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Vacancy-engineered flat-band superconductivity in holey graphene
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A bipartite lattice with chiral symmetry is known to host zero-energy flat bands if the numbers of the
two sublattices are different. We demonstrate that this mechanism of producing flat bands can be realized on
graphene by introducing periodic vacancies. Using first-principles calculations, we elaborate that even though
pristine graphene does not exactly preserve chiral symmetry, this mechanism applied to holey graphene still
produces single or multiple bands as narrow as ∼0.5 eV near the Fermi surface throughout the entire Brillouin
zone. Moreover, this mechanism can combine with vacancy-engineered nonsymmorphic symmetry to produce
band structures with coexisting flat bands and nodal lines. A weak coupling mean-field treatment suggests the
stabilization of superconductivity by these vacancy-engineered narrow bands. In addition, superconductivity
occurs predominantly on the majority sublattices, with an amplitude that increases with the number of narrow
bands.
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I. INTRODUCTION

The superconductivity (SC) discovered recently in twisted
bilayer graphene (TBLG) revives interest in the search for
SC on graphene-based materials [1]. While the origin of the
observed SC is still under intense debate, the small flat band
due to splitting and anticrossing of the Dirac cones from the
two graphene sheets is generally considered to play an im-
portant role [2–8]. In fact, the possibility of flat band induced
SC has long been of great interest, since the CuO2 plane of
high-temperature superconductor materials [9–11], at which
the SC occurs [12–14], has the same structure (if Cu and O are
not distinguished) as the Lieb lattice that is known to host a flat
band and has been realized in various other systems [15–25].
On the other hand, from the density of states (DOS) point of
view, it is intriguing to ask whether there exists some generic
mechanisms that can generate flat bands in a large area of the
Brillouin zone (BZ) of single-layer graphene at low energy,
such that SC may be stabilized.

In this paper, we elaborate that the generic mechanism of
producing zero-energy flat bands (ZEFBs) on any bipartite
lattice, put forward by Sutherland [26] and Lieb [27], can
be realized on graphene by introducing periodic vacancies.
Lieb’s theorem states that on a bipartite lattice with chiral
(sublattice) symmetry, ZEFBs occur if the numbers of the two
sublattices per unit cell are different, NA �= NB, and the ZEFBs
are at least |NA − NB|-fold degenerate. We demonstrate that
this situation can be created on the honeycomb lattice by re-
moving different numbers of the two sublattices in an enlarged
unit cell, and ZEFBs throughout the entire BZ occur, provided
the tight-binding model of the lattice preserves the chiral sym-
metry. This mechanism is then tested in realistic single-layer
graphene by first-principles calculations. Our results indicate
that despite graphene in reality not exactly preserving chiral
symmetry, this mechanism can still produce bands as narrow

as ∼0.5 eV near the Fermi surface throughout the entire BZ,
and moreover can be used to engineer an exotic band structure
that contains both flat bands and nodal lines.

Our theoretical investigation is largely motivated by the
fact that graphene with vacancies, often called holey graphene
or graphene nanomesh, has been realized by various experi-
mental techniques, such as nitrogenation [28,29], self-aligned
anisotropic etching [30], nanonetwork masking [31], and
lithography using copolymer [32], nanosphere [33], or He ion
beams [34], suggesting the feasibility of vacancy engineering
in reality. Note that our proposal considers complete removal
of carbon atoms, which is in contrast to the flat bands pro-
duced by the periodic potentials from adatoms [35], requires
much less removal of atoms compared to the cyclicgraphyne
[36] or azite [37] proposals, and may also be realizable in
superlattices nanolithographed in semiconductor thin films
[38].

In addition, since these vacancy-engineered narrow bands
dramatically enlarge the DOS at the Fermi surface compared
to pristine graphene, we examine the possibility of phonon-
mediated SC by means of a weak coupling mean-field theory
using the realistic phonon bandwidth [39–42]. Note that this
type of mean-field theory is usually disregarded for pristine
graphene since the vanishing DOS at the Dirac point does
not support phonon-mediated pairing. In addition, the SC
discovered in TBLG likely originated from strong electron-
electron correlations [1]. However, we elaborate that, owing to
the enlarged DOS, the conventional phonon-mediated weak-
coupling SC can be stabilized by these vacancy-engineered
flat bands without any additional electron-electron correla-
tions. The spatial pattern of pairing is highly influenced by the
chiral symmetric wave function of the ZEFBs, with a magni-
tude that increases with the number of ZEFBs, pointing to the
possibility of enhancing critical temperature via increasing the
number of flat bands.
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The structure of the paper is organized in the following
manner. In Sec. II, we first revisit Lieb’s theorem with an
emphasis on the chiral symmetry of the ZEFB wave functions.
Two vacancy configurations are then used to demonstrate
perfect ZEFBs on a honeycomb lattice that preserves chi-
ral symmetry. The narrow bands of these two configurations
realized in graphene are then elaborated by first-principle cal-
culations, and additionally another vacancy configuration that
yields coexisting narrow bands and nodal lines. In Sec. III,
we lay out the weak-coupling mean-field theory to investigate
SC on the first two vacancy configurations, especially to detail
their spatial pattern and dependence on the pairing interaction
and degeneracy of the ZEFBs. These results are summarized
in Sec. IV.

