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Supercurrents and spontaneous time-reversal symmetry breaking by nonmagnetic disorder in
unconventional superconductors
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Recently, a theoretical study [Z.-X. Li et al., npj Quantum Mater. 6, 36 (2021)] investigated a model of
a disordered d-wave superconductor, and reported local time-reversal symmetry breaking current loops for
sufficiently high disorder levels. Since the pure d-wave superconducting state does not break time-reversal
symmetry, it is surprising that such persistent currents arise purely from nonmagnetic disorder. Here, we perform
a detailed theoretical investigation of such disorder-induced orbital currents, and show that the occurrence of the
currents can be traced to the emergence of local (extended) s-wave order coexisting with underlying disordered
d-wave pairing, making it favorable to generate local s ± id regions. We discuss the energetics leading to such
regions of s ± id order, which support spontaneous local current loops in the presence of inhomogeneous density
modulations.
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I. INTRODUCTION

One of the fascinating questions currently under debate in
the field of unconventional superconductivity is how to realize
a superconducting state where time reversal is spontaneously
broken. The possibility of doing so intrinsically has been
known for some time in the form of the superfluid 3He -A
phase [1], where the orbital part of the pair wave function is
chiral and is sometimes referred to as px + ipy, or p + ip for
short. Solid state p + ip superconducting analogs have been
proposed frequently, including for Sr2RuO4 [2], UPt3 [3], and
the 5/2 fractional quantum Hall state [4].

In the Sr2RuO4 case, recent NMR evidence argues strongly
against spin-triplet p + ip pairing [5,6], but muon spin ro-
tation (μSR) [7] and Kerr [8] effect measurements support
time-reversal symmetry breaking (TRSB), leading to sug-
gestions of linear combinations of dominant spin-singlet
complex combinations of two-dimensional (2D) irreducible
representations dxz + idyz [5], or combinations of various
one-dimensional (1D) irreducible representations such as s +
idx2−y2 [9,10], s + idxy [11,12], or dx2−y2 + ig [13,14]. The
p + ip and d + id states are chiral, and should support spon-
taneous edge currents [15], while the remaining states break
time-reversal symmetry (TRS), but are not chiral and so
should not support such states. This distinction is reflected
in the behavior of the different TRSB states in their local
response to nonmagnetic disorder. A single impurity in a
chiral state supports a net circulating spontaneous current that
decays over long distances, whereas the same impurity in one
of the nonchiral states creates a pattern of local currents that
averages to zero over the sample [16–19].

With this intuition, it is almost trivial to deduce that a
nonmagnetic impurity in a superconducting state that does
not break TRS will not create any spontaneous currents at
all, and this is indeed found to be the case in simple models

of, e.g., dx2−y2 superconductors. Recently, however, Li et al.
[20] showed within Bogoliubov–de Gennes mean field sim-
ulations of high disorder levels in a d-wave superconductor,
that local currents were generated. Left open were questions
of the origin of this local TRSB effect, in particular how
multiple impurities can create TRSB if single impurities are
unable to do so. While it is not clear if such currents would
occur in real cuprates disordered only by dopant atoms in the
high disorder regime, it seems plausible that they might be
induced by systematically disordering an overdoped cuprate
by electron irradiation, for example. It is also possible that the
physics of highly disordered d-wave superconductors, already
studied in some detail, may still contain physics that we do not
understand through simple disorder-averaged “dirty d-wave
theory” [21–25]. Li et al. [20] showed, for example, that the
temperature dependence of the superfluid density in their sim-
ulations could be quite linear even in the presence of strong
disorder, an unexpected result from the point of view of the
disorder-averaged approach.

We stress that the current discussion relates to TRSB
arising solely from nonmagnetic disorder in BCS supercon-
ductors. It is well known from a series of earlier studies that
underlying repulsive interactions may cause nonmagnetic dis-
order to freeze local spin fluctuations, and thereby also break
TRS [26–39]. This mechanism is, however, distinct from the
orbital current disorder-induced phases discussed here.

