. (9)

Equation (8) can be used for atomic-displacement and
electric-field perturbations. In the phonon calculations with
incommensurate wave vectors q, the phase factorization ap-
proach [15] is utilized. In these cases, the spatial gradient
operators in Eqs. (8) and (9) should be changed as ∇ξ →
ıqξ + ∇ξ .

The Raman susceptibility calculation is straightforward if
the LNR calculations with respect to the atomic-displacement
and electric-field perturbations are completed. The Raman
susceptibility tensor is closely related to the mixed third
derivative of the total energy with respect to a uniform electric
field twice and an atomic displacement. To compute it, the

third-order change of the correlation energy is required. The
third-order correlation energy can be obtained by numerically
differentiating the second-order correlation energy of Eq. (8)
as shown in Ref. [23].

C. Elastic constant tensor

The elastic constant tensor and related quantities can be
obtained from the LNR calculations with respect to strain
perturbations. If the XC functional depends on the density
gradient such as the GGA and vdW functionals, additional
terms have to be taken into account.
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First, the GGA functionals are considered since Eq. (2)
includes the GGA exchange functional. For a given GGA
kernel f , the XC energy and potential are represented as
EGGA

xc = ∫
f (ρ(r), g(r)) dr and V GGA

xc = ∂ f
∂ρ

− ∑
ξ ∇ξ

∂ f
∂g

gξ

g ,
respectively. The XC contribution to the stress tensor is given
by [39,40]

∂EGGA
xc

∂εαβ

= δαβEGGA
xc +

∫
V GGA

xc

∂ρ

∂εαβ

dr −
∫

∂ f

∂g

gαgβ

g
dr,

(10)

where εαβ is the strain tensor and ∂ρ

∂εαβ
= −δαβρv + ∂ρc

∂εαβ
. The

first two terms in the right-hand side of Eq. (10) are LDA-like

ones [41]. The third term comes from the fact that the strain
scales the gradient as ∇α → (δβα − εβα )∇β . Similarly, addi-
tional terms due to gradient scaling should be considered for
the first derivative of the XC potential in the LNR calculation,

dV GGA
xc (r)

dεαβ

=
∫

δ2EGGA
xc

δρ(r)δρ(r′)
dρ(r′)
dεαβ

dr′ + F GGA
αβ (r), (11)

where the first term is an LDA-like one [26,27] and the second
term contains the gradient-scaling contribution,

F GGA
αβ = − ∂2 f

∂ρ ∂g

gαgβ

g
+

∑
ξ

∇ξ

(
∂2 f

∂g2

gξ gαgβ

g2
+ ∂ f

∂g

(
δξα

gβ

g
+ δξβ

gα

g
− gξ gαgβ

g3

))
. (12)

Because the gradient-scaling function F GGA
αβ does not depend on dρ

dεαβ
, the self-consistent-field (SCF) treatment is unnecessary

for it. The mixed second derivative of the XC energy with respect to two strain perturbations is also affected by gradient-scaling
terms,

∂2EGGA
xc

∂εαβ∂εγη

= δαβδγηEGGA
xc +

∫
V GGA

xc

(
δγη

∂ρ

∂εαβ

+ δαβ

∂ρ

∂εγη

+ ∂2ρ

∂εαβ∂εγη

)
dr +

∫∫
δ2EGGA

xc

δρ(r)δρ(r′)
∂ρ

∂εαβ

∂ρ

∂εγη

drdr′

+
∫ (

F GGA
αβ

∂ρ

∂εγη

+ F GGA
γ η

∂ρ

∂εαβ

)
dr +

∫ (
∂2 f

∂g2

gαgβgγ gη

g2
− ∂ f

∂g

(
δαβ

gγ gη

g
+ δγη

gαgβ

g
+ gαgβgγ gη

g3

− δαγ gηgβ + δαηgγ gβ + δβγ gαgη + δβηgαgγ

2g

))
dr. (13)

