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Generalized phenomenological model for the magnetic field penetration and magnetization
hysteresis loops of a type-II superconductor
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A generalized phenomenological model for the mixed state of type-II superconductors with magnetic field
parallel to the superconducting plate is proposed. This model considers the global magnetization including both
the equilibrium magnetization from surface screening current and the nonequilibrium magnetization from bulk
pinning in a self-consistent way. Our model can be used to simulate the magnetization hysteresis loops (MHLs)
and flux penetrating process of different type-II superconductors, from low- to high-κ values. Here we take a
Ba0.6K0.4Fe2As2 single crystal and pure Nb plate as testing examples. The model can fit the data quite well and
several important parameters can be extracted from the fitting. Thus the model can be extended to a general case
for studying the magnetization and flux penetration in other type-II superconductors.
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I. INTRODUCTION

Due to different signs of the interface energy between
superconducting and normal regions [1], superconductors can
be divided into two types: type-I superconductors with pos-
itive interface energy; type-II superconductors with negative
interface energy. This categorization can be made based on the
value of the Ginzburg-Landau(GL) parameter κ = λ/ξ , for
type-I superconductors, κ < 1/

√
2 and for type-II supercon-

ductors, κ > 1/
√

2. For a clean type-I superconductor, there
is a well-defined thermodynamic critical field Hc which can
be measured directly. When the applied field is below Hc,
the superconductor is in Meissner state. With the existence of
surface screening supercurrent, flux can be fully expelled from
the interior of superconductor. Above Hc, the superconductor
will lose its superconductivity and go into normal state. For
a clean type-II superconductor, there are two different criti-
cal fields, namely the lower critical field Hc1 and the upper
critical field Hc2. When the applied field is below Hc1, the
superconductor is in Meissner state, just as the type-I super-
conductor. From Hc1 to Hc2, the superconductor is in mixed
state with vortices penetrating into the bulk region. Above
Hc2, the superconductor is in normal state [1,2]. The deter-
mination of critical fields is important in the application of
superconductors, such as the radio frequency superconducting
cavities for the studies of high energy physics [3,4]. While
in practice, there are defects, disorders and impurities in the
superconductors, which can act as pinning centers of vortices
[5–7]. In this case, in addition to the surface screening super-
current, there exists a bulk supercurrent due to these pinning
centers. This critical current induced by pinning plays an im-
portant role in the application of superconductors [8–11], and
these superconductors with pinning centers are called dirty
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type-II superconductors. In the magnetization hysteresis loops
(MHLs) of these type-II superconductors, hysteresis can be
easily observed.

In order to calculate the magnetization of type-II supercon-
ductors, Bean et al. firstly proposed the critical state model
[12–14] which can describe the flux penetration and vortex
pinning, by assuming that (1) the pinning force is uniform
and independent of local magnetic field; (2) the Lorentz force
is equal to the pinning force everywhere inside the supercon-
ductor. In the original model, the critical current density Jc

calculated from magnetization is constant and independent
of the applied field at a given temperature. This leads to a
flat and parallel MHL both in the field ascending and de-
scending processes. While in most experiments, it was found
that the width of MHL curves will either decrease or in-
crease with varying magnetic field [15–17]. To understand
this phenomenon, Kim et al. assumed that the critical cur-
rent density Jc due to bulk pinning is inversely proportional
to the field, i.e., Jc(Hi ) = k/(A1 + |Hi|) [18–21], where Hi

is the local magnetic field. Afterwards, many other models
were proposed for interpreting the field dependence of bulk
pinning. For example, Watson et al. considered the Jc to be lin-
early proportional to the field Jc(Hi ) = A2 + B2|Hi| [22]; Irie
et al. proposed a power-law relationship Jc(Hi ) = k/(|Hi|)n

[23,24]; Fitz et al. introduced an exponential-law relationship
Jc(Hi ) = Jc(0) exp(−|Hi|/A3) [25–27]; Xu et al. adopted a
general form of Jc given by Jc(Hi ) = Jc(0)/(1 + |Hi|/A4)n

[28]. In above equations, A1, A2, B2, k, A3, and A4 are
fitting parameters.

Additionally, for the magnetization of low-κ type-II super-
conductors, Kes et al. suggested to divide the magnetization
into reversible part and irreversible part [29]. Following this
idea, Chen et al. also proposed an extended critical state model
by combining the equilibrium magnetization and an energy
barrier of the surface layer, together with the nonequilibrium
magnetization of the bulk region, the latter is described by
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the critical state model with modified boundary conditions
[30–35]. Furthermore, Gokhfeld et al. proposed a modified
critical state model by assuming a field-dependent thickness
of surface layer with screening current [36,37]. When the
magnetic field is reduced from a positive high value to less
than Hc1, there are still a lot of vortices inside the supercon-
ductor, while the surface screening layer looks like that in
the initial Meissner state. We call this state as vortex-trapped
Meissner state. This has never been seriously dealt in previous
models, only Matsushita et al. had a rough and macroscopic
investigation on it and put forward another modified critical
state model [38]. Brandt et al. also considered the isotropy
and anisotropy of superconductors with two different kinds of
pinnings in their Jc dependence for the critical state model and
did some calculations on the global magnetization [39].

However, none of these models mentioned above can de-
scribe the magnetization of most type-II superconductors with
different κ values or ratios of Hc2/Hc1. We try to deal with this
problem mathematically and take different kinds of type-II
superconductors into consideration, and thus give a simple
phenomenological model for the vortex critical state in this
paper. To validate our model, we measured the MHLs of a
Ba0.6K0.4Fe2As2 single crystal and a pure Nb plate and found
that the model fits experimental data in a self-consistent way.
This paper is organized as follows. Section II introduces the
basic assumptions of our model. Sections III and IV give
a brief description of the flux penetrating process and cal-
culation of magnetization, respectively. Section V gives the
results of experiments and numerical fittings. Section VI gives
a conclusion of our paper.

II. BASIC ASSUMPTIONS OF THE MODEL

Our model divides the magnetization into two major con-
tributions, namely the equilibrium magnetization and the
nonequilibrium magnetization, as adopted by Kes et al. and
Chen et al. [29–31,40]. A complete MHL curve involves eight
different stages with the applied field Ha firstly increased from
0 to the maximum magnetic field Hm, then changed from Hm

to −Hm, and lastly changed from −Hm to Hm. In this sec-
tion, we firstly handle with the equilibrium magnetization of
type-II superconductors. Then, we deal with the nonequi-
librium magnetization using a modified critical state model.
Finally, we give a discussion on the vortex-trapped Meissner
state both in the field descending and ascending process.

