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Local breaking of the spin degeneracy in the vortex states of Ising superconductors: Induced
antiphase ferromagnetic order
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Ising spin-orbital coupling is usually easy to identify in the Ising superconductors via an in-plane critical
field enhancement, but we show that the Ising spin-orbital coupling also manifests in the vortex physics for
perpendicular magnetic fields. By self-consistently solving the Bogoliubov–de Gennes equations of a model
Hamiltonian built on the honeycomb lattice with the Ising spin-orbital coupling pertinent to the transition metal
dichalcogenides, we numerically investigate the local breaking of the spin and sublattice degeneracies in the
presence of a perpendicular magnetic field. It is revealed that the ferromagnetic orders are induced inside the
vortex core region by the Ising spin-orbital coupling. The induced magnetic orders are antiphase in terms of
their opposite polarizations inside the two nearest-neighbor vortices with one of the two polarizations coming
predominantly from one sublattice site, implying the local breaking of the spin and sublattice degeneracies. The
finite-energy peaks of the local density of states for spin-up and spin-down in-gap states are split and shifted
oppositely by the Ising spin-orbital coupling, and the relative shifts of them on sublattices A and B are also of
opposite algebraic sign. The calculated results and the proposed scenario may not only serve as experimental
signatures for identifying the Ising spin-orbital coupling in the Ising superconductors, but also be prospective in
the manipulation of electron spins in motion through the orbital effect in the superconducting vortex states.
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I. INTRODUCTION

The superconductivity uncovered in atomically thin two-
dimensional (2D) forms of layered transition metal dichalco-
genides (TMDs) have recently attracted remarkable scientific
and technical interests [1–14]. Although these superconduc-
tors belong to the conventional s-wave superconductivity
with low transition temperature [1–14], the uniqueness of
the TMDs makes them alluring to the researchers. On one
hand, similar to graphene, these materials have a honeycomb
lattice structure, and exhibit a valley degree of freedom with
minima/maxima of conduction/valence bands at the corners
K and −K of the Brillouin zone. On the other hand, un-
like graphene, the in-plane mirror symmetry is broken in
the TMDs, leading to a strong atomic Ising-type spin-orbital
coupling (ISOC) [3,4,7–9]. The ISOC strongly pins the elec-
tron spins to the out-of-plane directions and have opposite
directions in opposite valleys (K and −K) [3,4,7–9,12,14–
16], so that it preserves time-reversal symmetry and is com-
patible with superconductivity. Due to the strong pinning of
electron spins in the out-of-plane directions, external in-plane
magnetic fields are much less effective in aligning electron
spins, and lead to the in-plane upper critical field Hc2 of the
system several times larger than the Pauli limit [10,12].

Nevertheless, an out-of-plane magnetic field will generate
the magnetic flux in conductors due to the dominating orbital
effect over the Zeeman splitting. It is well known that the
superconductors expel the magnetic flux from their interior,
the so called Meissner effect. While some superconductors

expel the magnetic field globally (they are called type-I su-
perconductors), a type-II superconductor will only keep the
whole magnetic field out until a first critical field Hc1 is
reached. Then vortices start to appear. A vortex is a local
magnetic flux quantum that penetrates the superconductor,
where the superconducting (SC) order parameter drops to zero
to save the rest of the SC state in metal from being destroyed.
While the ISOC exemplifies itself as the spin-valley locking
in the momentum space, it acts as coupling between spins
and the orbital derived effectively periodic spin and sublattice
dependent fluxes in real space with the quantization axis along
the out-of-plane direction. This is to say the spins, sublattices,
and the effectively periodic fluxes are bound together by the
ISOC in real space. Thus, the local breaking of the spin and
sublattice degeneracies may be expected if the fluxes are al-
tered locally, and the spin orders in real space may also be
expected to emerge.