This second derivative corresponds to the clamped-ion elastic constant that is independent of the atomic relaxation caused by
lattice deformation. The force-strain coupling tensor is required to calculate the physically relevant relaxed-ion elastic constant
[42]. The XC contribution to this coupling tensor also includes the gradient-scaling function,

∂2EGGA
xc

∂εαβ∂RIγ
=

∫
V GGA

xc

(
δαβ

∂ρc

∂RIγ
+ ∂2ρc

∂εαβ∂RIγ

)
dr +

∫∫
δ2EGGA

xc

δρ(r)δρ(r′)
∂ρ

∂εαβ

∂ρc

∂RIγ
drdr′ +

∫
F GGA

αβ

∂ρc

∂RIγ
dr, (14)

where RIγ denotes the γ component of the Ith atom position.
In the case of the vdW density functionals, the following gradient-scaling function should be added to Eq. (8) to construct the

first derivative of V vdW
c with respect to strain,

F vdW
αβ (r) =

∑
n

(
−un

∂2θn

∂ρ ∂g

gαgβ

g
+

∑
ξ

∇ξ un

{
∂2θn

∂g2

gξ gαgβ

g2
+ ∂θn

∂g

(
δξα

gβ

g
+ δξβ

gα

g
− gξ gαgβ

g3

)}

+ (
vαβ

n + wαβ
n

)∂θn

∂ρ
−

∑
ξ

∇ξ

(
vαβ

n + wαβ
n

)∂θn

∂g

gξ

g

)
, (15)

where

vαβ
m (r) = −

∑
n

∫
�mn(|r − r′|)∂θn(r′)

∂g

gα (r′)gβ (r′)
g(r′)

dr′, (16)

and

wαβ
m (r) =

∑
n

∫
∂�mn(|r − r′|)

∂εαβ

θn(r′) dr′. (17)

The contribution of EvdW
c to the clamped-ion elastic constant is given by

∂2EvdW
c

∂εαβ∂εγη

= δαβδγηEvdW
c +

∫
V vdW

c

(
δγη

∂ρ

∂εαβ

+ δαβ

∂ρ

∂εγη

+ ∂2ρ

∂εαβ∂εγη

)
dr +

∫∫
δ2EvdW

c

δρ(r)δρ(r′)
∂ρ

∂εαβ

∂ρ

∂εγη

drdr′

+
∫ (

F vdW
αβ

∂ρ

∂εγη

+ F vdW
γ η

∂ρ

∂εαβ

)
dr +

∑
n

∫
un

(
∂2θn

∂g2

gαgβgγ gη

g2
− ∂θn

∂g

(
δαβ

gγ gη

g
+ δγη

gαgβ

g
+ gαgβgγ gη

g3
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−δαγ gηgβ + δαηgγ gβ + δβγ gαgη + δβηgαgγ

2g

))
dr +

∑
n

∫ (
vαβ

n

∂θn

∂g

gγ gη

g
+ wαβ

n

∂θn

∂g

gγ gη

g
+ wγ η

n

∂θn

∂g

gαgβ

g

)
dr

+1

2

∑
mn

∫∫
θm

(
δαβ

∂�mn

∂εγη

+ δγη

∂�mn

∂εαβ

+ ∂2�mn

∂εαβ∂εγη

)
θn drdr′. (18)

The contribution of EvdW
c to the force-strain coupling tensor is expressed by the same form as in the case of GGA,

∂2EvdW
c

∂εαβ∂RIγ
=

∫
V vdW

c

(
δαβ

∂ρc

∂RIγ
+ ∂2ρc

∂εαβ∂RIγ

)
dr +

∫∫
δ2EvdW

c

δρ(r)δρ(r′)
∂ρ

∂εαβ

∂ρc

∂RIγ
drdr′ +

∫
F vdW

αβ

∂ρc

∂RIγ
dr. (19)