In this paper, we perform a systematic theoretical study
of spontaneous TRSB from nonmagnetic disorder in a d-
wave superconductor. We analyze the origin of this surprising
emergent many-impurity effect, tracing the existence of the
currents to the competition between two symmetry-distinct
pairing channels. More specifically, we identify the current-
carrying regions as areas where sizable extended s-wave
correlations coexist with the underlying (but disordered) d-
wave order, making it favorable to locally generate s ± id-like
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structures. This happens despite the fact that the super-
conducting order in the corresponding homogeneous phase
does not support local currents. The phenomenon cannot
be understood from a disorder-averaged perspective as a
disorder-induced shifting of the d- (s ± id) homogeneous
phase boundary; rather it is a local consequence of quan-
tum interference due to particular favorable local impurity
configurations. We expect such local orbital current loops to
exist quite generically in strongly disordered superconductors
exhibiting several competing pairing channels.

II. MODEL AND METHOD

The study presented here is based on the following one-
band BCS mean field Hamiltonian with nearest-neighbor
(NN) hopping

H = −
∑
i, j,σ

(ti j + μδi j )c
†
i,σ c j,σ +

∑
{p},σ

Vimpc†
p,σ cp,σ

−
∑
〈i, j〉

(�i j (c
†
i↓c†

j↑ − c†
i↑c†

j↓) + H.c.), (1)

where ti j = t for NN sites and 0 otherwise, �i j =
V0(〈c j↑ci↓〉 − 〈c j↓ci↑〉) is the NN singlet pairing (where V0 >

0 ensures attractive pairing), and {p} denotes the set of
impurity sites. The disorder, which is treated exactly, is in-
corporated by site-localized scattering potentials, all with
strength given by Vimp. The corresponding Bogoliubov–de
Gennes (BdG) equations in the (c†

i↑, ci↓) block of the full
Nambu space read

∑
j

(
Ki j �i j

�∗
i j −Ki j

)(
u jn↓
v jn↑

)
= En

(
uin↓
vin↑

)
, (2)

where Ki j = −(ti j + μδi j ) + Vimpδi jδi∈{p} and uin↑ (vin↑) are
the usual coherence factor coefficients from the unitary Bo-
goliubov transformation. The BdG equations are solved self-
consistently on N × N square lattices with lattice constant a,
and all results presented below are reported after convergence.
The convergence criterion is set to

∑2N2

α,β=1 |HBdG
αβ [m − 1] −

HBdG
αβ [m]| < 8N2 × 10−10 t , where m indicates iteration num-

ber. This criterion ensures that each nonzero input changes
no more than 10−10 on average between two consecutive
iterations. All results are computed with periodic boundary
conditions, and we fix t = 1.0, V0 = 1.5, and Vimp = 3.0. In
addition, we will assume that each impurity dopes one hole
into the system, and fix the filling of the system by adjusting
the chemical potential μ until an average density of 〈n〉 =
1 − ρ, where ρ denotes the dopant fraction, is reached. To
calculate the current densities we use that the current on bond
〈i j〉 is given by

〈 ji j〉 = i
et

h̄a2

∑
σ

〈c†
iσ c jσ − c†

jσ ciσ 〉 (3)

= −2
et

h̄a2

∑
n

Im[u∗
in↓u jn↓ f (En) − v∗

in↑v jn↑ f (En)],

(4)

where e denotes the electron charge, a is the lattice spacing,
and f (En) is the Fermi-Dirac distribution function. All results
are obtained with the temperature fixed at T = 0.001t . We
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FIG. 1. (a) Phase diagram of a superconductor with nearest-
neighbor attractive pairing as a function of electron density in the
homogeneous case. In the crossover regions between s- and d-wave
solutions, the complex s ± id TRSB superconducting state becomes
favorable. (b), (c) Impurity-induced currents in the s + id phase
at 〈n〉 = 0.44 obtained on a 21 × 21 square lattice. (b) shows the
current pattern around a single impurity placed at the center site
(red dot), which integrates to zero. All currents with magnitudes
| �ji| > 0.25| �ji|max have been rescaled to 0.25| �ji|max for visual clarity.
The current is conserved at all sites. (c) Full current amplitude in
units of et

h̄a2 . The current magnitudes are interpolated to continuous
real-space values for clarity.

define the current on a given site ji as the average of the
current on the adjacent bonds, that is,

jx̂(ŷ)
i = ji,i+x̂(ŷ) + ji−x̂(ŷ),i

2
. (5)

The self-consistency ensures current conservation as con-
firmed by incoming and outgoing currents being equal in
magnitude at all lattice sites [40].