II. VACANCY-ENGINEERED FLAT BANDS ON GRAPHENE

A. Chiral symmetry and rank-nullity theorem

We first revisit Lieb’s theorem that is based on the rank-
nullity theorem [27], with a special emphasis on the nonspatial
symmetries, localization of the wave functions, and applica-
tions to periodic vacancies. We consider any two- (2D) or
three-dimensional (3D) bipartite-lattices described by single-
particle Hamiltonian H (k) in momentum space that preserves
time-reversal, particle-hole (PH) chiral symmetries,

T H (k)T −1 = H (−k),

CH (k)C−1 = −H (−k), (1)

SH (k)S−1 = −H (k),

which are nonspatial symmetries particularly relevant to topo-
logical order [43–46] and topological phase transitions [47].
In these bipartite lattices, the Hamiltonian matrix arranged
in the basis of the electron operators of the two sublattices
(cBk, cAk ) is a block-off-diagonal 2 × 2 matrix, and the sym-
metry operators are implemented by T = K , C = σ3K , and
S = σ3, where K is the complex conjugation operator.

Now suppose we enlarge the unit cell to contain not
two but N = even number of sites with the same amount
of two sublattices. Before any vacancy has been introduced
into the lattice, the Hamiltonian matrix arranged in the basis
(cB1k, ..., cBN/2k, cA1k, ..., cAN/2k ) remains block-off-diagonal

H (k) =
(

Q(k)
Q†(k)

)
, (2)

where Q(k) is an (N/2) × (N/2) square matrix. The symme-
try operators are implemented by C = σ3 ⊗ IN/2K and S =
σ3 ⊗ IN/2 in this case, with IN/2 the (N/2) × (N/2) identity
matrix. If we now introduce periodic vacancies into the lattice,
the columns and rows in the H (k) in Eq. (2) that correspond
to the vacancy sites will be removed. It is then obvious that
if the number of vacancies on the A and B sublattices are
different, then the unit cell will contain a different number
of sublattices NA �= NB. As a result, the Q(k) in Eq. (2) as an
NA × NB matrix is not a square matrix anymore, as elaborated
in Fig. 1. Nevertheless, the PH and chiral symmetries of
the systems still hold since removing the columns and rows
in C = σ3 ⊗ IN/2K and S = σ3 ⊗ IN/2 that correspond to the
vacancy sites preserve Eqs. (1). As a result, the band structure
at any vacancy configuration is PH symmetric, and the ZEFB

FIG. 1. Schematics of the proposed generic mechanism for
ZEFBs. Starting from a chiral symmetric bipartite lattice, the Hamil-
tonian matrix H (k) describing an enlarged unit cell containing NA =
NB = N/2 sites of each sublattice is block-off-diagonal (blue blocks).
After periodic vacancies are introduced, which correspond to remov-
ing some columns and rows in the Hamiltonian, the off-diagonal
block becomes not square if the unit cell contains different numbers
of the two sublattices NB > NA. In this case, the rank-nullity theorem
ensures that ZEFBs must occur.

wave functions must be localized on one of the two sublattices
since they are eigenstates of the chiral operator S. In fact, we
will prove below that the ZEFB wave functions must localize
in the majority sublattices.

Denoting r(M ) as the rank and η(M ) as the nullity of a
matrix M, our interest is in how the nullity of the Hamiltonian
η(H ), which counts the number of ZEFBs, can be nonzero.
Without loss of generality, we assume that the vacancy config-
uration is such that the B sublattices are the majority NB > NA,
causing Q not to be square. In this case, the rank-nullity
theorem states that

r(Q) + η(Q) = NA, r(H ) + η(H ) = NA + NB. (3)

For H of the form of Eq. (2) with a Q that is not square, the
rank satisfies

r(Q) = r(Q†) = r(QQ†) = r(Q†Q),

r(H ) = r(Q) + r(Q†) = 2r(Q). (4)

Using these simple identities in linear algebra, we now prove
the following propositions.