D. Computational details

The optB86b-vdW functional [43] is adopted in this paper.
As shown in Ref. [43], this functional gives accurate results
not only for weak-coupled van der Waals systems, but also
for traditional hard materials. A logarithmic mesh is used
to discretize the q function, where qn+1 − qn = λ(qn − qn−1)
with λ = 1.3 and q0 = 0. The number of mesh points and the
maximum value of q are set to be Nq = 20 and qNq = 5 a.u.,
respectively. According to Ref. [12], the saturation function is
introduced to the q function in order to prevent unfavorable
extrapolation and stabilize the SCF calculation,

qsat (r) = qNq

[
1 − exp

(
−

12∑
m=1

(q(r)/qNq )m

m

)]
. (20)

When the finite strain is applied to a system, the number
of the plane waves usually varies. It may cause an abrupt
change in the total energy if a sufficiently large number of
the plane waves is not used. A practical way to prevent this
change with a moderate number of the plane waves is to add
the smearing function to the kinetic-energy operator [44]. This
treatment is necessary in the cell optimization to regularize the
total-energy changes. In this paper, unless otherwise noted, the
kinetic-energy smearing function is kept in the LNR calcula-
tions so as the residual stresses are consistent with the values
determined in the optimization process.

The pseudopotentials constructed with the GGA-PBE
functional [5] are used in this paper. It has been reported that
the use of the GGA pseudopotentials in the calculations with
the vdW density functional gives only a minor effect [45].

III. RESULTS AND DISCUSSION

A. Graphite

Graphite is a typical layered material with the vdW inter-
action. In this section, I mainly show the comparison between
the LNR and FD calculations. The cutoff energies are set to be
15 and 160 hartrees for the wave function and charge density,
respectively. A �-centered 16×16×8 k-point mesh is used for
the Brillouin zone integration and Gaussian smearing with a
width of 6 mhartrees is applied.

Graphite has hexagonal symmetry with space group
P63/mmc (No. 194). The unit cell contains four C atoms
located at 2b (0, 0, 1/4) and 2c (1/3, 2/3, 1/4) sites. The the-
oretical lattice constants calculated with the optB86b-vdW
functional are a = 2.478 Å and c = 6.680 Å, which are in
good agreement with the experimental data, a = 2.462 Å and

c = 6.707 Å [46]. The optB86b-vdW functional describes
two quite different cohesive natures properly, strong covalent
bonding between in-plane C atoms and weak vdW interaction
between different layers.

The phonon dispersion of graphite is calculated by the
LNR method. The dynamical matrices are calculated on a
�-centered 8×8×4 q-point mesh and the phonon frequencies
along the high-symmetry lines of the Brillouin zone are ob-
tained using the Fourier interpolation [16]. The frozen phonon
calculations are also carried out using the 4×4×2 supercell,
in which the atomic displacements of ±0.01 Å are applied
for numerical differentiation. The results are shown in Fig. 1.
The phonon frequencies obtained by the two methods are in
good agreement within a mean absolute error of 0.6 cm−1.
The phonon dispersion curves calculated by the LNR method
agree well with those of the previous calculation using the
vdW density functionals [25].

The elastic constants are calculated by the LNR method
and compared with the FD results. In the FD calculations,
the strains of ε = ±5×10−3 are applied. The clamped-ion
and relaxed-ion constants are given in Table I, where Voigt
notation is used. The agreement between the values computed
by the two methods is fairly good. The differences between
them are less than 1 GPa except for C11 and C12 for which
the errors of about 2 GPa are found. The calculated relaxed-
ion constants reasonably agree with the experimental data.
Table II gives the force-strain coupling constants calculated
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FIG. 1. Phonon dispersion of graphite calculated with the
optB86b-vdW functional. Lines show the LNR result and fulled
circles represent the frequencies calculated by the frozen phonon
method.
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TABLE I. Elastic constants Ci j of graphite (in GPa) calculated by
the LNR and FD methods.

