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Enhancement of the Walker limit by bulk Dzyaloshinskii-Moriya interaction
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In this work, the effects of bulk Dzyaloshinskii-Moriya interactions (BDMIs) on magnetic domain walls in
noncentrosymmetric chiral magnets are investigated. For static walls, their chirality is jointly determined by
BMDI strength and the hard-easy ratio. When external magnetic fields or electronic currents are applied, the
Walker limit is considerably enhanced by BDMIs. Domain walls can acquire high enough steady-flow velocity
that they are more easily liberated from various blocking mechanisms and thus can serve as fast carriers of
information. In addition, modifications of the BDMI strength and hard-easy ratio to the walls’ drifting velocity far
beyond Walker breakdown are presented. Our findings open possibilities for the development and optimization
of future magnetic nanodevices with high performance and better environmental friendliness.
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I. INTRODUCTION

Magnetic topological solitons are isolated spin textures
with spatial localization and topological protection. The
thorough understanding of their statics and dynamics in
various magnetic heterostructures (MHs) is the basis for
the invention and optimization of new magnetic recording
and processing devices. Recently, discussions about chiral
magnetic solitons stabilized by the Dzyaloshinskii-Moriya
interaction (DMI) have become extraordinarily active. The
most common examples are chiral domain walls (DWs) [1–6],
skyrmions/antiskyrmions [7–12], and bimerons [13–17]. His-
torically, the bulk DMI (BDMI) was proposed first. As an
antisymmetric exchange coupling, it includes an odd term of
the spatial gradient of magnetization [18]. From the micro-
scopic point of view, BDMI comes from the generalization
of Anderson’s superexchange interaction in the presence of
spin-orbit coupling [19]. Experimentally, it was first proposed
to reside in chiral magnets with noncentrosymmetric B20
structure [7,8,20,21]. The noncollinear magnetic structures
observed recently in several Heusler compounds also suggest
its possible existence therein [22,23].

Over the last decade, heavy-metal substrates have been
widely used in MHs [24–38]. In these setups, the interfacial
DMI (IDMI) and spin Hall and Rashba spin-orbit torques
emerge together. They complicatedly affect the static chi-
rality of walls in the ferromagnetic central layer and their
motion under external driving forces [34–40]. We call these
systems IDMI-MHs for short. Alternatively, little attention
has been paid to MHs with central layers made of mag-
nets with BDMI and normal nonmagnetic substrates (called
BDMI-MHs). Compared with the well-studied IDMI-MHs,
BDMI-MHs have the advantages of weaker toxicity and lower
cost. They are excellent candidates for future magnetic nan-
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odevices with greater environmental friendliness and high
cost-effectiveness.

On the other hand, the variety of magnetic materials with
BDMI is not very rich. To acquire high performance of DWs
in BDMI-MHs, we need to explore other adjustment methods
in addition to tuning BDMI strength. The simplest, but effi-
cient, way is to change the cross-section shape of the central
layer, thus varying the “hard-easy ratio” κ (total anisotropy in
the hard axis over that in the easy one). Therefore, a system-
atic investigation of static chirality and dynamical behaviors
of DWs in BDMI-MHs with a tunable BDMI strength and
hard-easy ratio should be of great interest and importance.

In the present work we focus on strip-shaped BDMI-MHs
with perpendicular magnetic anisotropy (PMA). Once nu-
cleated, DWs are driven to move longitudinally by either
out-of-plane magnetic fields or in-plane electronic currents.
In principle, both steady and precessional flows emerge. Their
dividing point, the Walker limit, will be enhanced by BDMI,
thus allowing DWs to acquire high enough steady-flow ve-
locities. When far beyond the Walker breakdown, κ provides
another dimension of effectively modifying DW dynamics.
The rest of this paper is organized as follows. In Sec. II the
system setup and its modelization are briefly introduced. Then
the chirality of static walls is investigated in Sec. III. After
that, the field-driven and current-driven dynamics of DWs
are studied in Secs. IV and V, respectively. Finally, further
discussions and a conclusion are provided in the last section.

II. MODEL AND METHODS

The magnetic free-energy density E0 of the chiral magnet
in a MH (see Fig. 1) includes four parts: the exchange part
Eex = A(∇m)2 (A and m are the exchange stiffness and mag-
netization unit vector); the Zeeman part EZ = −μ0Msm · Ha,
with the total external field Ha and the saturation magne-
tization Ms; the anisotropy part Eani = (μ0M2

s /2)(−kEm2
z +

kHm2
y ), where kE (kH) is the total (crystalline plus shape)

anisotropy coefficient in the easy (hard) axis; and the BDMI
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FIG. 1. A strip-shaped MH in which a chiral magnet with BDMI
and PMA is prepared on a nonmagnetic substrate. The magnetiza-
tion M = Msm is fully described by its polar and azimuthal angles
(θ and φ). An ↑↓ wall is driven to move in the x direction by either
an out-of-plane field Hz or an in-plane current density Ja. In the
meantime, an in-plane bias field, H⊥ = H⊥(cos φ⊥ex + sin φ⊥ey ), is
applied to further manipulate the wall’s behavior.

contribution Eb = Dbm(r) · [∇ × m(r)], with Db being the
BDMI strength [41]. In this work we consider PMA, which
is common in chiral magnets.