In this paper, we numerically demonstrate that the spin
and sublattice degeneracies break locally with an induced
ferromagnetic order inside the vortex core of the Ising su-
perconductors, as a result of the contrasting variation of the
effectively periodic fluxes for sublattices A and B caused by
the out-of-plane magnetic field. By self-consistently solving
the Bogoliubov–de Gennes (BdG) equations of the Hamil-
tonian, it is shown that there is no magnetic order induced
inside the vortex core when the ISOC is zero. Accordingly, the
curves of the local density of states (LDOS) for the spin-up
and spin-down in-gap states are almost identical, forming a
series of discrete energy peaks inside the core region. The
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inclusion of the ISOC induces a ferromagnetic order inside the
vortex core, where the SC order parameter is suppressed. The
induced magnetic orders are antiphase in terms of their oppo-
site polarizations inside two nearest-neighbor (NN) vortices
with one of the two polarizations coming predominantly from
one sublattice site. The finite-energy peaks of the LDOS for
spin-up and spin-down in-gap states are shifted oppositely by
the ISOC, and the sign of the relative shifts of them depends
on which sublattices the site belongs to. Based on a scenario
of local breaking of the spin and sublattice degeneracies due
to the interaction of the ISOC derived effective fluxes with
the local magnetic flux inside the vortex core, we give an
explanation to the unusual phenomena regarding the polariza-
tion of the induced magnetic orders and the energy shifts of
the finite-energy in-gap peaks. The calculated results may not
only serve as experimental signatures for identifying the ISOC
proposed in the Ising superconductors, but also put forward
effective ways of thinking in the manipulation of electron
spins in motion through the orbital effect in the SC vortex
states.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model Hamiltonian and carry out
analytical calculations. In Sec. III, we present numerical cal-
culations and discuss the results. In Sec. IV, we make a
conclusion.

II. THEORY AND METHOD

The effective electron hoppings between the NN sites i
and i + τ j on a honeycomb lattice can be described by the
following tight-binding Hamiltonian,:

H0 = −
∑
i,τ j ,σ

(ti,i+τ j a
†
i,σ bi+τ j ,σ + H.c.)

−μ

( ∑
i∈A,σ

a†
i,σ ai,σ +

∑
i∈B,σ

b†
i,σ bi,σ

)
, (1)

where ti,i+τ j is the hopping integral between the NN sites.

τ j denotes the three NN vectors with τ0 = a(
√

3
2 , 1

2 ), τ1 =
a(−

√
3

2 , 1
2 ), and τ2 = a(0,−1) as defined in Fig. 1(a) with a

being the lattice constant. a†
i,σ (b†

i,σ ) is the electron creation
operator in sublattice A (B) if i ∈ sublattice A (B), and μ the
chemical potential. For the free hopping case with ti,i+τ j = t ,
the Hamiltonian H0 can be written in the momentum space,

H0(k) =
∑
k,σ

[ξka†
k,σ

bk,σ + ξ ∗
k b†

k,σ
ak,σ

−μ(a†
k,σ

ak,σ + b†
k,σ

bk,σ )], (2)

where

ξk = −t
2∑

j=0

eik·τ j . (3)

One can readily find the energy bands for this Hamiltonian as
[17]

ε±
k = ±t[3 + 2 cos(

√
3kx ) + 4 cos(

√
3kx/2)

× cos(3ky/2)]1/2 − μ. (4)

FIG. 1. (a) Honeycomb lattice structure of the Ising supercon-
ductor, made out of two sublattices A (blue dots) and B (red dots).
τ0, τ1, and τ2 are the nearest-neighbor vectors, and τ ′

1-τ ′
6 the next-

nearest-neighbor vectors. (b) The Brillouin zone (dashed line) and
the six spin degenerate Fermi pockets (solid lines) of the Ising super-
conductor. The red and blue colors indicate the opposite sign of the
effective Zeeman fields between adjacent Fermi pockets located at K
and −K. The positive phase hopping directions for spin-up electrons
depicted by HISOC in Eq. (6) (c1), and by HKM in Eq. (15) (c2),
respectively. The arrows in both figures indicate the positive phase
hopping directions. (d) The ISOC dependencies of the maximum
of the absolute value for the induced magnetic order |S|max and the
magnitude of the relative energy shifts |δ| between the spin-up and
spin-down in-gap state peaks on the vortex core center [reference to
text and Fig. 4(b)].

with + (−) indexing the conduction (valence) band. We focus
on systems which have been doped such that the chemical
potential μ lies in the upper conduction bands, and produce
six spin degenerate pockets at the corners of the hexagonal
Brillouin zone when ε+

k = 0, as shown in Fig. 1(b).
The ISOC acts as strong effective Zeeman fields, which

polarize electron spins oppositely to the out-of-plane direction
at opposite valleys, that is, at the K and −K points in Fig. 1(b).
If we choose the out-of-plane direction as the z axis, the ISOC
term has the form [18]