Proposition 1: η(H ) > 0 if Q is not square. This can be
proved easily from Eqs. (3) and (4):

η(H ) = NA + NB − 2r(Q) = NB − NA + 2η(Q). (5)

Hence η(H ) > 0 if NB > NA, meaning that ZEFB must
emerge if we remove the two sublattices in different quanti-
ties.

Proposition 2: η(H ) = NB − NA if η(Q) = 0. To prove this,
we start from

r(QQ†) + η(QQ†) = NB, r(Q†Q) + η(Q†Q) = NA, (6)

which implies

r(QQ†) − r(Q†Q) = NB − NA. (7)

If Q itself is not singular, η(Q) = 0, which is true in
many practical examples, then Eqs. (3) implies r(Q) =
NA = r(QQ†) = r(Q†Q). Then, from Eqs. (6), one sees that
η(QQ†) = NB − NA and η(Q†Q) = 0. Because the square of
the Hamiltonian H2 = diag(QQ†, Q†Q) has the same nullity
and ZEFB wave functions as H , we immediately see that
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η(H ) = η(H2) = η(QQ†) = NB − NA. Propositions 1 and 2
constitute the original version of Lieb’s theorem [26,27,48].

Proposition 3: ZEFB wave functions are localized in the
majority sublattices if η(Q) = 0. This is simply because the
proof for proposition 2 shows that the ZEFB wave functions
are given by diagonalizing the first block QQ† in H2 that
belongs to the majority B sublattices, whereas wave functions
in A sublattices are zero.

We aim to examine these propositions in the spinless hon-
eycomb lattice with nearest-neighbor hopping

H =
∑
〈i j〉

t c†
i c j + U

∑
i∈v

c†
i ci, (8)

owing its relevance to the pz orbital of single-layer graphene
that will be addressed later, where ci denotes the electron
annihilation operator at site i, and U is the large on-site
potential that can be used to conveniently project out the
vacancy sites i ∈ v. Increasing from U = 0 to U > 100t can
continuously change the band structure from Dirac points to
ZEFBs, similar to that proposed recently in the Lieb-kagome
lattices [49], but we will focus on the large on-site potential
regime U > 100t that completely removes the vacancy sites.
We denote these vacancy configurations by CNA+NB . In the left
panel of Fig. 2(a), we show a C15 example of removing a
single A sublattice from a N = 16 rectangular unit cell such
that NA = 7 and NB = 8. In this case, the BZ is rectangular
and the PH symmetric tight-binding band structure plotted
along a high-symmetry line clearly indicates a single ZEFB
throughout the BZ, as shown in the left panel of Fig. 2(b).
In contrast, the C14 configuration shown in the right panel
of Figs. 2(a) and 2(b) that removes two A sublattices on the
same 16-site unit cell, such that NA = 6 and NB = 8, has dou-
bly degenerate ZEFBs η(H ) = NB − NA = 2, consistent with
proposition 2. In Appendix, we also elaborate on proposition
3 by presenting the wave functions of the ZEFBs for C15 and
C14 and show that indeed both are localized on the majority
B sublattices. Finally, we remark that although we focus on
periodic vacancies on an infinite graphene, propositions 1–3
also explain the number of zero eigenenergies and their wave
functions of finite-size graphene with random vacancies [50].

B. Application to realistic graphene

To examine the proposed mechanism on realistic single-
layer graphene, it should be first noted that graphene, in
reality, does not exactly preserve the PH and chiral symme-
tries in Eqs. (1) owing to the complications such as longer
range hopping and hybridization between different orbitals,
although magnitudes of these factors are much smaller than
the nearest-neighbor hopping [51]. To investigate the effect
of these symmetry-breaking factors, we turn to density func-
tional theory (DFT) to obtain the band structure of graphene
with periodic vacancies. In Fig. 2(c), we show the DFT band
structures and DOS for C15 and C14, which indicate that very
narrow bands do occur near the Fermi surface. Although not
perfectly flat, these bands are as narrow as ∼0.5 eV, reminisce
the ZEFBs. Moreover, the DOS at the Fermi surface is dramat-
ically enhanced by these narrow bands compared to pristine
graphene, as indicated by Fig. 2(d).