Under out-of-plane magnetic fields and in-plane currents,
the Lagrangian L of this chiral magnet is

L

μ0M2
s

= −cos θ

γ Ms

∂φ

∂t
− BJφ

γ Ms

∂ cos θ

∂ (Ĵ · r)
− E0

μ0M2
s

, (1)

with the dissipative functional

F

μ0M2
s

= α

2γ Ms

{[
∂

∂t
− βBJ

α

∂

∂ (Ĵ · r)

]
m
}2

(2)

describing various damping processes [42–47]. Here θ (r, t )
and φ(r, t ) are the polar and azimuthal angles of m(r, t ),
respectively. α is the damping constant, and β is the nonadia-
batic spin-transfer torque coefficient. γ = μ0γe, with μ0 and
γe being the vacuum permeability and electron gyromagnetic
ratio, respectively. BJ = μBPJa/(eMs), in which μB is the
Bohr magneton and e (>0) is the absolute electron charge.
Ja (with unit vector Ĵ) is the current density flowing longitu-
dinally through the chiral magnet with polarization P.

The magnetization dynamics of the chiral magnet is de-
scribed by the Lagrangian-Rayleigh equation,

d

dt

(
δL

δẊ

)
− δL

δX
+ δF

δẊ
= 0, (3)

where an overdot means ∂/∂t and X is any related coordinate.
To explore collective behaviors, the Lagrangian-based collec-
tive coordinate model is used, which needs a preset ansatz
of walls. For strip-shaped MHs, we adopt the Walker ansatz
[48,49]

ln tan
ϑ

2
= η

x − q(t )

�
, φ = ϕ(t ), (4)

where q, �, and ϕ are the wall center position, wall width,
and in-plane magnetization angle, respectively. η = +1 (−1)
is the topological wall charge that corresponds to the ↑↓ (↓↑)
wall. For the narrow-strip geometry shown in Fig. 1, the ex

and ey axes respectively indicate the longitudinal (L) and
transverse (T) directions. By setting X = q, ϕ, � and integrat-
ing along the longitudinal direction (

∫ +∞
−∞ dx), the following

closed dynamical equations are obtained:

(1 + α2)ϕ̇ = γ Hz + (α − β )
ηBJ

�
− απγ

2

[
kHMs

π
sin 2ϕ

+ H⊥ sin(ϕ − φ⊥) + ηDb cos ϕ

μ0Ms�

]
,

q̇ = − η�

α
ϕ̇ + η�γ

α
Hz − β

α
BJ ,

απ

6γ0

�̇

�
= 2A

πμ0Ms�2
− Ms

π
(kE + kH sin2 ϕ)

+ H⊥ cos(ϕ − φ⊥). (5)

These are all we need to proceed with our investigation.

III. STATIC WALL CHIRALITY

When Hz = 0 and Ja = 0, the wall remains static. In
the absence of in-plane bias fields, the total magnetic
energy is E0/S = ∫ +∞

−∞ E0[M]dx = 2A/� + μ0M2
s �(kE +

kH sin2 ϕ) + ηπDb sin ϕ, where S is the cross-sectional area
of the chiral magnet. For static walls, the last equa-
tion in Eq. (5) provides � = �0(1 + κ sin2 ϕ)−1/2, with
�0 = √2A/(μ0kEM2

s ) and κ ≡ kH/kE being the hard-easy ra-
tio. Consequently, E0/S = 2[2Aμ0M2

s (kE + kH sin2 ϕ)]1/2 +
ηπDb sin ϕ. When BDMI is absent, either ϕ = 0 or ϕ = π

provides the minimum of E0. Thus, the wall takes a Néel-
type profile, and no chirality is preferred. As Db appears, the
minimization operation of E0/S provides

(E0)min

πSD0
=
{√(

1 + 1
κ

)
1
κ

− (Db
D0

)2 1
κ

at sin ϕ0 = −ηsgn(Db)
√

(Db/D0 )2

(1+κ )−κ (Db/D0 )2 for |Db| < D0,(
1 + 1

κ

)− |Db|
D0

at sin ϕ0 = −ηsgn(Db) for |Db| � D0,
(6)

with D0 ≡ (2Ms
√

2Aμ0kE/π )(κ/
√

1 + κ ) and sgn indicating
the sign function. This means under finite BDMI (|Db| < D0),
the wall is a mixture of Néel and Bloch types and thus shows
a certain chirality preference through nonzero 〈my〉. For suf-
ficiently large BDMI (|Db| � D0), chiral Bloch walls emerge.

This process is shown in Fig. 2, where η = +1 and Db < 0
are selected.

When finite out-of-plane fields and/or in-plane currents are
applied, Eq. (5) implies that there should be two dynamical
modes: the steady-flow (precessional-flow) mode for small
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FIG. 2. Evolution of (a) the minimum total magnetic energy
and (b) the corresponding in-plane angle of chiral DWs as BDMI
increases. Four typical hard-easy ratios κ are presented. For a given
κ , there exists a critical BDMI strength D0. When |Db| < D0 (� D0),
the wall shows partial (full) chirality.

(large) driving factors. The dividing point is the Walker field
or Walker current density, which should be manipulated by
BDMI and κ . In the following two sections, field- and current-
driven dynamics of DWs will be respectively investigated.