A. Equilibrium magnetization

For the equilibrium magnetization, we consider a clean
type-II superconductor without pinning centers inside the
sample. It has a reversible magnetization curve M(H ) with
two thermodynamic critical fields, namely Hc1 and Hc2. In
order to calculate the magnetization, we separate the super-
conductor into two regions, the bulk region and a surface
layer surrounding it [30]. The shielding current is flowing in
the surface layer which is in the order of London penetration
depth λL. When the applied field is less than the lower critical
field, i.e., Ha < Hc1, the superconductor is in Meissner state.
The shielding supercurrent is flowing in the surface layer, and
thus there exists a boundary between the surface layer and

the inner bulk region. We define the field at the boundary
x = λL as He. In this case, the effective boundary field He

should be zero, as well as the field in bulk region. When
Hc1 < Ha < Hc2, the superconductor is in the mixed state and
the shielding effect of surface supercurrent will be gradually
reduced. Flux lines start to penetrate into the bulk region at
Ha = Hc1. As there are no pinning centers, and thus no bulk
supercurrent inside the superconductor, the field in the bulk
region should be uniform and equal to He. In the surface layer,
the magnetic field decays exponentially in space from Ha to
He, in the scale of London penetration depth λL [41]. When
Ha > Hc2, the superconductor is in normal state and the field
everywhere is equal to Ha. Following these discussions, when
the superconductor is in mixed state, we propose a general
relation between He and Ha:

Mequ = −Hc1(Hc2 − Ha )

Hc2 − Hc1

(Hc1

Ha

)α

. (1)

He = Mequ + Ha. (2)

Here Hc1 and Hc2 are the lower critical field and
the upper critical field, respectively. α is a dimen-
sionless fitting parameter. Mequ is the equilibrium mag-
netization. This relation satisfies the boundary condi-
tions of the mixed state: when Ha = Hc1, the mixed
state has Mequ = −Hc1, He = 0; when Ha = Hc2, the
mixed state has Mequ = 0, He = Hc2. The derivative of Mequ

with respect to Ha is the magnetic susceptibility of the equi-
librium magnetization curve which is defined as χequ:

χequ = dMequ

dHa
= Hc1

Hc2 − Hc1

(Hc1

Ha

)α
[

1 + α(Hc2 − Ha )

Ha

]
.

(3)

When Ha = Hc2, we have

χequ,c2 = Hc1

Hc2 − Hc1

(Hc1

Hc2

)α

. (4)

In this way, the fitting parameter α can be written as

α = ln

(
(Hc2 − Hc1)χequ,c2

Hc1

)
/ ln

(Hc1

Hc2

)
. (5)

If Hc2 is much larger than Hc1 (Hc1 � Hc2, especially for
high-κ superconductors, such as cuprate and iron-based su-
perconductors), the equation can be simplified to

α = −1 + ln(χequ,c2)/ ln
(Hc1

Hc2

)
. (6)

The Hc2 is always tens or hundreds of Tesla and difficult to be
achieved in experiment. Thus we may also pay some attention
to the magnetic susceptibility at the lower critical field. When
Ha = Hc1, we have

χequ,c1 = Hc1

Hc2 − Hc1
+ α. (7)

The fitting parameter α can be written as

α = χequ,c1 − Hc1

Hc2 − Hc1
. (8)

If Hc1 � Hc2, the fitting parameter α is right the magnitude of
the magnetic susceptibility at Hc1. Above all, if we know three
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of the four variables χequ,c1 or χequ,c2, Hc1, Hc2, α, the last one
can be easily obtained.

As a comparison, the reversible relation of the mixed state
adopted by Kes et al. fit experimental data only in the high
temperature region for low-κ type-II superconductors [29].
Chen et al. used an exponential relation of He and Ha when
the maximum magnetic field Hm is much lower than Hc2 [30].
However, when Ha is close enough to Hc2 or the κ is high, the
relation He(Ha ) is inclined to be a straight line [42,43]. Our
relation combines the merits of both ideas above. In the low
field limit (Ha is close to Hc1), if Hc1 � Hc2, the relation can
be simplified to a power law:

Mequ ∝ −H−α
a , (9)

with (Hc2 − Ha )/(Hc2 − Hc1) → 1. However, this case
(Hc1 � Hc2) was not considered in the model of Kes, in
which the relation B(Ha ) was simplified to a linear one and is
not consistent with the experiment [29]. In the high field limit
(Ha is close to Hc2), if Hc1 � Hc2, the Mequ in Eq. (1) is small
compared with Ha and our relation He(Ha ) is approximately
to be a straight line, which is consistent with that suggested
by Campbell et al. [44].

For simplicity, we assume the spatial distribution of field
in the surface layer to be linear. This can serve as a good ap-
proximation when the sample dimension is much larger than
the London penetration depth λL. Furthermore, the London
penetration depth λL is related to the measuring temperature
and this will lead to a more complicated relation [36,37]. In
our model, we assume λL to remain unchanged with magnetic
field for simplicity. The fitting will be done for magnetization
hysteresis loop measured at a particular temperature, thus the
penetration depth λL is a parameter with a preset value for
each temperature.

B. Nonequilibrium magnetization

For the nonequilibrium magnetization, it is a little dif-
ferent because of the existence of pinning centers. For a
type-II superconductor with pinning centers, the magnetiza-
tion hysteresis M(H ) is irreversible. Under our assumptions,
the shielding effect of surface layer is just the same as the
equilibrium part introduced above. The boundary field He is
self-consistently determined by the same value at the bound-
ary, which connects the surface screening layer and the bulk
region, as Eqs. (1) and (2). While for the bulk region, the flux
motion should be prevented due to the existence of pinning
centers. Bean et al. [12,13] proposed a critical state, in which
the pinning force and the magnetic pressure (or Lorenz force)
originating from the gradient of magnetic field are in equilib-
rium. Thus the field in the bulk region will not be uniform
anymore. In this case, the superconductor can carry a critical
current which obeys the law ∇ × B = μ0Jc, with B the local
average density of the magnetic induction. For simplicity, in
the following calculations or equations, we neglect the μ0. In
the critical state model, this pinning force is equal to Lorenz
force �0Jc (�0 is flux quantum). There are different forms of
Jc with respect to magnetic field proposed previously, as we
have discussed in section I. However, most of these models did
not consider the upper critical field Hc2 in their Jc equations.
In fact, the critical current density Jc should be zero when the

applied field Ha approaches Hc2. To deal with this problem,
we assume a more general form of Jc in our model, this gives
not only a self-consistent formula of the boundary field He,
but also on the lower critical field Hc1 and the upper critical
field Hc2, as shown by the following equation:

Jc = Jc0
Hc2 − |He|

Hc2

(
Hc1

Hc1 + |He|
)β

. (10)

Here, β is a dimensionless fitting parameter. Jc0 is the critical
current density when the field is zero. This relation satisfies
the experimental variation of critical current density very well.
When He = 0, the critical current density is equal to Jc0.
When He = Hc2, the superconductor is in normal state and
the critical current density is zero. In the low field limit (Ha

is close to Hc1), if Hc1 � Hc2, the equation can be simplified
to a power law:

Jc ∝ (Hc1 + |He|)−β (11)

with (Hc2 − |He|)/Hc2 → 1. When β = 1, the equation is
right the relation adopted by Kim [18]. In the high field limit
(Ha is close to Hc2), the equation tends to be a straight line,
which is consistent with the experiment [45]. Above all, our
equation treats the magnetic induction and critical current
density in a more reasonable way. With the Maxwell equa-
tion for the one-dimensional superconductor −dH (x)/dx =
Jc and proper boundary conditions, we can calculate the
spatial distribution of magnetic induction inside the supercon-
ductor.