FIG. 2. Numerical results for the two vacancy configurations C15

(left column) and C14 (right column), whose lattice structures are
shown in (a) with the two sublattices A and B indicated. (b) The band
structures obtained from the nearest-neighbor tight-binding model
that preserves chiral symmetry, which contains a single ZEFB for
C15 and doubly degenerate ZEFBs for C14. (c) DFT band structures
and (d) the corresponding DOS for these two vacancy configurations
realized by graphene that does not exactly preserve the chiral sym-
metry, which still yield very narrow bands of mainly pz at low energy.

C. Coexistence of ZEFBs and nodal lines

We proceed to demonstrate that the proposed mechanism
can coexist with another vacancy engineering principle pro-
posed recently, namely, the nodal-line semimetals caused by
2D nonsymmorphic vacancy configurations [52–54]. In these
nonsymmorphic configurations, every two carbon atoms map
to each other under glide plane operation, resulting in nodal
lines at the BZ boundary regardless of the details of the
Hamiltonian [55–58]. Although these nodal lines are based
on point group symmetry while the flat bands are based on
the rank-nullity theorem, which are two completely distinct
mechanisms, they may manifest simultaneously in some va-
cancy configurations. As an example, in Fig. 3 we show a
C22 configuration that contains two vacancies on the A sub-
lattice, and additionally a glide plane along the x̂ direction.
The resulting DFT band structure indicates that both mecha-
nisms prevail in this situation, yielding a band structure that
contains two low-energy narrow bands that reminisce doubly
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FIG. 3. (a) A vacancy configuration C22 that contains two miss-
ing A sublattices and a glide plane Gx . (b) The resulting band
structure contains two low-energy narrow bands of mainly pz orbital
origin and, in addition, every two pairs of spin degenerate bands
stick together to form fourfold degenerate nodal lines at the X − V
section of the BZ boundary.

degenerate ZEFBs, and in addition every two pairs of bands
(each pair is spin degenerate) stick together at the BZ
boundary kx = 0 [the X − V section of Fig. 3(b)] to form
symmetry-enforced nodal lines as predicted. This example
indicates that vacancy engineering can combine different crys-
talline and nonspatial symmetries to produce very exotic band
structures that may not be easily found in nature.

III. MEAN-FIELD TREATMENT OF SC STABILIZED
BY ZEFBs

A. Bogoliubov-de Gennes equations for graphene with periodic
vacancy

The enlarged DOS near the Fermi surface due to the narrow
bands is expected to dramatically change the electronic and
magnetic properties of holey graphene compared to pristine
graphene. However, these narrow bands are neither perfectly
flat nor entirely located at zero energy, and hence it is unclear
at present whether strong correlations will play an impor-
tant role on the electronic properties in the same way as
in TBLG [1]. On the other hand, the phonon bandwidth in
graphene is about ωD ≈ 0.25 eV [39–42], which means that
the narrow bands with bandwidth ∼0.5 eV in a large area of
the BZ are within the Debye frequency, suggesting a large
phase space for phonon-mediated Cooper pairing [59,60].
These features motivate us to examine whether a conventional
phonon-mediated s-wave SC phase emerges in holey graphene
with low-energy narrow bands. For this purpose, we resort to
the following spinful mean-field model of s-wave SC,

H =
∑
〈i j〉σ

t c†
iσ c jσ +

∑
〈〈i j〉〉σ

t ′ c†
iσ c jσ −

∑
iσ

μ c†
iσ ciσ

+
∑

i

(
�ic

†
i↑c†

i↓ + �∗
i ci↓ci↑

) + U
∑
i∈v

c†
iσ ciσ , (9)

where t = 2.8 eV is the nearest-neighbor hopping on the hon-
eycomb lattice, �i is the local pairing amplitude at site i,
and the on-site potential U > 100t is used to project out the
vacancy sites i ∈ v. We use the next-nearest-neighbor hopping
t ′ and chemical potential μ to simulate the breaking of chi-
ral symmetry in realistic graphene, and find that the values
t ′ = −0.2 eV and μ = 0.2 eV can give a reasonable fit to

the narrow bands obtained by DFT in both C15 and C14, as
demonstrated in the Appendix.