IV. FIELD-DRIVEN DYNAMICS

A. Walker field enhancement by BDMI

First, we define several quantities for further usage: the
anisotropy field in the easy axis HK = kEMs, the origi-
nal Walker field H0

W = ακHK/2, the BDMI effective field
strength H0

b = Db/(μ0Ms�0), and the dimensionless coeffi-
cient b = ηπH0

b /HK. Now DWs are driven by out-of-plane
magnetic field Hzez. In the absence of an in-plane bias field
H⊥, the steady-flow mode requires ϕ̇ = 0 and �̇ = 0, which
lead to

Hz

H0
W

= f (ϕ) ≡ b

κ
cos ϕ

√
1 + κ sin2 ϕ + sin 2ϕ. (7)

For fixed b and κ , once | f (ϕ)|max is found for ϕ ∈ [0, 2π ), the
new Walker field then reads HW = H0

W| f (ϕ)|max.
Since f (b, ϕ) = f (−b, ϕ + π ), the sign of b does not af-

fect | f (ϕ)|max. Without loss of generality, we set b > 0. In real
MHs κ is generally on the order of 10−2–100. The explicit
form of | f (ϕ)|max was obtained analytically and is given in
Appendix A due to its length. Based on it, the modified Walker
fields HW in units of H0

W(= ακHK/2) and αHK/2 are plotted
in Figs. 3(a) and 3(b), respectively. The corresponding in-
plane angle ϕ0 where HW is achieved is provided in Fig. 3(c).
We choose 0.02 � κ � 2 and 0 � b � 2 as our parameter
space, which is common in real MHs.

When BDMI is absent (b = 0), HW ≡ H0
W ∝ κ . As BDMI

emerges, several interesting things happen. First, under finite

FIG. 3. The BDMI-modified Walker field HW (a) in units of
H 0

W = ακHK/2 and (b) in units of αHK/2 and (c) the corresponding
in-plane angle at which HW is achieved. All panels are plotted in the
parameter space: {(κ, b) : 0.02 � κ � 2, 0 � b � 2}, and the data
are calculated based on the results in Appendix A.

BDMI, κ seems to be able to dramatically change the new
normalized Walker field [in units of H0

W(= ακHK/2)]. For
example, at b = 1, HW/H0

W increases considerably when κ

is below 0.5. In particular, HW/H0
W exceeds 40 when κ de-

creases to 0.02. When κ gets even smaller, HW/H0
W can be

even larger (we neglect this part due to its lack of practicality
in real MHs). At the same time, κ also strongly affects the
location ϕ0 where HW is achieved as long as b > 0: ϕ0 varies
from π/4 to 0 as κ decreases from 2 to 0.02. The behaviors
of HW/H0

W and ϕ0 under small κ can be confirmed by the
asymptotic expansion of Eq. (A4) for κ � 1. Direct calcula-
tion yields that when κ � 1, ϕ0 = arcsin x̃ ∝ κ; thus, Eq. (7)
gives HW/H0

W → b/κ . This explains the 1/κ divergence trend
for small κ under finite BDMI. On the other hand, recalling
H0

W = ακHK/2, one finally has

HW → αHK

2
b = απ |Db|

2μ0Ms�0
, κ � 1. (8)
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Obviously, the new Walker limit remains a BDMI-
determined finite value even under tiny κ . When |Hz| < HW,
the wall velocity reads q̇ = η�γ Hz/α, with the wall width
� = �0(1 + κ sin2 ϕ)−1/2. For small κ , the maximum wall
velocity in the steady-flow mode turns out to be

vmax
κ→0 = ηπγe|Db|

2Ms
, κ � 1, (9)

which is independent of (both crystalline and shape) magnetic
anisotropy and is solely determined by the BDMI strength and
saturation magnetization. For a rough estimation, we choose
α = 0.1, |Db| = 0.5 mJ/m2, Ms = 500 kA/m, and �0 ≈
20 nm; then HW ≈ 6.25 kA/m (≈78.5 Oe), and |vmax

κ→0| ≈
276 m/s. Obviously, the Walker limit is enhanced by appro-
priate BDMI strength. Meanwhile, DWs acquire high enough
steady-flow velocities that they would easily be liberated from
various blocking mechanisms (for example, intrinsic pinning
or random impurity potential wells).

In addition, the inclined and almost flat plane in Fig. 3 (b)
provides an approximate relationship: HW/(αHK/2) ≈ b + κ .
This linear behavior (as well as the “Walker limit enhance-
ment” effect) can be understood as follows. The BDMI energy
density leads to the following effective field:

Hb(x) = 2Db

μ0Ms

[(
∂mz

∂x

)
ey −

(
∂my

∂x

)
ez

]

= − 2Db

μ0Ms

[
η sin2 ϑ

�
ey + η sin ϑ cos ϑ sin ϕ

�
ez

]
.

(10)

The integration of the z component across the wall region
disappears and thus has no effect on wall dynamics. However,
the transverse y component always exists in the wall region
and contributes a joint action with the existing transverse hard
anisotropy field.

B. 〈q̇〉 under |Hz| � HW

When |Hz| exceeds HW, the Walker breakdown takes place,
and the wall falls into the precessional-flow mode. Generally,
the breathing wall width (�̇ �= 0) has no explicit expres-
sion. In the simplest approximation, one has � = �0(1 +
κ sin2 ϕ)−1/2. By integrating the first equation in Eq. (5) in
a full circle, the precessional period T0 is

γ̄ T0 =
∫ 2π

0

dϕ/
√

1 + κ sin2 ϕ

Hz−H0
W sin 2ϕ√

1+κ sin2 ϕ
− ηαπ

2 H0
b cos ϕ

, (11)

where γ̄ ≡ γ /(1 + α2). Without BDMI, this integration can
easily be calculated. As BDMI emerges, Eq. (11) has no
explicit form. However, in the high-field limit where |Hz| �
α|H0

b |(H0
W), by using the approximation (1 − ε)−1 ≈ 1 + ε +

ε2, Eq. (11) gives

T0 ≈ 2π

γ̄ Hz

[
1 + α2π2

8

(
1 + κ

4

)(H0
b

Hz

)2

+ α2κ2

8

(
HK

Hz

)2
]
.