Clamped-ion Relaxed-ion

LNR FD LNR FD Expt.a

C11 1073.8 1071.6 1047.7 1047.2 1060
C12 173.8 173.1 199.9 197.5 180
C13 −3.0 −3.2 −3.0 −3.2 8
C33 38.5 38.1 38.5 38.1 37
C44 5.0 4.9 5.0 4.9 5

aReference [47].

by the LNR and FD methods, showing the agreement between
the two approaches.

To make the comparison rigorous, I recalculate the
clamped-ion elastic constants in the following way. In the
FD calculations, the plane-wave basis set and the reciprocal
vectors to expand the charge density are generated for the
unperturbed system and used for the strained systems. The
kinetic-energy smearing function is not adopted in both the
LNR and FD calculations. These treatments are expected to
reduce numerical errors. The values computed by the LNR
(FD) method are 1070.36 (1070.38), 172.05 (172.09), −3.50,
(−3.50), 38.53, (38.47), and 4.89 (4.85) GPa for C11, C12,
C13, C33, and C44, respectively. It can be confirmed that the
two methods give very similar values within 0.1 GPa. This
agreement supports the validity of the derived formulas and
their implementation.

B. MoS2

Molybdenum disulfide (MoS2) has attracted much at-
tention for many applications such as dry lubricant [48],
nanoelectronic devices [49], and electrocatalyst for the hy-
drogen evolution reaction [50]. In this section, I apply the
LNR method with the optB88b-vdW functional to MoS2 and
compare these results with the GGA-PBE ones. The cutoff
energies are set to be 15 and 240 hartrees for the wave function
and charge density, respectively. A �-centered 12×12×4 k-
point mesh is used for the Brillouin zone integration. In the
LNR phonon calculations, the dynamical matrices are calcu-
lated on a �-centered 6×6×2 q-point mesh.

The structure of MoS2 belongs to space group P63/mmc
(No. 194). The unit cell is composed of two MoS2 layers in
which S atoms form edge-shared triangular prisms and Mo
atoms sit on the centers of them. The different layers are
weakly bounded by the vdW interaction. In Table III, the crys-
tallographic parameters predicted with the optB88b-vdW and
GGA-PBE functionals are listed. The parameters obtained by

TABLE II. Force-strain coupling constants of graphite (in
hartree/bohr) calculated by the LNR and FD methods. The force and
strain components are x and xx, respectively.

LNR FD

C (0, 0, 1/4) 0.2302 0.2301
C (1/3, 2/3, 1/4) −0.2343 −0.2342

TABLE III. Crystallographic parameters of MoS2. Space group:
P63/mmc (No. 194). Lattice constants, a and c (Å). Atom positions:
Mo 2c (1/3, 2/3, 1/4), S 3a (1/3, 2/3, z). Mo-S bond length d (Å)
and Mo-S-Mo bond angle θ (deg.). The results calculated with the
optB88b-vdW (vdW) and GGA-PBE (GGA) are shown.

vdW GGA Expt.a

a 3.170 3.187 3.161
c 12.443 14.295 12.299
z 0.6239 0.6406 0.625
d 2.410 2.414 2.386
θ 82.22 82.59 82.96

aReference [51].

optB88b-vdW are in good agreement with the experimental
data, whereas GGA-PBE overestimates the lattice constant c
by about 16%. Since the in-plane parameters, the Mo-S bond
length and Mo-S-Mo bond angle, obtained by GGA-PBE are
close to the optB88b-vdW ones, the failure of GGA-PBE is
attributed to the lack of the vdW interaction between MoS2

layers. The electronic structure is predicted to be nonmetallic
with both functionals. The optB88b-vdW (GGA-PBE) func-
tional gives an indirect band gap of 0.9 (1.4) eV from � to
�–K (K).