III. RESULTS

A. Homogeneous case

In the homogeneous system ({p} ∈ ∅) we find that, de-
pending on the filling, the preferred pairing channel is either
extended-s, d , or s + id [see Fig. 1(a)]. As we only include
attractive NN pairings, s refers to extended NN s-wave pairing
with nodes along cos(kx ) = − cos(ky), whereas the d-wave
phase is the dx2−y2 pairing state with nodes along cos(kx ) =
cos(ky). The preferred channel at a given electron density
can be understood from the energetics of gap nodes at the
corresponding Fermi surface (FS) [41,42]. Near half filling
n = 1, for example, the s-wave state is strongly disfavored
due to its near alignment of nodes with the FS. By contrast,
at very low fillings, the FS consists of a small electron pocket
centered at � = (0, 0), which can be only fully gapped by the
s-wave solution. In the density regimes near n = 0.4, 1.6, the
s- and d-wave states become degenerate, and self-consistent
solutions to the gap equation confirm that indeed the preferred
low-temperature pairing state is the complex combination
s + id (or s − id).
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FIG. 2. Disorder-induced currents for different disorder/doping levels obtained on 35 × 35 square lattices. (a)–(d) Current patterns for
impurity (hole) density (a) ρ = 0.8, (b) 0.6, (c) 0.4, and (d) 0.2. Red dots indicate impurity positions. In (a)–(d), all currents with magnitudes
| �ji| > 0.25| �ji|max have been rescaled to 0.25| �ji|max for visual clarity. (e)–(h) Current magnitudes for (e) ρ = 0.8, (f) 0.6, (g) 0.4, and (h) 0.2 in
units of et

h̄a2 . The current magnitudes are interpolated to continuous real-space values for clarity.

B. Single impurity

While the homogeneous s ± id state does not support per-
sistent supercurrents, it is well known that inhomogeneities
are able to induce local supercurrents [16–19,43,44]. The sim-
plest situation is a single pointlike nonmagnetic impurity with
local impurity-induced currents as shown in Figs. 1(b) and
1(c). The amplitude of the impurity-bound currents depends
on the impurity strength Vimp, and saturates for sufficiently
large on-site repulsion (or attraction). The s ± id pairing states
are degenerate solutions related through time reversal. Thus,
the current pattern of the s − id pairing state is reversed, but
otherwise identical to the result shown in Figs. 1(b) and 1(c).
The emergence of supercurrents in the s + id phase has been
previously established mainly through analytical solutions of
the associated Ginzburg-Landau equations [16,17]. The result
shown in Figs. 1(b) and 1(c) exhibits a pattern symmetric
under π rotations, and time reversal in addition to π/2 ro-
tation, in agreement with earlier studies [16,17]. As opposed
to chiral superconductors, the impurity-induced current from
Figs. 1(b) and 1(c) exhibits no net vorticity. The existence of
local disorder-induced currents is in stark contrast to pure d-
or s-wave phases where a single nonmagnetic impurity does
not generate any supercurrents, and merely features a standard
pair-breaking effect. However, as discussed in the next sec-
tion, impurity-induced spontaneous TRSB does materialize in
the presence of a substantial amount of impurities [20].

C. Multiple impurities

Figure 2 displays several representative cases of the current
density of impurity concentrations ρ = 80%, 60%, 40%, and
20%. The top panels show the direction of the currents at

all sites as well as the randomly chosen impurity positions
(red dots). The bottom panels display the current magni-
tudes in units as indicated. The magnitudes are interpolated
to continuous real-space values for clarity. By inspection of
Fig. 2, it is evident that substantial currents are generated
locally with disorder, producing an emergent current pattern
in agreement with Ref. [20]. This result is rather striking, as
only the case in Figs. 2(b) and 2(f) corresponds to a doping
level inside the s ± id phase region of the clean system. Thus,
the nonmagnetic disorder cooperatively breaks TRS locally
inside a time-reversal symmetric superconductor. This conclu-
sion is not dependent on the particular value of the impurity
potential Vimp as long as it is larger than a certain threshold
value, whose detailed parameter dependence we have not
further explored. We stress that the emergent TRSB studied
here is a purely orbital effect, distinct from TRSB arising
from impurity-induced local magnetic moments caused by
nonmagnetic disorder in interacting unconventional supercon-
ductors [26–39].