(12)

Therefore, the time-averaged wall velocity is

〈q̇〉0 = ηα�0γ̄ Hz
K0

2π

[
1 + π2

8

(
1 + κ

4

)(H0
b

Hz

)2

+ κ2

8

(
HK

Hz

)2]
, (13)

in which K0 is defined as

K0 =
∫ 2π

0

dϕ√
1 + κ sin2 ϕ

= 4√
1 + κ

K

(√
κ

1 + κ

)
, (14)

with K (k) ≡ ∫ π/2
0

dω√
1−k2 sin2 ω

being the complete elliptic in-

tegral of the first kind.
Equation (13) can be reorganized as c(Hz − H0)2/Hz +

d/Hz, which is exactly the same as Eq. (9) in our early
work [50]. Once again, the correctness of our road map on
field-driven DW dynamics is verified. Alternatively, when we
focus on the effects of BDMI on the walls’ drifting velocity,
a parabolic 〈q̇〉0 ∼ H0

b relationship emerges which is similar
to Eq. (9) in Ref. [33]. Our result here has two advantages: (i)
The H0

W sin 2ϕ term has been preserved, leading to the (HK )2

term which is missing in Ref. [33]. (ii) The dependence of
〈q̇〉0 on κ is revealed, which has been totally neglected in most
existing studies.

Finally, v ∼ Hz curves under 0 < Hz < HW(b, κ ) and
Hz � HW(b, κ ) for typical (b, κ ) combinations are calcu-
lated. The main magnetic parameters are the same as those
in Sec. IV A. In addition, we set kE = 1, η = +1, and b >

0. Then HK = 500 kA/m, H0
b = 39.8 kA/m, and b = 1/4.

κ = 0.1, 0.4, and 0.7 are selected as three examples to show
the effect of the manipulation of κ on DW dynamics. The
Walker fields are 7.652, 15.02, and 22.73 kA/m, and the
corresponding steady-flow velocities are shown in Fig. 4(a)
by black squares, red circles, and blue diamonds, respectively.
The three curves coincide with each other very well, indi-
cating the nearly unchanged wall mobility for different κ . In
addition, to illustrate high-field behaviors, the walls’ drifting
velocities under Hz ∈ [100, 200] kA/m are calculated based
on Eq. (13) and plotted in Fig. 4(b). Now κ significantly
changes the drifting wall velocity, showing its potential as a
new dimension in manipulating DW dynamics.

C. 〈q̇〉 ∼ H⊥ under high Hz

Next the in-plane bias field H⊥ = H⊥(cos φ⊥ex +
sin φ⊥ey) is turned on. The Walker field HW will be further
enlarged due to the “pinning” effect of H⊥ on the in-plane
angle ϕ; however, the explicit form is mathematically
hopeless. In this section, we focus on the 〈q̇〉 ∼ H⊥
dependence under sufficiently large Hz where DWs take
precessional motion. Similarly, in the simplest approximation
the wall width is � = �0(1 + κ sin2 ϕ)−1/2. The period
for a full circle is similar to that in Eq. (11) except for an
additional −απ

2 H⊥ sin(ϕ − φ⊥) term in the denominator of
the integral kernel. In the following we examine two typical
cases, namely, longitudinal and transverse in-plane bias fields,
to see the behaviors of 〈q̇〉 ∼ H⊥ curves.
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FIG. 4. Field-driven wall velocity in (a) steady-flow and
(b) precessional-flow modes for three typical κ: 0.1, 0.4, and 0.7.
The magnetic parameters are α = 0.1, |Db| = 0.5 mJ/m2, Ms =
500 kA/m, kE = 1, and �0 ≈ 20 nm, leading to b = 1/4.

For longitudinal in-plane bias fields, H⊥ = Hx, and φ⊥ =
0. Under large enough Hz, the new period becomes

Tx = T0 + 2π

γ̄ Hz

α2π2

8

(
Hx

Hz

)2

, (15)

thus leading to a new drifting velocity,

〈q̇〉[Hx] = 〈q̇〉0 + ηα�0γ̄ Hz
K0

2π

π2

8

(
Hx

Hz

)2

. (16)

For a fixed Hz, this 〈q̇〉 ∼ Hx curve is a parabola going
upwards (downwards) with its center located at Hx = 0 for
η = +1 (−1).

Alternatively, for transverse in-plane bias fields, H⊥ = Hy,
and φ⊥ = π/2. Similarly, the high-Hz period is

Ty = T0 + 2π

γ̄ Hz

α2π2

8

[(
Hy

Hz

)2

− ηK0

8π

(
1 + κ

4

)Hy

Hz

H0
b

Hz

]
.