Figure 2 depicts the phonon dispersions calculated with
the optB88b-vdW and GGA-PBE functionals at each the-
oretical lattice constants. Both functionals give dispersion
curves similar to each other for high-frequency optical modes
(>250 cm−1) because of their similar in-plane geometries of
the MoS2 layer. In the low-frequency region, however, GGA-
PBE incorrectly shows the soft-mode instabilities around the
� point. This is probably related to the overestimation of the
lattice constant c with GGA-PBE. The soft mode of 29ı cm−1

at the � point has the B2g symmetry, whose eigenvector corre-
sponds to rigid displacements of two MoS2 layers in opposite
directions along the c axis. The optB88b-vdW functional
shows no soft-mode instabilities and reproduces well the
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FIG. 2. Phonon dispersion of MoS2 calculated with the optB88b-
vdW (solid red line) and GGA-PBE (dashed gray line) functionals.
Blue squares and green triangles show the experimental data
with the Raman [52] and infrared absorption [53] spectroscopies,
respectively.
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TABLE IV. Elastic constants Ci j of MoS2 (in GPa). The results
calculated with the optB88b-vdW (vdW) and GGA-PBE (GGA)
functionals are shown.

Clamped-ion Relaxed-ion

vdW GGA vdW GGA Expt.a Calc.b

C11 266 265 229 228 238 238
C12 81 82 57 57 −54 64
C13 98 99 13 12 23 12
C33 301 301 60 55 52 57
C44 143 143 19 16 19 18

aReference [54].
bReference [55].

experimental data observed by the Raman [52] and infrared
absorption [53] spectroscopies. Two infrared active modes
show small splitting between the transverse- and longitudinal-
optical phonons, about 2 cm−1, suggesting that this compound
is less ionic. The average values of the Born effective charge
tensors, 1

3 Tr[Z∗], are −0.85 and 0.43 for Mo and S, respec-
tively. A small positive value for S atoms indicates that they
are not anionic. It is expected that in-plane Mo-S bonds are
primarily covalent.

The calculated elastic constants are shown in Table IV.
To eliminate the soft-mode instabilities for GGA-PBE, the
lattice constants are fixed at the experimental values. This
treatment is necessary to obtain the relaxed-ion constants.
For comparison, the optB88b-vdW calculations are also per-
formed with the experimental lattice constants. Interestingly,
GGA-PBE provides the elastic constants quite close to the
optB88b-vdW results. A similar match is found for graphite:
The clamped-ion constants calculated by GGA-PBE at the
experimental lattice constants agree with the optB88b-vdW
values within 3 GPa (not shown). The GGA functionals might
give a reasonable response to strain if the lattice constants
are fixed at the experimental values. Considerable differences
between the clamped-ion and relaxed-ion constants are found
for C13,C33, and C44. In the clamped-ion case, the in-plane
geometry of the MoS2 layer is uniformly deformed causing
large energy cost. Most of this cost is released by the atom
relaxation along the c axis due to the weak interaction between
MoS2 layers. The calculated relaxed-ion constants are in rea-
sonable agreement with the experimental data [54], except
for C12. The calculated C12 is positive while the experimental
value is negative. The reason for this discrepancy is uncertain.
The positive C12 similar to the present result was reported in
the previous calculation using the hybrid functional combined
with the semiempirical vdW correction [55].

Recently, few-layer MoS2 samples were fabricated for
electronic and optoelectronic applications and Raman spec-
troscopy was used to investigate the sample thickness [52,56].
Thus, the Raman spectra are predicted for thin-layer MoS2

samples and compared with the bulk spectrum. Single, double,
and triple layers are considered. The thin-layer samples are
simulated using a repeating slab model, where the lattice
constant a is fixed at the experimental value and c is set
to be 25 Å. The Raman spectra are calculated by assuming
the backscattering geometry parallel to the c axis for the
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FIG. 3. Raman spectra of thin-layer and bulk MoS2 calculated
with (a) optB88b-vdW and (b) GGA-PBE. The Lorentzian broaden-
ing with a width of 1 cm−1 is used. The thickness of thin-layer MoS2

is labeled as 1L: Monolayer, 2L: Bilayer, and 3L: Trilayer. The insets
show the frequency changes from the bulk values as a function of the
number of layers. The points are the theoretical results and the lines
are the experimental results [52].