In order to quantify the effect, we calculate the im-
purity configuration-averaged current magnitude 〈| �ji|〉 =
N−2 ∑

i | �ji|, bond gap magnitude 〈|�i j |〉 = 1
4N2

∑
〈i j〉 |�i j |,

and maximum bond gap amplitude |�i j |max, as a function
of average electron density 〈n〉 = 1 − ρ (see Fig. 3). Starting
from the clean half-filled case at 〈n〉 = 1.0, we identify a trend
of increasing current with increasing doping (i.e., decreasing
density away from half filling) in agreement with the results
of Fig. 2. Interestingly, the results suggest maximal currents
near 〈n〉 
 0.6 rather than at maximal disorder (〈n〉 = 0.5),
or inside the bulk s ± id phase. We also identify critical den-
sities of ∼0.1, 0.9 for having sizable currents, yielding an
approximately symmetric behavior around maximal disorder.
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FIG. 3. Current magnitude, average, and maximum bond gap size as a function of average electron density. Red triangles display the total
current magnitudes (left y axis), and the positions of inverted triangles show the average gap size (right y axis). Colors of the inverted triangles
indicate the maximum bond gap amplitudes. Solid lines are the s- and d-wave amplitudes (|�h

s | and |�h
d |, respectively) of the homogeneous

system at the corresponding filling. Shaded cyan region marks the homogeneous s ± id phase as sketched in Fig. 1(a). Dashed lines show the
average d-wave (purple) and s-wave (green) order parameter components (see main text). The simulations are computed on 35 × 35 square
lattices with random distributions of impurities.

Regarding the gap amplitudes (inverted triangles in Fig. 3),
we note a similar trend of 〈|�i j |〉 as in the homogeneous
system [solid lines, s-wave amplitude (blue) and d-wave am-
plitude (black)], reflecting the accumulation of states near the
normal state Fermi surface as we approach the van Hove sin-
gularity at half filling, 〈n〉 = 1.0. The homogeneous systems
consistently exhibit larger average gap amplitudes compared
to the impurity-doped systems as expected due to the local
disorder-generated gap suppression. We also note that this
difference indeed weakens as we approach the undoped/clean
limit at 〈n〉 = 1.0. Interestingly, in addition to the general
decrease in 〈|�i j |〉 with doping, we find the lowest |�i j |max

(indicated by the color of the inverted triangles in Fig. 3)
before currents arise (〈n〉 = 0.9) yielding the least significant
gap modulations. Upon further doping, currents are generated
and modulations are rapidly enhanced, as is evident from an
increase in |�i j |max alongside the decrease in 〈|�i j |〉.

We define the site-centered s-wave (d-wave) component by
the standard expressions

�
s(d )
i = �i,i+x̂ + �i−x̂,i + (−)x̂ ↔ ŷ

4
, (6)

and thereby obtain the average s-wave (d-wave) contribution
〈|�s(d )|〉 = N−2 ∑

i |�s(d )
i |, shown by the dashed green (pur-

ple) line in Fig. 3. As seen, there is a substantial s-wave
component induced even in the range 〈n〉 
 0.45–0.9, where
d-wave pairing is the ground state in the corresponding clean
system. This is a multiple-impurity effect, setting in as dis-
order sites become dense enough and break the point group

symmetries. Thus, a consequence of introducing large enough
disorder levels is that inhomogeneous puddles of extended
s-wave (d-wave) order leak into the d-wave (s-wave) regions
of the clean system.

Figure 3 strongly suggests that the emergence of currents in
a disordered d-wave superconductor of the form studied here
is generally energetically favorable. To elucidate the lowering
of energy associated with the generation of currents, we com-
pute the low-temperature free-energy densities of identical
systems with and without currents. We converge the state
without currents by choosing (random) real initial values of
all gaps (as opposed to complex initial values in all other com-
putations). Importantly, the computation of the free energies
indeed confirms that the phases with currents constitute the
ground state. Next, we separate the different contributions of
the total energy into the following parts,

ε0
i = − t

2

∑
δ,σ

〈c†
i,σ ci+δ,σ 〉, (7)

ε
μ
i = −μ

∑
σ

〈ni,σ 〉, (8)

ε�
i = −

∑
δ

|�i,i+δ|2
2V0

, (9)