(17)

The resulting averaged wall velocity is

〈q̇〉[Hy] = 〈q̇〉0 + ηα�0γ̄ Hz
K0

2π

π2

8

[(
Hy − δHy

Hz

)2

−
(

1 + κ

4

)2(K0

2π

)2(H0
b

Hz

)2
]
, (18)

with δHy = η(1 + κ
4 ) K0

2π
H0

b . For a fixed Hz and η = +1 (−1),
the 〈q̇〉 ∼ Hy curve is a parabola going upwards (downwards)
with its center located at Hy = δHy. For a given BDMI-MH

with fixed κ and a DW with a certain wall charge η, by mea-
suring the 〈q̇〉 ∼ Hy dependence one can extract the BDMI
strength Db from the location of the parabola’s center.

In our recent work [45], we constructed a general scheme
to identify and quantify BDMI in MHs via precessional flow
of DWs under in-plane transverse bias fields. In that scheme,
the linearization of trigonometric functions does not lose too
many details of the entire circle since walls precess almost
evenly under large enough out-of-plane driving fields. How-
ever, κ is totally neglected by using the static width �0 instead
of the real complicated breathing one. This simplification
holds for not too narrow magnetic central layers with strong
PMA. However, for those with relatively weak PMA and
shrinking width, the importance of κ increases. This effect
manifests itself as the additional factor (1 + κ

4 ) K0
2π

in our δHy

term.

V. WALKER CURRENT DENSITY ENHANCEMENT

We turn to DW dynamics driven by in-plane currents (Hz =
0 and Ja �= 0). In the absence of BDMI, the in-plane Walker

current density reads J0
W = �0γ H0

W
|α−β|

eMs
μBP , which is proportional

to κ through H0
W. For convenience, we define an “absolute

current unit” which is free of κ as J0 ≡ �0γαHK

2|α−β|
eMs
μBP = J0

W/κ .
Without H⊥, the existence condition of steady flow (ϕ̇ = 0
and �̇ = 0) changes the first equation in Eq. (5) to

ηsgn(α − β )
Ja

J0
W

= g(ϕ) ≡ b

κ
cos ϕ + sin 2ϕ√

1 + κ sin2 ϕ
. (19)

For fixed b and κ , once |g(ϕ)|max is found for ϕ ∈ [0, 2π ),
the new Walker current density is then obtained as JW =
J0

W|g(ϕ)|max. Meanwhile, the sign of b is irrelevant to |g(ϕ)|max

since g(b, ϕ) ≡ g(−b, ϕ + π ). We then set b > 0 to simplify
the analysis. After defining x ≡ sin ϕ and introducing G (x) ≡
[g(ϕ)]2, we have |g(ϕ)|max = √|G (ϕ)|max. The extremum
condition, dG /dx = 0, can be transformed into a quartic
equation of x2, whose exact solution is too complicated to
write out explicitly. Alternatively, by numerically searching
for the maximum of G (x) for x ∈ [−1, 1], the new Walker
current densities JW in units of J0

W and J0 are, respectively,
provided in Figs. 5(a) and 5(b). Meanwhile, the in-plane angle
ϕ0 where JW is reached is depicted in Fig. 5(c). Also, the
region {(κ, b) : 0.02 � κ � 2, 0 � b � 2} is our parameter
space.

Like in the field-driven case, under finite b, JW/J0
W can

reach infinity under small enough κ . However, this is just an
illusion. In terms of the “κ-free” J0, the real JW varies within a
finite range. In our parameter space we have JW/J0 ≈ b + κ ,
which manifests itself as the inclined and almost flat plane in
Fig. 5(b). This linear behavior also comes from the joint ac-
tion of the transverse hard anisotropy field and the transverse
component of the BDMI effective field. For a fixed finite b,
the location ϕ0 where JW is achieved rapidly decreases from
π/4 to 0 as κ shrinks. This is due to the fact that under κ � 1
the first term in Eq. (19) dominates; thus, g(ϕ) achieves the
maximum absolute value at ϕ0 = 0.

A special case is b2 = 4κ . Now the quartic equation of x2

(coming from dG /dx = 0) is reduced to a cubic one: κ (x2)3 +
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FIG. 5. BDMI-modified Walker current density JW (a) in units
of J0

W and (b) in units of J0 and (c) the corresponding in-plane
angle under in-plane driving current Jaex . All data come from direct
numerical searching on the maxima of the function G (x = sin ϕ)
in (b, κ ) space. The solid curve in (c) comes from ϕ0 = arcsin x̃ in
Eq. (20), while those in (a) and (b) are, respectively,

√
G (x̃) and

κ
√

G (x̃).

(1 − 2κ )(x2)2 − (4 + 1/κ )x2 + 1 = 0. Its solution

x̃ =
[

2κ − 1

3κ
+ 4(1 + κ )

3κ
cos

θ + π

3

] 1
2

, θ = cos−1
11
16 − κ

1 + κ
,

(20)

gives the maxima of G (x). The resulting Walker current den-
sity is JW = J0

W

√
G (x̃), which is plotted in Figs. 5(a) and

5(b) by solid curves. The corresponding in-plane angle ϕ0 =
arcsin x̃ is depicted in Fig. 5(c). The high coincidence between
the numerics and analytics of this special case provides strong
cross validation for both methods.