C. Vortex-trapped Meissner state

In the field descending process, when the applied field
Ha is decreased below Hc1, the superconductor will try to
re-enter the Meissner state. However, this Meissner state is
different from the initial Meissner state, as the bulk pinning
is different in these two cases. In the initial Meissner state,
no vortices penetrate into the bulk region, and thus, there is
no bulk pinning current inside the superconductor. However,
in the Meissner state of the field descending process, vortices
will be trapped inside the superconductor and the bulk pinning
current is not zero anymore. This vortex-trapped Meissner
state will maintain when the field is ascending in the negative
side with Ha < −Hc1. The remaining bulk pinning current is
also different from the pinning current Jc given by Eq. (10) as
He = 0, and we defined it as Jcr. From the experimental per-
spective, we can see a sudden change of the slope of the linear
part from magnetization curve when Ha < Hc1 in these two
cases. This is particularly obvious when the Ginzburg-Landau
parameter κ is small or Hc1 is in the same order of magnitude
with Hc2 [38]. This sudden change was not explained in the
models of Chen [30] and Walmsley [46]. In their models, they
assumed the bulk pinning in the superconductor to remain
unchanged when Ha < Hc1 in the field descending process,
which is clearly unreasonable. Because the flux distribution
profile in the bulk region during this period varies remarkably,
the magnetization arising from the bulk pinning will change
along with the varying applied field. Matsushita et al. [38]
dealt this problem and offered a phenomenological model
with a perfect Meissner state layer and a flux trapped interior
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part, and the boundary of both regions will move towards the
interior region of the bulk with descending field.

Unlike these models mentioned above, we propose a new
model to deal with this sophisticated situation, based on the
ideas of critical state. In the field descending process, when
the applied field Ha is decreased below Hc1, we assume the
shielding supercurrent to be the same as the initial Meissner
state. Thus the surface layer will be in full shielding state
and the boundary field He is zero as before. For a vortex
existing near the boundary of bulk region and surface layer,
it feels Lorenz forces both from the shielding supercurrent
Js and the remaining bulk pinning current Jcr with opposite
directions. These two forces, as well as the pinning force
Fp from disorders and defects, form an equilibrium state
�0Js − �0Jcr + Fp = 0. When Ha is further decreased, the
shielding supercurrent Js, which is the gradient of magnetic
field in the surface layer, will decrease simultaneously as a
linear approximation Js ∝ (Ha − He )/λL = Ha/λL. Since Js

is related to the force preventing the trapped vortices from
out-going, the remaining bulk pinning current Jcr in the bulk
region will reduce in the same pace with the applied field Ha

to form a new equilibrium state. Above all, we assume that Jcr

varies linearly with Ha

Jcr = Jc0
Ha − H0

Hc1 − H0
. (12)

Jc0 is the zero-field critical current density from equation
Eq. (10), Hc1 is the lower critical field, H0 is the field at
which the remaining pinning current density reduces to zero.
When Ha = Hc1, Jcr = Jc0, and when Ha = H0, Jcr = 0. In this
case, the magnetization of the vortex-trapped Meissner state
in our model is linearly varying with applied field, as well as
the initial Meissner state. In the next section, we will prove
in detail that, H0 can be simply obtained from fitting to the
experimental data, which is the intersection point of extended
lines of magnetization curves from both the initial Meissner
state and the vortex-trapped Meissner state.

The description of magnetization in other stages, for ex-
ample from Ha = −Hc1 to −Hm (with Hm � Hc1) and from
−Hm to zero will be the replica of the status mentioned above.

III. SPATIAL DISTRIBUTION OF MAGNETIC INDUCTION
IN DIFFERENT REGIONS

After establishing the model as mentioned in section II,
the magnetization in different stages of applying magnetic
field can be obtained. The superconductor in our model is
assumed to be a plate with infinite lateral sizes and thickness
of 2d along x axis, which is illustrated in Fig. 1(a). The
magnetic field Ha is applied parallel to the plate and enters
from both sides of it. For convenience, we set the field direc-
tion along z axis, and as a consequence, the demagnetization
factor is close to zero [47]. Due to the symmetry of the plate,
the distribution of field or current is one-dimensional along
x axis. Thus we take the cross-section of this plate along
x-axis, as illustrated in Fig. 1(b). In Fig. 1(b), x = 0 represents
the interface of superconductor and vacuum, λL is the London
penetration depth which is much smaller than the sample
dimension (λL << 2d), x = d is the center of the plate. We

FIG. 1. Sketch of an infinite large superconducting plate. (a) The
superconducting plate with thickness of 2d along x axis. The field is
applied along z axis. (b) The cross-section of half plate in (a) along
x axis. The light blue region indicates the superconducting plate. The
red dashed line shows the boundary of surface layer and bulk region.
The London penetration depth λL is much smaller than the thickness
of the plate 2d (λL << 2d). Here we have magnified λL to make the
surface layer discernible.

have only shown half of the plate in Fig. 1(b) and another half
can be obtained directly with mirror symmetry of x = d .

A global MHL can be divided into eight different stages
which will be discussed in detail below. Before magnetization
measurement, the superconductor should be zero-field cooled
down to a certain temperature, which is below the critical
temperature Tc. The field distribution in the surface layer is
Hs(x) (with 0 < x < λL) and in the bulk region is Hb(x) (with
λL < x < d). For simplicity, the field distributions of both
surface layer and bulk region are linear in space. If Hc1 <

Hm < Hc2, details of the eight stages are as follows:
Stage (i). The initial Meissner state with Ha increased from

0 to Hc1. The magnetic field is confined in the surface layer
which is in the order of λL, and He is zero. Vortices are
not formed yet and no vortex penetration occurs in the bulk
region. Thus there is only the equilibrium magnetization. For
this stage, we have the field distribution as follows (as shown
in Fig. 2)

Hs(x) = Ha

λL
(λL − x), (13)

Hb(x) = 0. (14)

FIG. 2. Magnetic field distribution (red line) of a superconductor
in stage (i) (the initial Meissner state with Ha < Hc1). Hs(x) is the
distribution function in the surface layer.
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FIG. 3. Magnetic field distribution (red lines) of a superconduc-
tor in stage (ii) (the initial penetration process with Hc1 < Ha < Hm)
if (a) Hm < Hfp and (b) Hm > Hfp. Hs(x) is the distribution function
in the surface layer. Hb(x) is the distribution function in the bulk
region.

