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We have investigated the origin of the magnetic dipole correlations 〈σ z
Qσ z

−Q〉 characterized by the modulation
wave vector k ∼ ( 1

2 , 1
2 , 1

2 ) observed in the frustrated pyrochlore magnet Tb2+xTi2−xO7+y. This magnetic short-
range order cannot be accounted for by adding further-neighbor exchange interactions to the nearest-neighbor
pseudospin- 1

2 Hamiltonian for quantum pyrochlore magnets. Using classical Monte Carlo simulation and
quantum simulation based on thermally pure quantum (TPQ) states we have shown that the spin correlations
with k ∼ ( 1

2 , 1
2 , 1

2 ) are induced at low temperatures by a three-spin interaction of a form σ±
r σ z

r′σ
z
r′′ , which is a

correction to the Hamiltonian due to the low crystal-field excitation. Simulations using TPQ states have shown
that the spin correlations coexist with electric quadrupole correlations 〈σα

Qσ
β

−Q〉 (α, β = x, y) with k ∼ 0. These
results suggest that the putative quantum spin liquid state of Tb2+xTi2−xO7+y is located close to phase boundaries
of the spin-ice, quadrupole-ordered, and magnetic-ordered states in the classical approximation, and that the
three-spin interaction brings about a quantum disordered ground state with both spin and quadrupole correlations.

DOI: 10.1103/PhysRevB.105.014439

I. INTRODUCTION

Frustrated magnetic systems have been actively studied
in decades [1]. Archetypal frustrated systems consist of
spins or pseudospins residing on lattices built from triangu-
lar and tetrahedral units. For example, antiferromagnetically
coupled Ising spins on a tetrahedron are prohibited from
possessing a simple ground-state configuration, being re-
ferred to as geometrical frustration. Geometrically frustrated
classical and quantum magnets on two-dimensional (2D) tri-
angle [2–4] and kagome [5–7] lattices, and three-dimensional
(3D) pyrochlore-lattice systems [8–11] have been investi-
gated. Among frustrated classical magnets, the spin ice on
a pyrochlore lattice is of crucial importance because of its
macroscopically degenerate ground-state [10] and fraction-
alized magnetic monopole excitations [12–16]. Possibilities
of quantum spin liquid (QSL) states in frustrated magnets
have been actively studied in a number of years [17,18].
By introducing transverse interactions in a frustrated Ising
system, a QSL ground state without conventional magnetic
long-range order (LRO) can occur, which provides challeng-
ing theoretical problems [19,20]. Investigations of real (or
candidate) QSL magnets are fascinating experimental explo-
rations [4,7,21–23].

A non-Kramers pyrochlore magnet Tb2Ti2O7 has attracted
much attention for decades as a QSL candidate [9,11]. For
this system, any conventional magnetic LRO has never been

reported. However, our careful studies using off-stoichiometry
controlled samples Tb2+xTi2−xO7+y (TTO) [24–26] showed
that TTO samples in the range x > xc � −0.0025 have a
ground state with a conventional LRO with a hidden order pa-
rameter. We proposed that this LRO is an electric quadrupole
(or multipole) order [27–29], which was predicted for gen-
eral non-Kramers pyrochlore f -electron magnets [30–32].
Recently, an ultrasound experiment proved more firmly that a
phase transition from the paramagnetic state to a quadrupole-
ordered (QO) state actually occurs [33]. On the other hand,
for TTO samples in the range x < xc we showed that they
have a disordered ground state without any conventional LRO
[24–26,34], being the putative QSL ground state of TTO de-
bated in many years [11,35]. In spite of these experimental
advances, theoretical challenges of clarifying the nature of this
disordered ground state remain very difficult to date [35].

One can naturally expect that the QSL state of TTO
can be understood within a framework of the pseudospin- 1

2
nearest-neighbor (NN) exchange Hamiltonian [Eq. (1)] for
non-Kramers pyrochlore magnets [30,31]. In this understand-
ing it is referred to as a U(1) QSL state [19,32] or the
quantum spin-ice (QSI) state [36,37]. However, it is not ob-
vious whether the state in question is really the QSI state (or
a state adiabatically connected to QSI) or another disordered
ground state. From an experimental viewpoint there are at
least two observed facts which do not conform to the QSI
state, posing two problems to be solved.
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The first problem is why specific heat of QSL samples
of TTO (x < xc) behaves almost temperature independent,
C(T ) ∼ const in a range T < 2 K [24], while for the QSI
model C(T ) shows the single-peak structure (anticipated at
T ∼ 1 K for TTO), which is a characteristic of the classical
spin-ice model and appears also in QSI [38]. To resolve this
problem, the effective Hamiltonian of TTO has to be deter-
mined more precisely than that proposed in our previous study
[27], and a theoretical model calculation has to be performed.
It seems that an important term is absent in our proposed
Hamiltonian [27].