Finally, we pay special attention to the κ � 1 case. Now
JW ≈ bJ0, meaning that the Walker current density is com-
pletely determined by BDMI. Recalling the definitions of J0

and b, we have

JW = α

|α − β|
πge|Db|

2h̄P
, (21)

where ge is the electron g factor. For |Ja| � JW, the wall takes
the steady-flow mode with velocity q̇ = − β

α
BJ . The maxi-

mum DW velocity occurs at Ja = JW and turns out to be

umax
κ→0 = − β

|α − β|
πγe|Db|

2Ms
= − β

|α − β|
∣∣vmax

κ→0

∣∣. (22)

For a rough estimation, the magnetic parameters are the
same as those in field-driven case. In addition, we set
β = 0.05 and P = 0.3. Then JW ≈ 1.59 × 109 A/cm2, and
umax

κ→0 ≈ −276 m/s. It seems that the Walker current density
could be pushed to a relatively high value at which a large wall
velocity might be achieved. However, DWs will collapse be-
fore |Ja| approaches JW since it is too high for real MHs. What
our theory proves is that in BDMI-MHs, under reasonable
in-plane current density (107–108 A/cm2) DWs always take
steady flows with a velocity of several or tens of meters per
second. This comes from the relatively low efficiency of spin-
transfer torques from in-plane currents. For the same reason, it
does not make much sense to calculate the drifting velocity 〈q̇〉
under |Ja| � JW and, furthermore, the 〈q̇〉 ∼ H⊥ dependence
under large Ja. For the completeness of the analytics, we give
these results in Appendix B for reference.

VI. DISCUSSION AND CONCLUSION

First of all, we would like to discuss the differences in
the effects of BDMI and IDMI on 180◦ DWs (180DWs).
The effects of BDMI on 180DWs mainly reside in (i) the
type selection of static walls, (ii) dynamical boosting in the
steady-flow mode, and (iii) Walker limit enhancement. In
principle, the bridge linking BDMI energy density to the
various final results is the BDMI-induced in-plane transverse
effective field. For static 180DWs existing in thin-film-shape
MHs without any DMI, generally, they are Néel type. This
is due to the fact that Néel-type (Bloch-type) 180DWs have
zero (nonzero) surface and nonzero (zero) bulk magnetic
charges. The principle of energy minimization requires the
existence of as few magnetic charges as possible. For thin-
film-shape MHs, the surface effect becomes significant; thus,
Néel-type 180DWs dominate. In the presence of IDMI, the
IDMI-induced in-plane effective magnetic field is along the
long axis of MHs and thus strengthens the Néel-type nature
of static 180DWs. However, for BDMI-MHs, the situation is
quite different. The BDMI-induced in-plane effective mag-
netic field is along the transverse direction. For large enough
BDMI, the central magnetizations of 180DWs are turned to
the transverse direction; thus, 180DWs prefer the Bloch type.
The energy gain from the extra surface magnetic charges will
be compensated by the energy loss from the BDMI term for
the spinning magnetization texture within the wall region. One
possible disadvantage of Bloch-type 180DWs comes from the
non-negligible “cross talking” between them since a larger
magnetic flux (originating from surface magnetic charges) ex-
ists outside wall regions. This could limit the integration level
of nanodevices based on them. However, large entanglements
between these walls become possible. This will provide a new
stage for quantum information based on the interactions of
spin waves and a series of Bloch-type 180DWs in thin-film-
shape MHs. As for dynamical manipulations, the transverse
BDMI-induced in-plane effective field can boost the wall ve-
locity in the steady-flow mode in terms of broadening the wall
width [51]. In particular, the Walker limit will be enhanced
since it is also proportional to wall width. However, for IDMI,
none of these effects exist.

Second, we want to address the feasibility of Eq. (4) in this
work. In the absence of any DMI, the spatially homogeneous
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φ in the Walker ansatz has been proven to be a good descrip-
tion of real magnetization distribution. When BDMI emerges,
its swirling nature makes θ and φ become coupled and entan-
gled everywhere in the MH plane; thus, the theoretical final
results can hardly be obtained. Fortunately, for not too strong
BDMI, numerical simulations (from OOMMF, MUMAX, etc.)
have confirmed that the assumption of spatially homogeneous
φ is not far from the real magnetization distribution. This is
also the choice of nearly all existing theoretical explorations.
In particular, the BDMI strength is limited within a relatively
weak region in this work (|b| � 2). Therefore, we adopt the
assumption of homogeneous φ in our present theoretical in-
vestigations to provide the “leading-order” physics. Further
explorations including the spatially varying φ will be our next
step in future works. On the other hand, in perfect not-too-
narrow strip-shaped MHs, DMIs can induce the wall tiling
χ with respect to +ey [42]. However, for real MHs with
disorders, the walls take a complex meandering shape with
the magnetization vectors rotating several times along them
and thus show inconspicuous tilting [25,26,52]. This leads to
the negligible longitudinal component of Hb (proportional to
∇ymz), hence explaining the feasibility of Eq. (4). Another ne-
glected effect is the magnetization canting θ∞ [51] in domains
by in-plane fields either from intrinsic BDMI or from external
exertion. If both χ and θ∞ are considered, a more complicated
wall ansatz

tan
ϑ

2
= eR + tan(θ∞/2)

1 + eR tan(θ∞/2)
, φ = ϕ(t ), (23)

can be proposed with R ≡ η[(x − q) cos χ + y sin χ ]/�. By
integrating dynamical equations over infinite strip length and
finite width, the so-called q − ϕ − χ [42] or q − ϕ − χ − �

[53,54] models emerge. However, they are too complicated to
provide clear physical pictures in analyzing DW dynamics.