thin-layer samples. For bulk MoS2, the average over possible
polarization vectors is taken to simulate a polycrystalline sam-
ple. The results are shown in Fig. 3. The experimental Raman
peaks in bulk MoS2 are 32 cm−1 (E2g), 286 cm−1 (E1g), 383
cm−1 (E2g), and 408 cm−1 (A1g) [52], and the latter two modes
are used to identify the sample thickness. The optB88b-vdW
functional slightly underestimates the frequencies of these two
modes by about 5 cm−1. For thin-layer MoS2, the calculated
Raman peaks show a monotonous upward shift for the E2g

mode and a downward shift for the A1g mode with decreas-
ing the number of layers. These features are consistent with
the experimental observation [52] though the amount of the
downward shift of the A1g mode is somewhat underestimated
[see the inset of Fig. 3(a)]. The GGA-PBE functional can-
not reproduce these experimentally observed frequency shifts.
Though the peaks of the A1g mode tend to shift downward as
the number of layers decreases, the peaks of the E2g mode in
the thin-layer samples appear on the low-frequency side of the
bulk peak and these frequencies are almost constant regardless
of the number of layers.

The Raman peak intensity ratios between two modes cal-
culated with the optB88b-vdW functional reasonably agree
with the experimental spectra [56]. For trilayer MoS2, in the
frequency range plotted in Fig. 3, an additional Raman active
mode is predicted at 396 cm−1 due to the symmetry reduction.
The origin of this mode is the inactive B1u mode (396 cm−1)
in bulk MoS2. The Raman intensity of the additional mode is,
however, two orders of magnitude smaller than those of other
Raman active modes. Thus it is hardly observed in Fig. 3(a)
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and the two-peak spectral shape is held as found in the exper-
iments. The Raman intensity calculation provides important
information, which makes the theoretical predictions of the
vibrational frequencies more useful to interpret experimental
spectra. In the GGA spectrum for trilayer MoS2, there is an
additional Raman active mode at 399 cm−1, which is also not
observed because of its small intensity.

IV. SUMMARY

The linear-response method with the nonlocal van der
Waals density functionals has been developed within the
ultrasoft pseudopotential scheme. The method deals with
three kinds of perturbations: Atomic displacements, uniform
electric fields, and strain. The formulas to compute the re-
sponse with respect to strain are derived for the vdW density
density functionals as well as for the GGA functionals.
The method is applied to weak-coupled layered materials,
graphite and MoS2. For graphite, the comparison between the
linear-response and finite-difference calculations shows good
agreement, supporting the validity of the derived formulas and
their implementation. For MoS2, it is confirmed that the vdW
density functional gives good agreement with experiments,

while the GGA functional fails to reproduce some properties.
The present method provides an accurate and efficient way
to predict the dynamical, dielectric, and elastic properties for
weak-coupled van der Waals systems.

In this paper, the linear-response calculations have been
performed using the ultrasoft pseudopotentials. The present
GGA formulas to compute the response to strain can be
easily implemented for the projector augmented-wave (PAW)
method [57]. In the case of the vdW functionals, an ap-
proximation has to be introduced as done in the total-energy
calculations with the PAW method [43]. Since the interpola-
tion formula for the double spatial integral utilizes the fast
Fourier transform, it cannot be applied to the all-electron parts
of augmentation functions. The nonlocal vdW correlation en-
ergy with PAW, therefore, usually is calculated only on the
sum of the pseudo-valence and partial core charge densities.
If this approximation is adopted, the present vdW formulas
can also be implemented for the PAW method.
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