Stage (ii). The initial penetration process with Ha in-
creased from Hc1 to Hm(< Hc2). The superconductor is in
mixed state and the shielding effect of surface layer will be
partially reduced. And thus, vortices start to penetrate into
the bulk region. There are both equilibrium magnetization and
nonequilibrium magnetization. We define the field where the
sample is fully penetrated by the vortices as Hfp. There are two
cases in this stage: Hm < Hfp and Hm > Hfp. In the former
case, we have the field distribution as follows [as shown in
Fig. 3(a)]

Hs(x) = − x

λL
(Ha − He ) + Ha. (15)

Hb(x) =
{−Jc(x − λL) + He λL < x < x0

0 x0 < x < d
. (16)

In the above equations, He is the boundary field between the
surface layer and the bulk region, which is connected with the
applied field Ha by Eqs. (1) and (2). Jc is the bulk pinning
current density, which is connected with He by Eq. (10). x0 is
the frontier of the vortices, which is

x0 = He

Jc
+ λL. (17)

The fully penetration field Hfp can be obtained in the following
way. When Ha = Hfp, the boundary field is Hefp = He[Hfp]
and the flux front reaches right at the center of the supercon-
ductor x0 = d . Thus we have

Hefp = Jc(d − λL). (18)

We calculate Eqs. (18) and (10) to get Hefp, and the fully
penetration field Hfp can therefore be obtained from Eqs. (1)
and (2).

If Hm > Hfp, the situation is somewhat complicated. When
Ha < Hfp (or the flux front position x0 is less than the sam-
ple thickness x0 < d), the field distribution functions are just
described by Eqs. (15) and (16). When Ha > Hfp (or x0 > d),
the superconductor has been fully penetrated by vortices. The
field distribution Hs(x) is described by Eq. (15) and the Hb(x)
is given by [as shown in Fig. 3(b)]

Hb(x) = −Jc(x − λL) + He. (19)

Stage (iii). The field descending process in the positive side
with Ha decreased from Hm to Hc1. The superconductor is
still in mixed state. The bulk pinning current will change its
direction from the outer part of bulk region, while the inner
part remains unchanged. We define the position where the
bulk pinning current changes its direction as x1. The field
distribution is continuous at this crossing point. This stage
can also be divided into two cases: Hm < Hfp and Hm > Hfp.
When Ha = Hm, He = Hem and Jc = Jcm. If Hm < Hfp, the
flux will not fully penetrate the superconductor and the maxi-
mum penetration depth is defined as xm

xm = Hem

Jcm
+ λL. (20)

The position x1 can be obtained by

x1 = Hem − He

Jcm + Jc
+ λL. (21)

In this way, Hs(x) is described by Eq. (15) and Hb(x) is as
follows [as shown in Fig. 4(a)]

Hb(x) =
⎧⎨
⎩

Jc(x − λL) + He λL < x < x1

−Jcm(x − λL) + Hem x1 < x < xm

0 xm < x < d
. (22)

If Hm > Hfp, the position where the critical current changes
its direction x1 is also obtained by Eq. (21). With decreasing
the applied field, the opposite direction current will gradually
penetrate the superconductor and the dividing line x = x1 is
approaching the center of superconductor x = d . In this case,
the field distribution Hs(x) is described by Eq. (15). When
x1 < d , Hb(x) is [as shown in Fig. 4(b)]

Hb(x) =
{

Jc(x − λL) + He λL < x < x1

−Jcm(x − λL) + Hem x1 < x < d
. (23)

However when x1 > d , Hb(x) is given by [as shown in
Fig. 4(b)]

Hb(x) = Jc(x − λL) + He. (24)

Stage (iv). The vortex-trapped Meissner state with Ha

firstly decreased from Hc1 to 0 and then increased from 0
to −Hc1 in the negative side. The superconductor re-enters
Meissner state, which is different from the initial Meissner
state. Vortices are trapped in the bulk region, and thus, the
nonequilibrium magnetization is not zero as stage (i). When
Ha is decreased, the trapped vortices will go outwards and the
remaining bulk pinning current density Jcr will change in the
meantime, as described by Eq. (12). We also divide this stage
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FIG. 4. Magnetic field distribution (red lines) of a superconduc-
tor in stage (iii) (the field descending process in the positive side
with Hc1 < Ha < Hm) if (a) Hm < Hfp and (b) Hm > Hfp. Hs(x) is
the distribution function in the surface layer. Hb(x) is the distribution
function in the bulk region.

into two cases: Hm < Hfp and Hm > Hfp. When Ha = Hc1, the
initial dividing line x1 [given by Eq. (21)] is defined as x2. If
Hm < Hfp, there are critical currents with different directions
in the bulk region and the new dividing line x1 is given by

x1 = Hem

Jcm + Jcr
+ λL. (25)

The field distribution in the superconductor is [as shown in
Fig. 5(a)]

Hs(x) = Ha

λL
(λL − x). (26)

Hb(x) =
⎧⎨
⎩

Jcr (x − λL) λL < x < x1

−Jcm(x − λL) + Hem x1 < x < xm

0 xm < x < d
. (27)

If Hm > Hfp and x2 < d , there are critical currents with dif-
ferent directions in the bulk region and the new dividing line
x1 is also given by Eq. (25). Hs(x) is described by Eq. (26).
Hb(x) is [as shown in Fig. 5(b)]

Hb(x) =
{

Jcr (x − λL) λL < x < x1

−Jcm(x − λL) + Hem x1 < x < d
. (28)

If Hm > Hfp and x2 > d , the critical current has only one
direction in the bulk region. Hs(x) is described by Eq. (26).
Hb(x) is [as shown in Fig. 5(c)]

Hb(x) = Jcr (x − λL) (29)

FIG. 5. Magnetic field distribution (red lines) of a superconduc-
tor in stage (iv) (the vortex-trapped Meissner state with −Hc1 <

Ha < Hc1) if (a) Hm < Hfp, (b) Hm > Hfp and x2 < d , and (c) Hm >

Hfp and x2 > d . Hs(x) is the distribution function in the surface layer.
Hb(x) is the distribution function in the bulk region.

The situations shown in Figs. 5(b) and 5(c) are two cases
corresponding to strong and weak bulk pinning, respectively.
During the calculation it depends on whether x2 < d or x2 >

d , the calculation program will directly determine that.
Stage (v). The field ascending process in the negative side

with Ha increased from −Hc1 to −Hm. The superconductor
is in mixed state and vortices with opposite direction start
to penetrate the bulk region. The frontier of vortices with
opposite direction is defined as x0 and will move towards
the center of superconductor. There should be annihilation of
vortices with opposite vorticities at this moving frontier line.
He is not zero but described by Eq. (1) and Eq. (2). The bulk
pinning current density Jc of the penetrating part is given by
Eq. (10). When Ha = −Hc1, Jcr = Jcr1. As in Stage (iv), if
Hm < Hfp, the position x0 is given by

x0 = −He

Jc
+ λL. (30)
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FIG. 6. Magnetic field distribution (red lines) of a superconduc-
tor in stage (v) (the field ascending process in the negative side with
−Hm < Ha < −Hc1) if (a) Hm < Hfp, (b) Hm > Hfp and x2 < d , and
(c) Hm > Hfp and x2 > d . Hs(x) is the distribution function in the
surface layer. Hb(x) is the distribution function in the bulk region.