Third, in the steady-flow mode the wall width has
an explicit expression. In the precessional-flow mode the
wall begins to breathe, leading to a time-dependent wall
width �(t ). The simple approximation in Sec. IV, i.e.,
� = �0(1 + κ sin2 ϕ)−1/2, is directly borrowed from the
steady-flow mode but not the exact solution of �(t ). However,
in most cases the shape of the walls does not change too much
in a full circle (|�̇/�| � 1). Therefore, it can be regarded as
a good approximation of the actual wall width.

Fourth, under sufficiently large out-of-plane fields, DWs
take precessional flows. In this work, during a full circle
(0 � ϕ < 2π ) the Taylor expansion is adopted to get a higher-
order correction (here the second order). Also, the role of the
hard-easy ratio κ is fully revealed, especially in the center
offsets of 〈q̇〉[Hy] parabolas. This strategy holds under the as-
sumption that magnetic anisotropic, in-plane bias and BDMI
effective fields are all small compared with out-of-plane driv-
ing fields. Generally, this condition is not hard to achieve
and thus makes the corresponding measurements feasible.
However, for chiral magnets with sufficiently large BDMI,
to achieve the full parabola quite large driving fields have
to be exerted, which could make the DW structure unstable.
This possibility limits the application of our theories presented
above.

Alternatively, in our recent work (see Ref. [45]) another
approximation was adopted: for large enough Hz, DWs pre-

cess almost evenly in a full circle. After linearization of
trigonometric functions in dynamical equations, the average
wall velocity within ϕ ∈ [0, 1) is used to mimic the one over a
full circle. Regarding this approach, we would like to bring up
the following comments: (i) The wall width is always taken
as the static one, �0, which is κ independent. This may not
have much effect in wide MHs; however, in relatively narrow
ones the effects of κ could get stronger. (ii) This approach
is not subject to the limitation that all other fields should be
small compared with out-of-plane driving fields. However, it
suffers from the constraint that the analytics can hold only
close to the dome summits or canyon bottoms. Therefore, it
cannot explain the further evolution of wall velocity when
in-plane bias fields move far away from the centers of domes
or canyons. (iii) After series expansions, an additional abso-
lute linear term emerges which is the direct consequence of
the linearization operation. For example, to compare it with
Eqs. (13) and (18) in the present work, the field-driven wall
velocity vb,T in Ref. [45] can be expanded as

vb,T

ηα�0γ̄ Hz
= 1 + π

4α
|�| + π2

12
|�|2, (24)

with � ≡ Hy

Hz
− η

H0
b

Hz
− 2κ

π
HK
Hz

. Therefore, v ∼ H⊥ curves in
Ref. [45] are generally not parabolas but cones around dome
summits or canyon bottoms. However, since both (1 + κ

4 )
and I4/I3 approach 1 when κ → 0 and HK/Hz becomes ne-
glectable in not-too-narrow geometries, the correctness of
both schemes can be cross verified.

In summary, the effects of BDMI on the static chirality and
dynamic behaviors of DWs in strip-shaped BDMI-MHs have
been systematically explored. We highlighted the Walker limit
enhancements by BDMI since the latter induces an extra trans-
verse field component. Even in BDMI-MHs with small κ , the
finite BDMI therein ensures that DWs can acquire sufficiently
large steady-flow velocities. This helps DWs break through
various blocking mechanisms and become fast carriers of
information. In addition, drifting velocities of DWs far beyond
Walker breakdown were obtained by series expansions. It
turns out that κ has the potential to effectively manipulate DW
dynamics in the precessional-flow mode. Our results pave the
way for development and performance optimization of future
magnetic nanodevices based on BDMI-MHs.
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APPENDIX A: MAXIMUM VALUE
AND LOCATION OF | f (ϕ)|

By setting x ≡ sin ϕ and defining

F (x) ≡ [ f (ϕ)]2 = (1 − x2
)(

2x + b

κ

√
1 + κx2

)2

, (A1)

the searching of maximum | f (ϕ)| for ϕ ∈ [0, 2π ) is equiv-
alent to that of F (x) for |x| � 1. We denote the lo-
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cation of maximum as x̃; then F (x)|max = (1 − x̃2)(2x̃ +
b
√

1 + κ x̃2/κ )2. The maximum of | f (ϕ)| is thus
√

F (x)|max

at ϕ0 = sin−1 x̃. The detailed x̃ is as follows:
(a) When 0 < κ � 1, (a1) for 0 < b2 < 4κ ,

x̃ =

⎡
⎢⎣κ − 1

3κ
+ |1 − κ|

3κ

√√√√( κ+2
1−κ

)2 − b2

4κ

1 − b2

4κ

cos
θ + π

3

⎤
⎥⎦

1
2

,

θ = arccos

⎧⎪⎨
⎪⎩
√

1 − b2

4κ

[
1 + b2

4κ

(
1−κ
κ+2

)3]
[
1 − b2

4κ

(
1−κ
κ+2

)2]3/2

⎫⎪⎬
⎪⎭; (A2)

(a2) for b2 = 4κ ,

x̃ =
√

κ

2κ + 1
; (A3)

(a3) for b2 > 4κ ,

x̃ =
√

−1 − κ

3κ
−

3
√

Y+ + 3
√

Y−
3(4κ − b2)

,

Y± = (b2 − 4κ )2

{
(κ + 2)3

2κ2
+ b2(1 − κ )3

8κ3

∓ 3

2

√
3b2
[
(κ + 2)3 + b2

4κ2 (κ + 1)(1 − κ )3
]

κ3(b2 − 4κ )

⎫⎬
⎭. (A4)