The mean-field Hamiltonian is diagonalized into H =
const + ∑

kα Ekγ
†
kαγkα by a Bogoliubov transformation

ci↑ =
∑

k

γk↑uk(i) − γ
†
k↓v∗

k(i),

ci↓ =
∑

k

γk↓uk(i) + γ
†
k↑v∗

k(i), (10)

where i = 1, 2...NA + NB denotes the site inside a unit cell,
and γkσ is the annihilation operator of the Bogoliubov quasi-
particles. The wave functions {uk(i), vk(i)} and eigenenergy
Ek satisfy

Ekuk(i) =
∑
〈i j〉

t uk( j) +
∑
〈〈i j〉〉

t ′ uk( j)

+Uδi∈vuk(i) + �ivk(i),

Ekvk(i) = −
∑
〈i j〉

t vk( j) −
∑
〈〈i j〉〉

t ′ vk( j)

−Uδi∈vvk(i) + �∗
i uk(i). (11)

Having found the wave functions and eigenenergies of the
quaseparticles, we determine the pairing amplitude at site i
by

�i =
∑

k

V θ (ωD − Ek )[2 f (Ek ) − 1]uk(i)v∗
k(i), (12)

where f (Ek ) = (eEk/kBT + 1)−1 is the Fermi distribution and
V < 0 is the pairing interaction acting within Debye fre-
quency ωD = 0.25 eV, as ensured by the step function
θ (ωD − Ek ). Equations (11) and (12) are solved self-
consistently until the local pairing amplitude �i converges at
a given pairing interaction and temperature {V, T }. We will
consider only s-wave pairing since the chiral symmetry of
the flat-band wave function limits the pairing to be between
the same sublattices, favoring on-site pairing while ruling
out nearest-neighbor pairing. Longer range pairing may, in
principle, be possible by correctly incorporating phonons at
finite momentum, which should be addressed elsewhere.

B. Numerical results for the local pairing

Numerical calculation of our mean-field theory applied
to pristine graphene yields �i = 0 everywhere, consistent
with the experimental observation that single-layer pristine
graphene has no SC. It is perhaps for this reason that such
a simple mean-field theory has not been considered relevant
to any pairing mechanism in graphene. However, our nu-
merical results indicate that a conventional phonon-mediated
pairing can be stabilized by the vacancy-engineered flat bands
and are well-described by such a simple mean-field theory.
In Figs. 4(a) and 4(b), we show the local gap �i at zero
temperature for the two vacancy configurations C15 and C14

illustrated in Fig. 2. Our result indicates a finite �i in holey
graphene and, moreover, �i on the B sublattices is about two
orders of magnitude larger than that on the A sublattices.
This feature stems from the fact that the chiral symmetry
breaking terms are relatively small {t ′, μ}  t , so the narrow
band wave functions still roughly satisfy proposition 3 in
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FIG. 4. (a) Local pairing amplitude �i represented by circle size
for the C15 configuration in Fig. 2, calculated at zero temperature
and pairing interaction V = −2.2eV by our weak coupling mean-
field model. The largest circles correspond to �i = 0.036 eV. (b) �i

for the C14 configuration in Fig. 2 at zero temperature and pairing
interaction V = −0.5 eV, where the largest circles correspond to
�i = 0.074 eV. In these two figures, one sees that the B sublattices
that the vacancy sites do not belong to have much larger pairing am-
plitude. (c) Spatially averaged pairing amplitude at zero temperature
�(0) versus the pairing interaction |V |. (d) The spatially average
pairing amplitude �(T ) as a function of temperature.

Sec. II A and hence are mainly localized on the B sublattices,
as discussed in Appendix. For C15, the spatially averaged
gap �(T ) = ∑

i �i/(NA + NB) at zero temperature �(0) is
vanishingly small at small pairing potential V . Only when
the pairing potential has the same order of magnitude as the
hopping |V | ∼ t does a sizable gap emerge, implying that a
sufficiently strong electron-phonon interaction is needed to
support SC in C15. On the other hand, C14 requires much
smaller |V | to trigger SC in comparison with C15, suggesting
that increasing the number of narrow bands does help to create
the SC phase. Concerning the temperature dependence, the
spatially averaged gap shows a trend similar to the usual weak
coupling superconductors, which vanishes at a critical temper-
ature Tc that is higher at larger pairing potential V . In addition,
Tc is generally raised in the configurations with more narrow
bands, consistent with that expected from an enlarged DOS.
Since the proposed engineering mechanism in principle has no
restriction on the number of narrow bands NB − NA (times 2 if
including spin), we anticipate that the vacancy configurations
with very different numbers of the two sublattices may yield a
very high Tc, which is presumably more likely to engineer in
configurations with a larger unit cell.