HISOC(k) = β
∑

k,σ,σ ′
gk · σ̂σσ ′ (a†

k,σ
ak,σ ′ + b†

k,σ
bk,σ ′ ), (5)

where β is the ISOC strength, and σ̂ denotes the
Pauli matrices acting in the spin space. The ISOC re-
quires that the form factor gk alternates its sign be-
tween adjacent Fermi pockets located at K and −K
[see Fig. 1(b)], which should be the form gk = ẑFk with
Fk = 2 sin(

√
3kx ) − 4 cos(3ky/2) sin(

√
3kx/2) = −F−k satis-

fying the time-reversal symmetry. In this way, the spins are
bound to the orbitals in the momentum space and accordingly
exhibit various valley dependent behaviors such as valley
spintronics in these materials [19–23]. By making the Fourier
transformation of Fk , the ISOC term in real space can be
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reached as [24]

HISOC = iβ
∑

i,τ ′
j ,σ,σ ′

σ̂ z
σσ ′ (−1) j (a†

i,σ ai+τ ′
j ,σ

′ + b†
i,σ bi+τ ′

j ,σ
′ ),

(6)

where the vectors τ ′
j connecting the six next-nearest-neighbor

(NNN) sites are located at τ ′
1 = −τ ′

4 = √
3a(1, 0), τ ′

2 =
−τ ′

5 = √
3a( 1

2 ,
√

3
2 ), and τ ′

3 = −τ ′
6 = √

3a(− 1
2 ,

√
3

2 ), as indi-
cated by the dashed arrows in Fig. 1(a). We will see later that
the ISOC in real space depicted by Eq. (6) plays the role of
the coupling between spins and the effectively periodic fluxes
with the quantization axis along the out-of-plane direction.
Then, the Hamiltonian including both the free hoppings and
the ISOC term is reached, in real space as

HTMD = H0 + HISOC. (7)

The SC pairing is assumed to be derived from the effective
attraction between electrons,

HP = V0

2

∑
i,σ

ni,σ ni,σ̄ . (8)

Here, we consider the on-site interactions with V0 denoting the
effective interaction potential [15,16]. By making the mean-
field decoupling, HP can be rewritten in terms of the SC
pairings as

HP =
∑
i∈A

(�Aa†
i,↑a†

i,↓ + H.c.) +
∑
i∈B

(�Bb†
i,↑b†

i,↓ + H.c.),

(9)

where �A = −V0〈ai,↑ai,↓〉 (�B = −V0〈bi,↑bi,↓〉) defines the
on-site spin-singlet s-wave SC pairing.

Then the total Hamiltonian is arrived as follows:

H = HTMD + Hpair. (10)

Based on the Bogoliubov transformation, the diagonalization
of the Hamiltonian H can be achieved by solving the follow-
ing discrete BdG equations:

∑
j

⎛
⎜⎜⎝

−μδi j Hi j,↑↑ �Aδi j 0
H∗

i j,↑↑ −μδi j 0 �Bδi j

�∗
Aδi j 0 μδi j −H∗

i j,↓↓
0 �∗

Bδi j −Hi j,↓↓ μδi j

⎞
⎟⎟⎠

⎛
⎜⎝

uA,n, j,↑
uB,n, j,↑
vA,n, j,↓
vB,n, j,↓

⎞
⎟⎠

= En

⎛
⎜⎝

uA,n,i,↑
uB,n,i,↑
vA,n,i,↓
vB,n,i,↓

⎞
⎟⎠, (11)

where

Hi j,↑↑ = −ti jδi+τ j , j + iβσ z
↑↑(−1) jδi+τ ′

j , j,
(12)

Hi j,↓↓ = −ti jδi+τ j , j + iβσ z
↓↓(−1) jδi+τ ′

j , j,

with uA,n, j,↑ (uB,n, j,↑) and vA,n, j,↓ (vB,n, j,↓) being the
Bogoliubov quasiparticle amplitudes on the jth site
with corresponding eigenvalues En. The SC pair-
ing amplitudes satisfy the following self-consistent

conditions:

�A = −V0

2

∑
n

uA,n,i,↑v∗
A,n,i,↓ tanh

(
En

2kBT

)
,

�B = −V0

2

∑
n

uB,n,i,↑v∗
B,n,i,↓ tanh

(
En

2kBT

)
. (13)

The spin dependent electron density nA(B),i,σ and the local
magnetic orders SA(B),i,z are determined respectively by

nA(B),i,↑ =
∑

n

|uA(B),n,i,↑|2 f (En),

nA(B),i,↓ =
∑

n

|vA(B),n,i,↓|2 f (En),

SA(B),i,z = 1

2
[nA(B),i,↑ − nA(B),i,↓]. (14)