The position dividing currents with different directions x1 is

x1 = Hem + JcmλL + Jcr1x0

Jcm + Jcr1
. (31)

Thus the field distribution can be written as [see Fig. 6(a)]

Hs(x) = − x

λL
(Ha − He ) + Ha, (32)

Hb(x) =

⎧⎪⎨
⎪⎩

Jc(x − λL) + He λL < x < x0

Jcr1(x − x0) x0 < x < x1

−Jcm(x − λL) + Hem x1 < x < xm

0 xm < x < d

. (33)

If Hm > Hfp and x2 < d , there are remaining pinning currents
with different directions in the bulk region. Hs(x) is described

by Eq. (32). When Ha < Hfp, Hb(x) is [as shown in Fig. 6(b)]

Hb(x) =
⎧⎨
⎩

Jc(x − λL) + He λL < x < x0

Jcr1(x − x0) x0 < x < x1

−Jcm(x − λL) + Hem x1 < x < d
. (34)

However, when Ha > Hfp, Hb(x) is [Fig. 6(b)]

Hb(x) = Jc(x − λL) + He. (35)

If Hm > Hfp and x2 > d , the remaining pinning current has
only one direction. Hs(x) is described by Eq. (32). When Ha <

Hfp, Hb(x) is [as shown in Fig. 6(c)]

Hb(x) =
{

Jc(x − λL) + He λL < x < x0

Jcr1(x − x0) x0 < x < d
. (36)

However, when Ha > Hfp, Hb(x) is just as Eq. (35) [as shown
in Fig. 6(c)].

Stage (vi). The field descending process in the negative side
with Ha decreased from −Hm to −Hc1. The superconductor is
in mixed state and the field penetration process is the same as
stage (iii), while both the magnetic field and the supercurrent
have opposite direction.

Stage (vii). The vortex-trapped Meissner state with Ha

firstly decreased from −Hc1 to 0 and then increased from
0 to Hc1. The remaining bulk pinning current density and
the nonequilibrium magnetization are the same as stage (iv),
while both the magnetic field and the supercurrent have oppo-
site direction.

Stage (viii). The field ascending process in the positive side
with Ha increased from Hc1 to Hm. The superconductor is in
mixed state and the field penetration process is the same as
stage (v), while both the magnetic field and the supercurrent
have opposite direction.

IV. CALCULATION OF TOTAL MAGNETIZATION

Based on the discussions mentioned above, the magneti-
zation of superconducting plate can be calculated directly.
Firstly, the total magnetization M is divided into two parts,
i.e., the equilibrium magnetization Mequ and the nonequilib-
rium magnetization Mpin. For example, we take stage (ii) (the
initial penetration process) into account, and other stages can
be obtained in the same way. The field distribution of stage
(ii) is shown in Fig. 7. We mark different parts of magnetiza-
tion with different colored areas. The yellow area denotes the
equilibrium magnetization Mequ, and the purple area denotes
the nonequilibrium magnetization Mpin, respectively. In this
case, we have Mequ and Mpin given by

Mequ = − 1

d
[Had − He(d − λL) −

∫ λL

0
Hs(x)dx], (37)

Mpin = − 1

d
[He(d − λL) −

∫ d

λL

Hb(x)dx]. (38)

Adding together these two different terms, we have the total
magnetization M:

M = Mequ + Mpin

= − 1

d
[Had −

∫ λL

0
Hs(x)dx −

∫ d

λL

Hb(x)dx]. (39)
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FIG. 7. Magnetic field distribution (red lines) of a superconduc-
tor in stage (ii) (the initial penetration process). The yellow area
denotes the equilibrium magnetization Mequ, the purple area denotes
the nonequilibrium magnetization Mpin, respectively.

With the field distribution Hs(x) in the surface layer and Hb(x)
in the bulk region, the total magnetization can be calculated in
this simple and effective way.

In this part, we will give the derivation of H0 first appearing
in Sec. II. According to our model, when Ha is reduced from
a high value to below Hc1, the superconductor will try to
re-enter the Meissner state. In this case, the magnetization will
exhibit a linear dependence on Ha. But the slope of dM/dHa

is lower than that of the initial Meissner state. This is because
the total magnetization of both the shielding part and the
bulk pinning has a linear dependence on Ha. Actually, the
characteristic field H0, which defines the field for remaining
pinning current density reduces to zero in our model, can be
obtained from the experimental data based on this logic. It is
given by the field associating with the intersection point of
linear parts from magnetization curves in the initial Meissner
state and the vortex-trapped Meissner state [for example, stage
(iv)] in the side of negative field. This can be understood in the
following way. The total magnetization of the initial Meissner
state is denoted as Mini and given as

Mini = − 1

d

[
Had −

∫ λL

0
Hs(x)dx

]
= Ha

(
λL

2d
− 1

)
. (40)

The derivative of Mini with Ha is constant λL/2d − 1. In this
case, the linear relation of Mini in the vicinity of Ha = 0 can
be written as

Mini,0 = Ha
dMini

dHa
= Ha

(
λL

2d
− 1

)
. (41)

On the other hand, the magnetization of the vortex-trapped
Meissner state [for example, Fig. 5(c) of stage (iv)] is denoted
as Mtrp. When Ha < Hc1, Mtrp is given as

Mtrp = − 1

d

[
Had −

∫ λL

0
Hs(x)dx −

∫ d

λL

Hb(x)dx

]

= Ha

(
λL

2d
− 1

)
+ Jc0

Ha − H0

Hc1 − H0

(d − λL)2

2d
. (42)

In the vicinity of Ha = 0, we have Mtrp

Mtrp |Ha=0= Jc0
−H0

Hc1 − H0

(d − λL)2

2d
. (43)

FIG. 8. An example showing how to determine the characteristic
field H0, which is the field for the remaining bulk pinning current
density Jcr to be zero. The black hallow points are the MHL of pure
Nb at 4K from our experiments. The blue line is the linear relation of
Mini (magnetization of the initial Meissner state), the red line is the
linear relation of Mtrp (magnetization of the vortex-trapped Meissner
state), and H0 is the intersection point of the red line and blue line.