ε
imp
i =

∑
σ

Vimpδi∈p〈ni,σ 〉, (10)

where δ = ±x̂,±ŷ. We further define Eν ≡ 1
N2

∑
i ε

ν
i , where

εν
i is the νth contribution (7)–(10), such that

∑
ν Eν is the total
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FIG. 4. (a)–(d) Difference in free-energy density between states breaking and preserving TRS, shown for case (c) of Fig. 2. The free-
energy density is divided into contributions (a) ε0

i , (b) ε
μ
i , (c) ε

imp
i , and (d) ε�

i as described in the main text and �εν
i ≡ εν

i, ji �=0 − εν
i, ji=0 while

�Eν = N−2
∑

i �εν
i is the total energy density difference of the νth contribution. Blue (red) color indicates the lowest (highest) free-energy

density of the TRSB state. The total free-energy density gained by breaking TRS is �E/t = −0.241 × 10−3. (e) Current magnitude, (f) local
density, and (g) site-centered gap amplitude |�i| = 1

4

∑
δ |�i,i+δ| of a representative 35 × 35 system with a TRSB ground state. The current

pattern and impurity configuration are shown in Fig. 2(c). (h) Local phase difference of local s- and d-wave order parameters (color scale) and
site-centered gap amplitude (symbol size).

energy. In Figs. 4(a)–4(d), we show a representative example
of the energy density difference between the state with and
the state without induced currents, i.e., �εν

i = εν
i, ji �=0 − εν

i, ji=0.
Thus, for negative (positive) values, the state with currents
has a lower (higher) energy density compared to the state
without currents. The results shown in Fig. 4 correspond to an
impurity configuration with ρ = 40% equivalent to 〈n〉 = 0.6.
The results suggest that generating currents leads to an overall
pairing energy gain. Averaging over ten different impurity
configurations confirms this result. Thus, the current forma-
tion is driven by an energy gain in the pairing term �E�/t .
(We find this result to be generally valid beyond approxi-
mately ρ 
 0.25. Below this disorder level, i.e., closer to the
clean half-filled case, the energy gain from current-carrying
ground states also acquires significant contributions from den-
sity distributions, i.e., �Eimp and �Eμ.)

From Figs. 4(d) and 4(e), one can visually detect a cor-
relation between the local gain in pairing energy and the
local currents. Additionally, one sees that the currents are
not well correlated with either the electron density [Fig. 4(f)]
or the total gap amplitudes [Fig. 4(g)]. Rather, typical areas
of substantial local current amplitudes appear well correlated
with a π/2 or 3π/2 phase difference φd

i − φs
i between the

corresponding s- and d-wave order parameters [Eq. (6)]. To
quantify these comparisons, the correlation coefficients are
obtained by

corr{x, y} = 〈xy〉 − 〈x〉〈y〉√
〈x2〉 − 〈x〉2

√
〈y2〉 − 〈y〉2

, (11)

for nine different impurity configurations, resulting in
configuration-averaged values of corr{| �ji|, 〈ni〉} = 0.193,
corr{| �ji|, |�i|} = 0.184, and corr{| �ji|, |Im[ei(φd

i −φs
i )]||�i|} =

0.334. The latter reflects the twofold requirement of a
substantial local pairing amplitude (|�i|) combined with a
phase difference of φd

i − φs
i ∼ π/2, 3π/2 (yielding large

values of |Im[ei(φd
i −φs

i )]|). It should be noted that the cor-
relations generally increase for doping levels further away
from maximal disorder (〈n〉 = 0.5), and for the result shown
in Fig. 2(a), for example, corr{| �ji|, |Im[ei(φd

i −φs
i )]||�i|} =

0.625 while corr{| �ji|, 〈ni〉} = 0.234 and corr{| �ji|, |�i|} =
0.262. Thus, the reason for the induced local currents is the
following: The presence of significant disorder leads to strong
inhomogeneity in the gap suppression. This inevitably induces
spatially varying s-wave (d-wave) order in the corresponding
clean d-wave (s-wave) phase. In certain regions it becomes
energetically favorable to generate local s ± id structures,
where currents arise due to density modulations. This appears
similar to the single-impurity results shown in Fig. 1, except
that the complex mixing of the two components occurs only
locally, in a doping range where the homogeneous s + id
phase is unstable. We note that the correlation between cur-
rents and the phase difference φd

i − φs
i is not perfect mainly

since some local regions of φd
i − φs

i = π/2, 3π/2 do not
support currents. This can be understood from the fact that
in an s ± id superconductor, currents are generated not only
by phase gradients, but also by spatial modulations of the
pairing amplitude [16]. In some regions the local phase and
amplitude modulations of �i j “destructively interfere” and
lead to vanishing currents. As such, the combination of a

014504-5



BREIØ, HIRSCHFELD, AND ANDERSEN PHYSICAL REVIEW B 105, 014504 (2022)

sizable local gap amplitude and s ± id pairing is a necessary
but not sufficient condition for the emergence of currents in
the surrounding area.