III. RESULTS AND DISCUSSION

In numerical calculations, we choose the zero field hopping
integral t = 200 meV as the energy unit, and fixed temper-
ature T = 1 × 10−5, unless otherwise specified. The filling
factor n = ∑

i,σ ni,σ /N = 1.08 (N denotes the number of total
lattice sites) such that the chemical potential μ lies in the
upper conduction band and gives rise to the Fermi surfaces
in Fig. 1(b). In the presence of a perpendicular magnetic field,
the orbital effect dominates over the the Zeeman splitting, so
we neglect the Zeeman term of the external magnetic field
in the following calculations. In this case, the hopping terms
are described by the Peierls substitution. For the NN hopping
between sites i and i + τ j , one has ti,i+τ j = teiϕi,i+τ j , and for
the NNN hopping between i and i + τ ′

j one should have β →
βe

iϕi,i+τ ′
j , where ϕi,i+τ j (τ ′

j ) = π
�0

∫ ri

ri+τ j (τ ′
j )

A(r) · dr with �0 = hc
2e

being the SC flux quanta. We consider a system with a paral-
lelogram vortex unit cell as shown in Fig. 1(a), where two
vortices are accommodated. The vortex unit cell with size of
24a1 × 48a2 is adopted in the calculations, unless otherwise
stated. The vector potential A(r) = (0, Bx, 0) is chosen in the
Landau gauge to give rise to the magnetic field B along the z
direction.

In this study, we have no ambition to explore the SC
mechanism underlying the Ising superconductors. Instead, we
assume a phenomenological pairing potential V0 to give rise
to the SC pairing. Within the BCS theory, the coherence
length is given by ξ0 = h̄vF /π�, where vF is the Fermi
velocity, linking the coherence length to the inverse size of
the SC gap �. The coherence length of NbSe2 is about
10 nm as obtained from Hc2(T ) measurement [25,26]. The
estimated vortex core size is of ξV ∼ 30 nm [26]. A system
containing two such vortex cores would be larger than the
size of 60 nm × 120 nm, which roughly amounts to a par-
allelogram sample with the size larger than 200a1 × 400a2.
Such a large size is far beyond the computational capability.
However, it is still capable of mimicking the vortex physics
on a relatively small size of sample by artificially enlarging
the SC gap �. In the self-consistent calculations, the length
scale of the sample with size 24a1 × 48a2 is about one order
smaller than the actual size. Thus, we need to choose a large
V0 = 1.6 in the self-consistent calculations to give rise to a
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FIG. 2. The spatial distributions of the SC and magnetic order parameters in the vortex states for β = 0.04 are shown in (a) and (b),
respectively. The spatial distributions of the magnetic order in the vortex states for β = 0.04 on sublattice A (c), and on sublattice B (d),
respectively.

bulk value of � ≈ 0.09 ∼ 18 meV, a value about one order
larger than the actual measurements [26], so as to meet the
requirement.

A. The induced antiphase magnetic orders inside vortex cores

Under a perpendicular magnetic field, the vanishment of
the screening current density at the vortex center drives the
system into the vortex states with the suppression of the SC
order parameter around the vortex core. In the absence of the
ISOC interaction, we find that except for the suppression of
the SC order around the vortex core region there is no other
order to be induced. On the other hand, when the ISOC is
present, a ferromagnetic order can emerge inside the vortex
core region with its maximum appearing at the vortex core
center. The maximum of the absolute value for the magnetic
order |S|max exhibits roughly linear increasing trend with β in
a wide range of ISOC, and finally reaches a saturated value at
large ISOC, as displayed in Fig. 1(d). Typical results on the
vortex structure with β = 0.04 are shown in Figs. 2(a) and
2(b) for the spatial distributions of SC and magnetic orders,
respectively. As shown in Fig. 2(a), each vortex unit cell
accommodates two SC vortices each carrying a flux quantum
�0. The SC order parameter |�A/B| vanishes at the vortex
core center where the maximum of the induced magnetic
order appears. It is interesting to note that the magnetic order
parameters have opposite polar directions around two NN
vortices along the long side of the parallelogram vortex unit
cell, as shown in Fig. 2(b). The most unusual aspect of the
spatial distribution of the magnetic order parameters SA(B),i,z

appears when we replot in Figs. 2(c) and 2(d) the magnetic
orders separately on the sublattices A and B. Specifically,

the positive magnetic order alone z axis inside one vortex
comes predominantly from the A sublattice while the negative
one inside another vortex comes predominantly from the B
sublattice.