IV. CONCLUSIONS

In summary, we demonstrate that Lieb’s theorem of ZEFBs
can be realized on graphene by introducing periodic vacan-
cies, which can be experimentally relevant to holey graphene
or graphene nanomesh. Although graphene in reality does not
preserve the chiral symmetry required by the theorem, peri-
odic vacancies can still induce bands as narrow as ∼0.5 eV
near the Fermi surface because the symmetry breaking factors

FIG. 5. Wave functions |ψi|2 at momentum k = (0.15, 0.37) of
(a) the single ZEFB of C15 and (b) the two degenerate ZEFBs of
C14 with only nearest-neighbor hopping, whose band structure is that
shown in Fig. 2(b). The largest circles correspond to |ψi|2 = 0.313.
All these wave functions preserve chiral symmetry and hence are
localized only on the majority B sublattices.

are relatively weak compared to the nearest-neighbor hop-
ping. Moreover, our results suggest that periodic vacancies
can be used to combine various nonspatial and crystalline
symmetries to produce very exotic band structures, such as
the coexisting ZEFBs and nodal lines revealed in the present
paper, paving a way to engineer band structures of 2D ma-
terials beyond the limitation set by the underlying crystalline
structures.

The vacancy-engineered narrow bands dramatically en-
large the DOS near the Fermi surface, and hence are expected
to significantly change the electronic and magnetic properties
of the holey graphene compared to the pristine one, which
await further investigations. In particular, we reveal that a
phonon-mediated conventional SC can be stabilized without
the need of any other electronic correlations, and can be
described by a simple mean-field theory. The local pairing
amplitude is highly localized on the majority sublattices, a
feature originating from the chiral symmetry of the flat-band
wave functions. The minimal electron-phonon interaction re-
quired to create the SC phase varies significantly with the
number of narrow bands, but increasing the numbers of nar-
row bands generally reduces the minimal electron-phonon
interaction, as expected from the DOS point of view. As a

FIG. 6. Tight-binding band structure of (a) C15 and (b) C14 with
t = 2.8 eV, t ′ = −0.2 eV, and μ = 0.2 eV, which yields a reason-
able fit to the pz orbital bands obtained from DFT shown in Fig. 2(c).
The wave functions |ψi|2 of the narrow bands at momentum k =
(0.15, 0.37) are shown in (c) and (d), which are still highly localized
on the B sublattices since the chiral symmetry breaking terms are
relatively weak, {t ′, μ}  t .
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result, we anticipate that a certain experimental effort to
search for the appropriate vacancy configuration that has a
sufficient number of narrow bands is needed to observe the
SC.

APPENDIX: FLAT-BAND WAVE FUNCTIONS WITH
AND WITHOUT CHIRAL SYMMETRY

Proposition 3 in Sec. II A states that the ZEFB wave
functions for a chiral symmetric system in any vacancy con-
figuration must localize on the majority sublattices. As an
example, in Fig. 5 we show the single flat-band wave function
for C15 and the two degenerate flat-band wave functions for
C15 at momentum k = (0.15, 0.37), both described by a spin-
less nearest-neighbor hopping Hamiltonian H = ∑

〈i j〉 t c†
i c j

that preserves chiral symmetry. We find that all these wave
functions are localized in the majority B sublattices where
the vacancies do not belong, satisfying the proposition 3 in
Sec. II A.

For the realistic graphene that does not preserve chiral
symmetry, we rely on numerical calculations to investigate
the wave functions. Using a tight-binding model with nearest
t and next-nearest-neighbor hopping t ′, and additionally a
chemical potential μ [described by the Hamiltonian in Eq. (9)
without pairing and spin], we find that the parameters t =
2.8 eV, t ′ = −0.2 eV, and μ = 0.2 eV can fit the pz orbital
bands of the DFT band structure shown in Fig. 2(c) reasonably
well, as shown in Figs. 6(a) for C15 and 6(b) for C14. The
wave functions of the narrow bands close to the Fermi surface
are shown in Figs. 6(c) and 6(d) at the same momentum
k = (0.15, 0.37) as that shown in Figs. 5(a) and 5(b). We
find that because these chiral symmetry breaking terms {t ′, μ}
are relatively small compared to t , the wave functions on
the majority B sublattices are about two orders of magnitude
larger than that on the minority A sublattices. In other words,
the wave function still roughly preserves the chiral symmetry
and approximately satisfies proposition 3 in Sec. II A. As a
result, the local pairing amplitude in the SC phase is much
larger on B sublattices, as shown in Fig. 4.
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