The derivative of Mtrp at the field Ha = 0 is

dMtrp

dHa
|Ha=0=

(
λL

2d
− 1

)
+ Jc0

Hc1 − H0

(d − λL)2

2d
. (44)

Thus the linear relation of Mtrp in the vicinity of Ha = 0 can
be written as

Mtrp,0 = Ha
dMtrp

dHa
|Ha=0 +Mtrp |Ha=0

= Ha

[(
λL

2d
− 1

)
+ Jc0

Hc1 − H0

(d − λL)2

2d

]

− Jc0H0

Hc1 − H0

(d − λL)2

2d
. (45)

It can be derived that, the intersection of these two straight
lines [let Mini,0 = Mtrp,0 from Eqs. (41) and (45)] gives rise
to Ha = H0. In this way, the value of H0 is determined from
experimental data, see an example in Fig. 8. It can be seen
that, the characteristic field H0 has a clear physical meaning
and does not need to be treated as a fitting parameter.

In the end of this section, we will give some computed
MHL curves of our model, as shown in Fig. 9. We changed
the value of an individual parameter or ratio among Hm/Hc1,
α, β, d/λL and demonstrated the corresponding change on
the shape of MHL curves. For each case of change, we have
shown results of two situations: Hc2/Hc1 = 5 and Hc2/Hc1 =
1000, as examples for low-κ and high-κ cases, respectively.
For simplicity, all parameters are in unit of Hc1 and d .

Figures 9(a) and 9(b) show two sets of MHLs at differ-
ent values of Hm/Hc1. For both cases, α = 0.5, β = 0.5, the
zero-field critical current is Jc0 = 2Hc1/d , and the thickness
ratio is d/λL = 1000. The characteristic field is H0 = 2Hc1

for Hc2/Hc1 = 5 and H0 = 4Hc1 for Hc2/Hc1 = 1000. For
Hc2/Hc1 = 5 case shown in Fig. 9(a), five values of Hm/Hc1
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FIG. 9. Illustration of MHLs computed from our model: (a)
Hm/Hc1 dependence for Hc2/Hc1 = 5, (b) Hm/Hc1 dependence for
Hc2/Hc1 = 1000, (c) α dependence for Hc2/Hc1 = 5, (d) α de-
pendence for Hc2/Hc1 = 1000, (e) β dependence for Hc2/Hc1 = 5,
(f) β dependence for Hc2/Hc1 = 1000, (g) d/λL dependence for
Hc2/Hc1 = 5, and (h) d/λL dependence for Hc2/Hc1 = 1000. Other
fitting parameters are given in the text.

are chosen: 1.2, 1.5, 1.8, 2.5, 5. For Hc2/Hc1 = 1000 case
shown in Fig. 9(b), five values of Hm/Hc1 are chosen: 2,
2.6, 3.6, 5, 10. It can be seen that, the MHLs are more like
parallelogram when Hm is low and tend to be asymmetric
with increasing Hm. In addition, the MHLs of Hc2/Hc1 = 5
are more asymmetric than that of Hc2/Hc1 = 1000.

Figures 9(c) and 9(d) show two sets of MHLs at different
values of α. For both cases, β, Jc0, H0 and d/λL are the
same as Figs. 9(a) and 9(b), respectively. For Hc2/Hc1 = 5
case shown in Fig. 9(c), Hm = 5Hc1 and five values of α are
chosen: 0.1, 0.5, 1, 2, 3. For Hc2/Hc1 = 1000 case shown in
Fig. 9(d), Hm = 10Hc1 and five values of α are chosen: 0.1,
0.5, 1, 2, 3. The fitting parameter α is associated with the
equilibrium magnetization. It can be seen that, with decreas-
ing α, the asymmetry of MHLs is enhanced, while the width
of MHLs along the Ha axis remains unchanged.

Figures 9(e) and 9(f) show two sets of MHLs at different
values of β. For both cases, α, Jc0, H0 and d/λL are the
same as Figs. 9(a) and 9(b), respectively. For Hc2/Hc1 = 5

case shown in Fig. 9(e), Hm = 5Hc1 and five values of β are
chosen: 0.1, 0.3, 0.5, 0.7, 1. For Hc2/Hc1 = 1000 case shown
in Fig. 9(f), Hm = 10Hc1 and five values of α are chosen:
0.1, 0.2, 0.3, 0.4, 0.5. The fitting parameter β is associated
with the nonequilibrium magnetization. It can be seen that,
with decreasing β, the width of MHLs along the Ha axis for
the vortex state is enlarged, while the asymmetry of MHLs
remains unchanged.

Figures 9(g) and 9(h) show two sets of MHLs at different
values of d/λL. For both cases, α, β, Jc0 and H0 are the same
as Figs. 9(a) and 9(b), respectively. For Hc2/Hc1 = 5 case
shown in Fig. 9(g), Hm = 5Hc1 and five values of d/λL are
chosen: 2, 5, 10, 50, 1000. For Hc2/Hc1 = 1000 case shown in
Fig. 9(h), Hm = 10Hc1 and five values of d/λL are chosen:
2, 5, 10, 50, 1000. d is half thickness of sample. And it
can be seen that, with decreasing thickness of sample, the
initial Meissner curve tends to deviate from the linear line
more earlier before Ha achieves Hc1, and the MHL tends to
be thinner. The latter indicates that, both the nonequilibrium
magnetization and the flux pinning are significantly reduced
with decreasing thickness of sample. When d/λL is beyond
50, the MHL remains almost unchanged and this indicates
that the effect of thickness is vanished. On the other hand,
when the thickness is decreased to the same scale of London
penetration depth, the critical field of the superconductor will
change at the same time [48], which is not considered in our
model.

To summarize for this section, we can simulate the flux
penetrating process and fit the MHLs of type-II superconduc-
tors well by using proper fitting parameters. This plays an
important role in studying the physical properties of type-II
superconductors.

V. EXPERIMENTS AND MODEL FITS

In the fitting to a global MHL at a fixed temperature,
there are generally six fitting parameters: α, β, Hc1, Hc2, Jc0,
and H0. Each quantity can be obtained through a fitting to a
specific property or MHL curve in a certain period. Firstly,
Hc1 can be roughly determined from the field where the initial
M(H ) curve starts to deviate from the linear Meissner line.
H0 can also be obtained from the intersecting point of the
initial Meissner line and the vortex-trapped Meissner line (in
the field descending process) based on our model (refers to
Secs. II and IV). In principle, the upper critical field Hc2 can be
determined from the field where the magnetization vanishes
to zero. This is easy for superconductors with small values
of Hc2, such as Nb. However, if Hc2 is very large and cannot
be directly determined from the experiment data, we have to
adopt a value of Hc2 from the published literatures (mainly
from the high field transport measurements).

Secondly, the two branches of MHL in the regions with
positive fields, including field ascending magnetization Mup

and field descending magnetization Mdown, are added up to de-
rive the equilibrium magnetization Mequ = (Mup + Mdown)/2
[13,29]. This is because the nonequilibrium magnetization
in these two branches due to bulk pinning have roughly
the same value but opposite signs based on Bean critical
state model, and we can use this simple relation to calculate
the equilibrium magnetization Mequ. Once Mequ is obtained,
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FIG. 10. Temperature dependence of magnetization measured
with zero-field cooled (ZFC) and field cooled (FC) modes for (a) the
Ba0.6K0.4Fe2As2 single crystal and (b) the pure Nb plate. The applied
field is parallel to the biggest plane of sample.

we can fit Mequ with Eq. (1) and obtain the fitting parameter
α, together with a slight modification to the already obtained
Hc1, especially in the low-field region.