In order to understand the origin as well as the unusual
distributions of the induced magnetic order, we should note
the fact that there is no magnetic order induced when ISOC is
zero. In real space, the ISOC depicted by Eq. (6) plays the role
of coupling between spins and the effectively periodic fluxes
with the quantization axis along the out-of-plane direction.
Following the ISOC term in Eq. (6), we display the positive
phase (noting that i = eiπ/2) hopping directions of ISOC in
Fig. 1(c1) by arrows on NNN bonds for spin-up electrons at
sublattices A and B, from which the effective spin fluxes are
generated. If the positive phase hoppings on NNN bonds for
spin-up electrons on sublattice A generate spin flux pointing
to the z direction, then they generate spin flux pointing to the
−z direction on sublattice B, and the contrary is true for spin-
down electrons. That is, the NNN hoppings have opposite
chirality, for sublattices A and B. Since the spins, sublattices,
and the effectively periodic fluxes are bound together in real
space, local breaking of the spin and sublattice degeneracies
may be expected if the effective fluxes for sublattices A and
B are contrastively altered by an out-of-plane magnetic field,
and thus the spin orders in real space may also be expected.
Nevertheless, we cannot expect the appearance of magnetic
order in the normal state under an out-of-plane magnetic field.
This is due to the fact that the energy scale of the hopping
integral t overwhelms the ISOC strength β, interchanging
the electrons between sites of sublattices A and B leading to
the suppression of the local orders. However, the situation
is totally different in the vortex state, where the localized
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FIG. 3. The spatial distributions of the induced magnetic orders in the vortex states with the magnetic field along the −z direction for
β = 0.04 on sublattice A (a), and on sublattice B (b), respectively. (c) and (d) show the calculated results fot the spatial distributions of the
induced magnetic orders by replacing HISOC with HKM (see text for details).

electrons in the vortex core, which come from the breaking
of the Cooper pairs, contribute to the magnetic order. If one
vortex core resides on the A sublattice site, the blue site shown
in Fig. 1(a), the positive phase hoppings on NNN bonds bound
to spin-up electrons on sublattice A generate effective spin
flux pointing to the z direction (noting the negative charge of
the electrons), which is in the same direction as the magnetic
field. On the contrary, the spin-down electrons on sublattice
A generate effective spin flux in the opposite direction of the
magnetic field. Thus, the spin degeneracy breaks locally to
two branches with a lower energy for the spin-up electrons,
leading to the positive magnetic order around one vortex as
shown in Fig. 2(c) on sublattice A. In principle, the pairing
breaking from the spin-singlet SC pairings due to the orbital
effect of the magnetic field results in equal numbers of spin-up
and spin-down electrons, so the total spins should be zero
globally. The excess of spin-down electrons accumulates into
the NN vortex to give rise to the negative magnetic order
shown in Fig. 2(d) on sublattice B, whereby it saves the
energy as the effective spin flux generated by spin-down elec-
trons being in compliance with the direction of the magnetic
field.

Two situations could lend support to the above scenario.
Firstly, we consider the case with a reversal of the direction of
the magnetic field, i.e., a magnetic field in the −z direction.
From the above argument, the polarizations of the induced
magnetic orders should be reversed if the magnetic field re-
verses its direction. It is exactly the case as evidenced in
Figs. 3(a) and 3(b), where the results are obtained with an
out-of-plane magnetic field in the −z direction while keeping
other parameters the same as that in Fig. 2. Secondly, we
should make a comparison with the spin-orbital coupling term

in the Kane-Mele model [27], which has the form

HKM = iβ
∑

i,τ ′
j ,σ,σ ′

σ̂ z
σσ ′ (−1) j (a†

i,σ ai+τ ′
j ,σ

′ − b†
i,σ bi+τ ′

j ,σ
′ ).

(15)

Both HISOC and HKM preserve time-reversal symmetry, so the
spins remain degenerate in both cases. The only difference
lies in that HISOC preserves the sublattice symmetry but HKM

breaks it. As a result, the NNN hopping phases carried by the
same spins in HKM would have the same chirality for sublat-
tices A and B, as denoted by arrows in Fig. 2(c2). According
to the above scenario, we deduce that the induced magnetic
orders should be in the same direction for the two adjacent
vortices. This is also verified in Figs. 3(c) and 3(d), where
the results for the spatial distribution of the induced magnetic
orders are calculated by replacing HISOC with HKM while other
parameters remain unchanged.