(b) When κ > 1, (b1) for 0 < b2 < 4κ , the result is the
same as Eq. (A2); (b2) for b2 = 4κ , the result is the same as
Eq. (A3); (b3) for 4κ < b2 < 4κ2(κ + 2)3/[(κ + 1)(κ − 1)3],
the result is the same as Eq. (A4); (b4) for b2 = 4κ2(κ +
2)3/[(κ + 1)(κ − 1)3],

x̃ =
√

κ2 − 1

κ (2κ + 1)
; (A5)

(b5) for b2 > 4κ2(κ + 2)3/[(κ + 1)(κ − 1)3],

x̃ =

⎡
⎢⎣κ − 1

3κ
+ κ − 1

3κ

√√√√1 − 4κ
b2

(
κ+2
κ−1

)2
1 − 4κ

b2

cos
θ

3

⎤
⎥⎦

1
2

,

θ = arccos

⎧⎨
⎩−

√
1 − 4κ

b2

[
1 − 4κ

b2

(
κ+2
κ−1

)3]
[
1 − 4κ

b2

(
κ+2
κ−1

)2]3/2

⎫⎬
⎭. (A6)

APPENDIX B: CURRENT-DRIVEN DW
DYNAMICS UNDER |Ja| � JW

In this Appendix, drifting velocities of DWs under high
enough in-plane current densities are provided, assuming that
they have not collapsed. First, we define several integrals:

I1 =
∫ 2π

0

sin2 2ϕ

(1 + κ sin2 ϕ)3/2
dϕ

= 16
√

1 + κ

κ

[
2 + κ

κ (1 + κ )
K

(√
κ

1 + κ

)
− 2

κ
E

(√
κ

1 + κ

)]
,

I2 =
∫ 2π

0

sin2 ϕ

(1 + κ sin2 ϕ)3/2
dϕ

= 4

κ
√

1 + κ

[
K

(√
κ

1 + κ

)
− E

(√
κ

1 + κ

)]
,

I3 =
∫ 2π

0

cos2 ϕ

(1 + κ sin2 ϕ)3/2
dϕ

= 4

κ
√

1 + κ

[
(1 + κ )E

(√
κ

1 + κ

)
− K

(√
κ

1 + κ

)]
,

I4 =
∫ 2π

0

cos2 ϕ

1 + κ sin2 ϕ
dϕ = 2π

√
1 + κ − 1

κ
, (B1)

where E (k) ≡ ∫ π/2
0 dω

√
1 − k2 sin2 ω is the complete elliptic

integral of the second kind.
When |Ja| exceeds JW, the steady-flow mode fails, and the

wall undergoes precessional flow. The precession period T ′
0 is

T ′
0 = 1

γ̄ H0
W

∫ 2π

0

dϕ/
√

1 + κ sin2 ϕ

σ Ja

J0
W

− b
κ

cos ϕ − sin 2ϕ√
1+κ sin2 ϕ

, (B2)

in which σ ≡ ηsgn(α − β ) and a prime means the quantity
is for the current-driven case. In high-current limit, after pre-
serving the second-order small quantities we have

T ′
0 ≈ σ

γ̄ H0
W

J0
W

Ja

{
K0 +

[
K0

2

(
b

κ

)2

+ I1

](
J0

W

Ja

)2
}

. (B3)

Thus, the time-averaged wall velocity is

〈q̇〉′0 = −1 + αβ

1 + α2
BJ + (α − β )BJ

α(1 + α2)

[
1

2

(
b

κ

)2

+ I1

K0

](
J0

W

Ja

)2

,

(B4)

which provides an additional (Ja)−1 term.
Next, we turn on H⊥. The Walker current density JW will

inevitably be affected by H⊥, but the exact dependence is
hard to obtain. For Ja � JW, the rotational period is similar
to Eq. (B2) except for an additional −πH⊥

HK

sin(ϕ−φ⊥ )√
1+κ sin2 ϕ

term in

the denominator of the integral kernel.
For longitudinal in-plane bias fields (H⊥ = Hx and φ⊥ =

0), the new period is

T ′
x = T ′

0 + σ I2

γ̄ H0
W

(
πHx

HK

)2(J0
W

Ja

)3

. (B5)

This leads to a new velocity,

〈q̇〉′[Hx] = 〈q̇〉′0 + α − β

α(1 + α2)

(
πHx

HK

)2 I2

K0

(
J0

W

Ja

)2

BJ . (B6)
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For fixed Ja, the 〈q̇〉′ ∼ Hx curve is a parabola with its center
located at Hx = 0, and its opening direction depends on the
relative strength of α and β.

For transverse in-plane bias fields (H⊥ = Hy, φ⊥ = π/2),
the period becomes

T ′
y = T ′

0 + σ

γ̄ H0
W

[(
πHy

HK

)2

I3 − 2
πHy

HK

b

κ
I4

](
J0

W

Ja

)3

. (B7)

The resulting drifting velocity is then

〈q̇〉′[Hy] = 〈q̇〉′0 + α − β

α(1 + α2)

{
π2I3

K0

(
Hy − δH ′

y

HK

)2

−
(

b

κ

)2 (I4)2

K0I3

}(
J0

W

Ja

)2

BJ , (B8)

with δH ′
y = η(I4/I3)H0

b . Now the 〈q̇〉′ ∼ Hy curve becomes
a parabola whose center is located at Hy = δH ′

y and whose
opening direction depends on sgn(α − β ).
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