Thirdly, the nonequilibrium magnetization of the field as-
cending process in the positive side can also be obtained
by Mpin = Mup − Mequ or Mpin = (Mup − Mdown)/2. When the
sample is fully penetrated by magnetic vortices (Ha > Hfp),
the nonequilibrium magnetization Mpin in our model is

Mpin = Jc(d − λL)2

2d

= Jc0(d − λL)2

2d

Hc2 − |He|
Hc2

(
Hc1

Hc1 + |He|
)β

= Mpin0
Hc2 − |He|

Hc2

(
Hc1

Hc1 + |He|
)β

. (46)

We have used Eq. (10) and Mpin0 = Jc0(d − λL)2/(2d ). In this
way, we can use Eq. (46) to fit the Mequ obtained from ex-
periment data and determine the fitting parameters β and Jc0.
There should be a conversion from Ha to He by Eqs. (1) and (2)
in the fitting to Mpin. On the other hand, Jc0 is associated with
the remaining bulk pinning current Jcr at Ha = 0 by Eq. (12).
The Jcr at Ha = 0 can be roughly calculated from the Bean
critical state model. Finally, with all six parameters obtained,
we can fit the global MHL curve. In the final process, we
should slightly adjust all fitting parameters to get a global

FIG. 11. (a) Fitting to the equilibrium magnetization of the
Ba0.6K0.4Fe2As2 single crystal in the vortex state at different
temperatures: experiment data (hallow points) and fitting curves
(lines). (b) Fitting to the nonequilibrium magnetization of the
Ba0.6K0.4Fe2As2 single crystal in the field ascending process at
different temperatures: experiment data (hallow points) and fitting
curves (lines).

fitting to the MHL curve in all periods and this adjustment
should be fed back to each fitting process mentioned above
simultaneously, in order to minimize the influence of this
adjustment. Above all, the MHLs of a superconductor can be
fitted by our model.

To check how effective of our model is, MHLs of two kinds
of superconductors are studied. We chose a pure Nb plate
as a test sample for the low-κ case and a Ba0.6K0.4Fe2As2

single crystal (κab = 260 [49]) as a test sample for extremely
high-κ case. The Ba0.6K0.4Fe2As2 single crystal was grown
by self-flux method using FeAs as flux [50], with dimen-
sions 1.8 mm × 1.1 mm × 0.15 mm and weight 1.7 mg. The
pure Nb plate was prepared by arc-melting method and then
cut into rectangular shape by wire cutting machine, with di-
mensions 3.5 mm × 2.9 mm × 0.42 mm and weight 40.7mg.
The DC magnetization measurements were carried out on a
SQUID-VSM-7T (Quantum Design). The applied field was
parallel to the biggest plane of samples. The temperature de-
pendence of magnetization M(T ) for both samples are shown
in Fig. 10, respectively. The sharp transition indicates that
both samples are of high quality. The obtained critical tem-
perature Tc for the Ba0.6K0.4Fe2As2 is 38.5K which indicates
that the sample is close to the optimal doping point [50],
and for Nb is 9K. We need to note that, a small tail on the
transition curve of the Ba0.6K0.4Fe2As2 makes the transition
a little broad, but we find that this feature is intrinsic, since
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FIG. 12. The MHLs (black hallow points) and corresponding fitting curves (red lines) of the Ba0.6K0.4Fe2As2 single crystal, at temperatures
of (a) 5, (b) 10, (c) 15, (d) 20, (e) 28, and (f) 35 K. A small background magnetization due to the induced magnetic field of the measuring coils
has been subtracted for all temperatures, which was measured with no sample on the sample holder.

the transition curve when the field is perpendicular to the
biggest plane looks very sharp. This tail may be attributed
to a divergent London penetration depth when temperature
approaches Tc.

Figures 11(a) and 11(b) shows fittings to the equilibrium
magnetization and the nonequilibrium magnetization of the
Ba0.6K0.4Fe2As2 single crystal in the low-field region and
intermediate-field region, respectively. Figure 12 shows the
global fitting to MHLs of the Ba0.6K0.4Fe2As2 single crystal,
including six different temperatures: 5, 10, 15, 20, 28, and
35K. A small background magnetization due to the induced
magnetic field of the measuring coils has been subtracted
from the raw data of MHLs for all temperatures, which was
measured with no sample on the sample holder. All six fitting
parameters used in the fitting process are shown in Table I, in-
cluding the lower critical field Hc1, the upper critical field Hc2,
the characteristic field H0, the zero-field critical current den-
sity Jc0, the exponents α and β. The London penetration depth
used in the fitting process is λL = 300 nm which is determined
from MFM measurements of the similar sample [51]. We
assume the London penetration depth to be independent of
temperature for simplicity. This is a good approximation as
the London penetration depth λL is much smaller than the

thickness of our sample 2d (2d = 0.15 mm, λL � 2d). It can
be seen in Figs. 11 and 12 that the fitting curves accord well
with the equilibrium magnetization and the nonequilibrium
magnetization, as well as the global MHLs for almost all tem-
peratures. In addition, we find that the MHL curves become
more asymmetric when the measuring temperature is higher.
This indicates that, the ratio of equilibrium magnetization
in the total magnetization rises with increasing temperature
[30,36,37]. On the other hand, the nonequilibrium magneti-
zation plays the leading role at temperatures lower than 10K,

TABLE I. The fitting parameters of the Ba0.6K0.4Fe2As2 single
crystal.

T (K ) Hc1(Oe) Hc2(T ) H0(Oe) Jc0(A/cm2) α β

5 1780 80 3490 7.17 × 105 1.99 0.62
10 890 71 1780 3.53 × 105 2.13 0.58
15 344 55 970 1.78 × 105 1.01 0.42
20 188 43 810 1.18 × 105 0.60 0.41
28 89 16 314 6.95 × 104 0.33 0.36
35 28 4 112 2.57 × 104 0.23 0.32
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FIG. 13. Temperature dependence of different fitting parameters for the Ba0.6K0.4Fe2As2 single crystal. (a) Hc1, (b) Hc2, (c) H0, and (d) Jc0.
The red circles are fitting parameters at different temperatures. The red lines are empirical scaling relations.

which leads to the symmetric shape of MHLs with respect
to the Ha axis [12,13]. The fitting parameters α and β gov-
ern the decaying rate of the magnetization versus external
field in the equilibrium and nonequilibrium process. Due to
their different mechanisms, their values and behaviors with
temperature should be very different. Taking the equilibrium
magnetization in the low field region into account, the param-
eter α can be quite large as its rapid decaying rate at a low
temperature. But when temperature increases, the equilibrium
magnetization curve Mequ(H ) becomes flat quickly, and thus
α reduces significantly, which is shown in Fig. 11(a) and
Table I. As a comparison, the parameter β is related to the
flux pinning of superconductors and determined by fitting to
the nonequilibrium magnetization Mpin(H ) in the intermediate
and high field region. It can be seen in Fig. 11(b) that the
nonequilibrium magnetization Mpin(H ) decays slowly with
increasing field both at low temperature and high temperature.
In this case, the change of parameter β is relatively small.