B. The splitting and shift of the finite-energy peaks for the
spin-resolved LDOS

Next, we examine the energy dependence of the LDOS
in the vortex states on the honeycomb lattice. The
LDOS is defined as N (Ri, E ) = N↑(Ri, E ) + N↓(Ri, E ) with
N↑(Ri, E ) = −∑

n |uA(B),n,i,↑|2 f ′(En − E ) and N↓(Ri, E ) =
−|vA(B),n,i,↓|2 f ′(En + E ) being the spin-resolved LDOS for
spin-up and spin-down states, respectively. In order to re-
duce the finite size effect, the calculations of the LDOS are
carried out on a periodic lattice which consists of 16 × 8
parallelogram vortex unit cells, with each vortex unit cell
being the size of 24a1 × 48a2. In Fig. 4, we plot a series of
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FIG. 4. The energy dependence of the spin-resolved LDOS on a
series of sites for β = 0.0 (a), and for β = 0.04 (b)–(d). (a), (b), and
(d) are the results for a magnetic field along the z direction, while
(c) is the results for a magnetic field along the −z direction. (b) and
(c) show the LDOS inside the same vortex core, and (d) the LDOS
inside another vortex core. In each panel from top to bottom, the
curves stand for the LDOS at sites along the zigzag direction moving
away from the core center. The curves are vertically shifted for
clarity. The three dashed vertical lines in each panel denote the three
low-energy peak positions for β = 0. The arrows in (b)–(d) indicate
the peak position shift with respect to that of β = 0. The magnitude
of the relative energy shifts |δ| is shown in (b).

the spin-resolved LDOS as a function of energy at sites along
the zigzag direction moving away from the vortex center for
β = 0.0 and β = 0.04, respectively. For comparison, we have
also displayed the LDOS at the midpoint between the two NN
vortices, which resembles the U-shaped full gap feature for
the bulk system. In the absence of ISOC, the states of spin
up and spin down are nearly equal occupation and empty in
the vortex core, as shown in Fig. 4(a), in accordance with
the empty cores without the induced magnetic orders. Be-
sides the almost identical LDOS line shapes for the spin-up
and spin-down states, the LDOS shown in Fig. 4(a) exhibits
another two prominent features within the SC gap edges. On
one hand, the LDOS shows the pronounced discrete energy
peaks inside the core region with one located near the zero
energy and others located at finite energies, as indicated by
the dashed vertical lines in the figure. Here, the asymmetric
line shape of the LDOS with respect to zero energy reflects
the lack of particle-hole symmetry as the chemical potential μ

deviates from zero for the filling factor n being greater than the
half filling (n > 1). Due to the particle-hole asymmetry,
the finite-energy bound states at the core site only appear
on the E > 0 side [28]. (There are also weak peaks at finite
energies on the E < 0 side when moving away from the core
center). The existence of the zero-energy vortex core sates
in the Dirac fermion system have been predicted analytically
by Jackiw and Rossi in terms of the zero-energy solutions
of relativistic field theory [29]. Although these zero-energy
solutions subsequently demonstrated that the existence of
these zero-energy solutions is connected to an index theo-

rem [30] and the zero modes were shown to exist in the
Dirac continuum theory of the honeycomb lattice at half
filling [31], the zero-energy levels split when adopting a
honeycomb lattice model description by setting the size of
the vortex core to be zero [32]. It is also found that the
energy splitting decreases with the vortex size and leads to
the near-zero-energy states in the circumstance of finite core
size [32]. While the notion of the zero-energy vortex core
states presents an important subject of study being worthy
of further research, we identify the near-zero-energy vortex
core states here in a self-consistent manner by employing
the honeycomb lattice model, where the band structure has
the Dirac-type dispersion near the half filling. On the other
hand, though the peaks’ intensities are suppressed as the site
departing from the core center, the energy levels of these
peaks are almost independent of positions. It is worthwhile to
note that a dispersionless zero-energy conductance peak has
been recently observed inside the SC vortex core by Chen’s
group [33] in the kagome superconductor CsV3Sb5, which
shares the lattice structure with components of a hexagonal
honeycomb and the electronic structure with Dirac points in a
manner similar to those in honeycomb lattices. How the calcu-
lated results with near-zero-energy peaks in the present study
relate to the experimental observations, and whether these
near-zero-energy vortex core states have a common underly-
ing symmetrical cause, constitute other fascinating questions
deserving further studies.