IV. DISCUSSION AND CONCLUSIONS

We now discuss several different plausible explanations for
the mechanism behind the disorder-induced currents. We have
already shown that the current-carrying state is the ground
state, so that these solutions do not correspond to metastable
free-energy minima in a complex disorder potential landscape.
We further consider metastability arising from the neglect
of proper feedback/self-consistency of the induced currents
and their generated vector potential. To investigate this, we
include the Peierls phases by solving the Maxwell equations
and let t → t exp[i e

h̄

∫
A · dl] in the self-consistent solution.

The small resulting (dimensionless) vector potential ea
h̄ A =

Ã ∼ O(10−6), yields essentially no change in the preferred
ground state. Therefore, we conclude that inclusion of the
vector potential generated by the currents leads to only minor
quantitative changes to the above results.

We have also explored the idea of local doping into an
s ± id phase, i.e., whether the currents can be understood as
areas where the average densities are similar to the bulk s ± id
phase near 〈n〉 
 0.4. This is clearly not the case, however,
as the disorder is much too strong for such “local density
approximations,” and furthermore the electron density is only
very weakly correlated with the current maps.

Finally, we have investigated to what extent the local
currents arise from disorder in the phase of the d-wave com-
ponent [20,45]. As evident from Fig. 3, this component is
dominant for all 〈n〉 � 0.5 and, as such, it is not unreason-
able to assume that the generation of currents arises mainly
from modulations of this component. In Fig. 5(a) we show
the local d-wave phase φi

d and amplitude |�i
d |, represented

by the color scale and symbol size, respectively. The con-
verged result presented here is the same as in Fig. 4 and,
by comparing to Figs. 4(g) and 5(a), it is clear that the d-
wave component does indeed capture the essential spatial
variations of the local pairing amplitudes. Strong amplitude
modulations are evident in Fig. 5(a), and some grain formation
in the d-wave phase is apparent. By a visual comparison of
Figs. 5(a) and 5(c), several domain walls do indeed coincide
with current-carrying regions. This is to be expected, as phase
gradients should give rise to currents. However, computing the
configuration-averaged correlation for nine different impu-
rity distributions at 〈n〉 = 0.6 yields corr{| �ji|, |�i

d ||∇φi
d |} =

0.196, significantly lower than the correlation between current
magnitudes and regions of local s ± id pairing. Additionally,
in Figs. 5(b) and 5(d) we show the same quantities for a
system with 〈n〉 = 0.8. Here, phase modulations are barely
visible and no grain formation has taken place despite the
presence of currents. Thus, we conclude that emergent weakly
Josephson coupled d-wave grains are not the main mechanism
leading to the formation of currents.

In summary, we have performed a theoretical study of
nonmagnetic disorder-induced orbital current loops within
a model where superconductivity is stabilized by nearest-
neighbor attraction. In the homogeneous case, this model
supports both extended s-wave and d-wave superconductivity,
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FIG. 5. (a), (b) Local phase φi
d (color scale) and amplitude |�i

d |
(symbol size) of the d-wave component for the cases in Figs. 2
(c) and 2(d), respectively. (c), (d) Same as Figs. 2(g) and 2(h) in-
cluded here for visual comparison.

depending on the doping level. At the degeneracy point of
these two orders, the complex combinations s ± id are pre-
ferred. However, in the disordered case, even far away from
the doping regime where homogeneous s ± id order exists,
certain favorable regions support local s ± id structures, and
induce currents. Correspondingly, models supporting only a
single pairing channel do not lead to disorder-induced orbital
currents of the form discussed here [20]. In terms of exper-
iments, based on the explanation provided above we expect
TRSB from orbital currents in any disordered superconduc-
tors with several competing pairing instabilities, as potentially
relevant for, e.g., Sr2RuO4 [7], UTe2, and Ba1−xKxFe2As2

[46]. It remains to be further explored what are the unique
experimental litmus tests of the local currents, but clearly
μSR may pick up the fields generated by the loop currents
below Tc. As shown here, it is not necessary for the clean
systems to reside in a TRSB phase; disorder alone can in-
duce local TRSB regions supporting current loops. It remains
an interesting outstanding theoretical question how disorder-
induced currents are affected by both thermal and quantum
fluctuations.
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