Figure 13 shows the temperature dependence of Hc1, Hc2,
H0, Jc0 for the Ba0.6K0.4Fe2As2 single crystal and the corre-
sponding fitting curves based on the empirical scaling relation
H (T ) = H (0)(1 − T/Tc)n. In this case, we obtained the fol-
lowing fitting parameters: Hc1(0) = 3235 Oe and n = 4.31
for Hc1(T ), Hc2(0) = 98 T and n = 1.21 for Hc2(T ), H0(0) =
5276 Oe and n = 3.21 for H0(T ), Jc0(0) = 1.19 × 106 A/cm2

and n = 3.73 for Jc0(T ), respectively. The obtained value of
Hc1(0) is much higher than that given by Ren [52] of similar
superconductor (with Tc = 36.2 K, lower than 38.5 K of our
sample). The value of Hc2(0) is lower than that predicted by
Wang (235 T) [53] and Ishida (300 T) [9], but higher than that
given by Altarawneh et al. (75 T) [54]. Unfortunately, there
are no direct measurements about the Hc2 of Ba0.6K0.4Fe2As2

at low temperatures since it is really too high. In the fitting
process of Ba0.6K0.4Fe2As2, we use the value of Hc2 from the
published literatures [55,56] at the beginning; we gradually
reduce the value of Hc2 until the fitting curves start to deviate
from the experiment data obviously. In this way, the Hc2 used
in the fitting can serve as a reference to the lowest limit of
the upper critical field for achieving a good fit. The zero-field
critical current density at 0K is Jc0(0) = 1.19 × 106 A/cm2,
which is close to those given by others [9,17] obtained directly
through the original Bean critical state model.

Figures 14(a) and 14(b) shows fittings to the equilibrium
magnetization and the nonequilibrium magnetization of the
pure Nb plate, respectively. Figure 15 shows the global fitting
to MHLs of the pure Nb plate, including two temperatures: 4
and 6 K. A small background magnetization arising from the
sample holder has also been subtracted from the raw data of
MHLs for all temperatures. All six fitting parameters of Nb
are shown in Table II. The London penetration depth used in
the fitting process is λL = 40 nm from published literatures
[57] and we have λL � 2d (2d = 0.42 mm). However, it can
be seen in Fig. 14 that, the field where the equilibrium mag-
netization vanishes to zero is not equal to the field where the
nonequilibrium magnetization vanishes to zero, the former is
5100 Oe and the latter is 8500 Oe for 4 K and 3000 Oe and

TABLE II. The fitting parameters of the pure Nb plate.

T (K) Hc1 (Oe) Hc2 (Oe) H0 (Oe) Jc0(A/cm2) α β

4 910 6800 1400 5.91 × 104 1.35 0.67
6 580 4400 800 3.57 × 104 1.16 0.77
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FIG. 14. (a) Fitting to the equilibrium magnetization of the pure
Nb plate in the vortex state at different temperatures: experiment data
(hallow points) and fitting curves (lines). (b) Fitting to the nonequi-
librium magnetization of the pure Nb plate in the field ascending
period at different temperatures: experiment data (hallow points) and
fitting curves (lines).

5800 Oe for 6 K, respectively. This may be attributed to the
possible enhancement of vortex pining due to second peak
effect near Hc2 in Nb [58–60]. This can be corroborated from
the data of the nonequilibrium magnetization data shown in
Fig. 14(b). For simplicity, we take the average value of these
two fields as Hc2 for each temperature. It can be seen that,
the fitting curves in Figs. 14 and 15 all accord well with the
experiment data. The value of Hc1 in Table II is a little lower
than that of high-purity Nb, while the value of Hc2 is slightly
higher than that in previous reports [29,61]. In addition, the
fitting parameter α decreases slightly with increasing temper-
ature, while the fitting parameter β increases slightly.

From above analysis and fitting to the experimental data,
we find that our model which counts different magnetization
from the surface layer and the bulk pinning region is quite
effective. Although the model is quite simple in form, it can
capture the fundamental physics of both regions with different
contributions of magnetization. By adjusting fitting parame-
ters and proportion of two parts of magnetization, our model
can be used to describe the flux penetration and magnetization
of various type-II superconductors with different values of κ

or ratios of Hc2/Hc1. For further verification of our model,
more experiments on different superconductors are highly
desired. In addition, the difference between simulated curve
and experimental data near Hc1 in low temperature region

FIG. 15. MHLs (black hallow points) and corresponding fitting
curves (red lines) of the pure Nb plate, at temperatures of (a) 4
and (b) 6 K. A small background magnetization due to the induced
magnetic field of the measuring coils has been subtracted for all
temperatures, which was measured with no sample on the sample
holder.

may involve the influence of the Bean-Livingston surface
barrier [62] or geometrical barrier [63,64], on which further
experiments are needed. The enhancement of magnetization
due to these effects occurs mainly in the flux entry process, as
shown by our experimental data, but unfortunately it cannot
be explicitly expressed so far. This Bean-Livingston related
effect in the AC losses of type-II superconductors were dealt
by Clem [65]. In the case of DC magnetization measurements
and with a strong bulk pinning, this effect is weak comparing
with the large magnetization due to the bulk pinning and oc-
curs only in the initial penetration process, thus it will merge
into the effective first penetration magnetic field, and Hc1 may
be modified by adding an extra term, namely HBean−Livisngton =
Hc1 + 	H . This little deviation may be just reflected by the
small discrepancy in low field region, as shown in Fig. 15.
Our present model can describe the global MHLs pretty well
and may be extended to other type-II superconductors when a
global description on MHLs is needed.

VI. CONCLUSION

In summary, a generalized phenomenological model for
critical vortex state has been proposed to describe the mag-
netic field penetration and MHLs of type-II superconductors.
The model combines the equilibrium magnetization of surface
screening current and the nonequilibrium magnetization of
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bulk pinning, and deals with the vortex-trapped Meissner state
in a more reasonable way. We use the model to simulate the
MHLs of extremely high-κ superconductor Ba0.6K0.4Fe2As2

and low-κ superconductor Nb and the experimental data can
both be fitted quite well. Furthermore, our model can serve
as an effective tool to study the magnetization hysteresis and
vortex penetration of type-II superconductors with different
values of κ or ratios of Hc2/Hc1.
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