In the presence of the ISOC, the local breaking of the spin
and sublattice degeneracies in the vortex states is also reflected
in the energy dependence of the LDOS. Figures 4(b)–(d)
present the typical results of the spin-resolved LDOS for β =
0.04. As can be seen from Fig. 4(b), while the energy level
of the near-zero-energy peaks remain virtually unchanged for
both spins, the energy levels of the finite-energy peaks are
shifted differently by the ISOC for different spins and at
different sublattice sites, as compared with the case of β = 0.
Specifically, for the LDOS on the same site within the core
region, the finite-energy peaks for the spin-up and spin-down
bound states shift oppositely, as indicated by the arrows in
the figures, depicting a picture of local breaking of the spin
degeneracy. At the same time, for the bound states with the
same spin, the finite-energy peaks on the sites belonging to
different sublattices also have the opposite shifts, indicating
the local breaking of the sublattice degeneracy. Since there
are induced magnetic orders in the vortex cores as well as the
similar ISOC dependencies of the magnitudes of the magnetic
orders |S|max and the relative energy shifts |δ| as shown in
Fig. 1(d), it is natural to suspect whether the spin splitting for
the LDOS is derived from the Zeeman effect of the induced
local magnetic order interacting with the electrons [34], or
from the above scenario where the spin degree of freedom
is manipulated by the orbital effect of magnetic field via the
ISOC. Several aspects render the Zeeman effect mechanism
impossible. As has been shown in Fig. 2(b), the magnetic or-
ders polarize oppositely inside two NN vortices. If the Zeeman
effect mechanism runs, the energy level shifts of the peaks
should behave the opposite way on the sites located respec-
tively at the two NN vortices. Nevertheless, as displayed in
Figs. 4(b) and 4(d), the consistency of the peaks’ shifts on the
sites located at different vortices while belonging to the same
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FIG. 5. Temperature (a) and magnetic field (b) evolutions of the
maximum of the absolute value for the induced magnetic orders at
vortex cores with β = 0.04.

sublattice rules out the Zeeman effect mechanism. The second
thing we notice about the energy level shifts of the peaks is
that they occur only for the ones with finite energy, while the
near-zero-energy peaks almost stay the same, being at odds
with the Zeeman effect mechanism. Finally, if we reverse
the direction of the out-of-plane magnetic field, as shown in
Fig. 4(c), the peaks’ shifts behave exactly the opposite way
as compared with that in Fig. 4(b). It is thus confirmed that
the local spin splitting and the local breaking of sublattice
degeneracy are conformed with the above scenario where the
spin degree of freedom is manipulated by the orbital effect of
magnetic field via the ISOC in the SC vortex states.

C. The effects of temperature and magnetic field strength
on the induced orders

Due to the 2D nature of the Ising superconductors, the
thermal effect on the induced magnetic orders constitutes an
inevitable issue from both a theoretical perspective and exper-
imental realization. Although the system under study is 2D,
the induced magnetic orders are formed under the combined
actions of the magnetic field, the ISOC and the SC order,
so they are not spontaneous ones. Meanwhile, the induced
magnetic orders are localized inside the vortex core regions,
and thus they are local ones. As a result, one may expect a
different manner of the thermal effect on the induced magnetic
orders as compared with the Mermin-Wagner theorem [35].
To see the thermal effect on the induced magnetic orders,
we calculate the temperature dependence of the magnitude
of the magnetic orders. Figure 5(a) shows the temperature
dependence of the maximum of the absolute value for the
induced magnetic order at the vortex core, where T is rescaled
by Tc ≈ 0.05. As can be seen from the figure, the magnitude
of the magnetic orders remains approximately constant at low
temperature T � 0.02Tc [see inset of Fig. 5(a)] as a result
of the small thermal excitations and the almost unchanged
vortex core size at this temperature regime [36]. After then it
shows a steady decreasing trend with increasing temperature,
and finally reaches a tiny value at T ∼ 0.5Tc. The decreasing
trend is mainly ascribed to the enlarging vortex core size with
temperature [36], the so-called Kramer-Pesch effect [37]. The
enlarged vortex core would involve more different sublattice
sites into the vortex core center, resulting in the reduction
of the induced magnetic orders. Though the magnetic orders
reduce their magnitude upon increasing the temperature, they
sustain to a finite temperature. Therefore, one may expect to

observe the induced magnetic orders under temperatures well
below the SC critical temperature.

Another important factor to be considered in observing the
induced magnetic orders is how the strength of the external
magnetic field affects the induced magnetic orders. Since one
vortex unit cell accommodates two vortices in the calcula-
tions, we have B = 2�0/A ∼ 1/N with A and N being the area
and the site number of the vortex unit cell. Figure 5(b) displays
the variation of the maximum of the absolute value for the
induced magnetic orders with respect to different strengths of
the magnetic field, which are realized in the calculations by
varying the size of the parallelogram vortex unit cell. In the
weak to moderate magnetic field region, there is little inter-
ference between the vortex cores due to the large intervortex
spacing d . The increase of the magnetic field leads to more
broken Cooper pairs inside the vortex cores to contribute to
the formation of the magnetic orders, so the magnitude of
the induced magnetic orders increases with the magnetic field
strength, as evidenced in Fig. 5(b). However, as the magnetic
field insreases further, the adjacent vortex cores with opposite
polarizations of the induced magnetic order would get close
enough (with a length scale being less than two times of the
penetration depth λ) to interfere with one another, leading to
the reduction of the magnitude of the magnetic order. This
suggests the induced magnetic orders will be altered in an
Abrikosov vortex lattice [38]. On one hand, the formation of
the Bloch wave [39] or the interactions among vortices [40] in
the vortex lattice will suppress the induced magnetic orders.
On the other hand, since there are many vortices in the sample
instead of just two, the polarization of the induced orders is
not necessarily opposite for two adjacent vortex cores. Nev-
ertheless, the result also means the induced magnetic orders
would survive in the vortex lattice under a weak to moderate
magnetic field as long as d  λ, i.e., the intervortex spacing
is much larger than the penetration depth.

IV. REMARKS AND CONCLUSION

The local magnetic orders induced in the SC vortex states
have been extensively investigated on the cuprate supercon-
ductors [34,41–45], where the emergence of the magnetic
orders inside the core region was generally believed to orig-
inate from the electrons’ correlations. These correlations
usually come from the Coulomb interactions between elec-
trons and that the induced magnetic orders have nothing to
do with the chirality of the electrons. However, the induced
local magnetic orders inside the SC vortex core by the ISOC
has a direct bearing on what the electrons’ chirality is. As has
been demonstrated, the amplitudes of the induced magnetic
orders and the unusual energy shifts of the in-gap state peaks
present here are related to the ISOC strength β, while their
directions are determined by the direction of the magnetic
field. The amplitude and the different polar direction of the
induced local magnetic orders could be measured by the muon
spin rotation spectroscopy and the nuclear magnetic resonance
experiments, and the energy shifts of the in-gap state peaks
on different sublattices for different spins could be observed
in the spin-polarized scanning tunneling microscopy exper-
iments. Both of these observations may serve as signatures
to characterize the ISOC proposed for the Ising superconduc-
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tors. In the meantime, since the induced magnetic orders are
derived from the ISOC, the breaking of the spin degeneracy
and the energy shifts of the in-gap state peaks selectively
occur for the electrons which possess finite momentum with
respect to the vortex center. The scenario proposed here
may also provide a possibility for the manipulation of elec-
tron spins in motion via the orbital effect in the SC vortex
states.

In conclusion, we have numerically investigated the vortex
states of the Ising superconductors, with an emphasis on the
local breaking of the spin and sublattice degeneracies as a
result of the interaction between the ISOC-derived effective
fluxes and the local magnetic flux inside the vortex core. In
the absence of the ISOC, there was no magnetic order induced
inside the vortex core, and the almost identical line shapes
of the LDOS for the spin-up and spin-down in-gap states
were shown up inside the core region, forming a series of
discrete energy peaks within the gap edges. The inclusion of
the ISOC induced the ferromagnetic orders inside the vortex
core region, where the magnetic orders polarized oppositely

for the two NN vortices with one of the two polarizations
coming predominantly from one specie of the two sublattices.
Accordingly, the finite-energy peaks of the LDOS on the same
site for spin-up and spin-down in-gap states were shifted
oppositely by the ISOC, and the relative shifts of them on
sublattices A and B were also of opposite algebraic sign.
The calculated results might serve as experimental signatures
for identifying the ISOC in the Ising superconductors, and
the scenario proposed here might also be prospective in the
manipulation of electron spins in motion through the orbital
effect in the SC vortex states.
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