The second problem is why spin correlations observed
by neutron scattering experiments show pronounced mag-
netic short-range order (SRO) close to the wave vector k ∼
( 1

2 , 1
2 , 1

2 ) [34], while for the QSI model spin correlations show
the pinch-point-like structure at k ∼ 0 [38], that is commonly
seen in spin-ice models. In order to solve this problem, we
studied a simple hypothesis that magnetic further-neighbor
exchange interactions would modify the spin correlations
by lifting the spin-ice degeneracy. But we had to reject
this naive hypothesis because unrealistically further-neighbor
interactions were required to reproduce the observed spin
correlations [34].

In this study, to solve the second problem we attempt
to make use of another hint from an experimental fact that
QO samples of TTO show a very small magnetic LRO with
k = ( 1

2 , 1
2 , 1

2 ), where the magnitude of the ordered moment
is as small as ∼0.1μB, which is much smaller than the mo-
ment �5μB of the crystal-field (CF) ground-state doublet
[24,27,34,39]. If this is an intrinsic effect, one can come up
with an idea that there is a weak interaction term in the Hamil-
tonian which couples magnetic dipole and electric quadrupole
degrees of freedom. This coupling term may be at work,
thereby spin and quadrupole correlations (and LRO) develop
and affect each other at low temperatures.

This kind of weak interaction was theoretically pointed out
to exist as a three-spin interaction term in TTO and gener-
ally in non-Kramers pyrochlore magnets with low CF excited
states [35,40]. This interaction is derived from a perturbation
expansion via virtual CF excitations [40]. To date, however,
few investigations focusing on the three-spin interaction have
been carried out. In this study, we explore a possibility that the
observed spin correlations with k ∼ ( 1

2 , 1
2 , 1

2 ) are accounted
for by adding the three-spin interaction term to the NN bi-
linear Hamiltonian [Eq. (1)]. More specifically, we compare
the structure factor S(Q) = ∫

S(Q, E )dE , where S(Q, E ) is
the dynamic structure factor obtained from our previous in-
elastic neutron scattering data [26,34], with theoretical model
calculations to find appropriate parameters of the three-spin
interaction term.

Among theoretical tools of model calculations for frus-
trated systems we chose two methods. One is the classical
Monte Carlo (MC) simulation technique for Heisenberg mod-
els [41], which has been expected to be valuable for a phase
transition with a finite critical temperature Tc [29,42,43]. The
other is a quantum simulation technique based on the typical-
ity of quantum statistical mechanics [44–46] and the thermally
pure quantum (TPQ) states [47–49]. Two methods using a
microcanonical TPQ (mTPQ) state [48,50] and a canonical
TPQ (cTPQ) state [47,49] were employed. These simulation

methods using the TPQ states are useful for frustrated quan-
tum magnets, and have been applied for those on kagome
[49,51], honeycomb [52,53], square [54], and pyrochlore
[55,56] lattices. They enable approximation-free quantum
simulation down to relatively low temperatures for systems as
large as those of exact diagonalization. Using these two sim-
ulation methods we have found that the spin correlations with
k ∼ ( 1

2 , 1
2 , 1

2 ) can be induced by the three-spin interaction.
In the following sections, we summarize effective Hamil-

tonians, our previous work [27], and a technical target of this
study in Sec. II. We present methods of neutron scattering
experiments and the simulations in Sec. III, and experimental
and simulation results in Sec. IV, which are discussed in
Sec. V.

Considering that the simulation technique using the TPQ
states has never been applied to analysis of S(Q) observed
by neutron scattering and that this technique itself has sev-
eral limitations, we decide to show a number of figures of
calculated S(Q) for careful readers especially who will use
this technique for other quantum pyrochlore magnets and who
will examine the present results for further theoretical inves-
tigations. When these figures are inspected, we recommend
using two (or more) displays to maximize the reader’s image-
recognition-processing ability. For readers who are interested
in mainly results of the TTO analysis (and for first-time read-
ers), to spare them the technical details we suggest that they
read Sec. II first, and then observe Figs. 5(a0,c0), Fig. 8(k0)
(with Fig. 3), and Figs. 13(c1,d1) and 11(a) (with Fig. 1),
before proceeding to the Conclusion section.

II. PSEUDOSPIN- 1
2 HAMILTONIAN

A minimal theoretical model for general non-Kramers
f -electron magnets on a pyrochlore lattice [30–32] is the
effective pseudospin- 1

2 Hamiltonian due to electronic superex-
change interactions. It is expressed as

H0 = Jnn

∑
〈r,r′〉

σ z
r σ z

r′ + Jnn

∑
〈r,r′〉

[2δ(σ+
r σ−

r′ + σ−
r σ+

r′ )

+ 2q(e2iφr,r′ σ+
r σ+

r′ + H.c.)], (1)

where magnetic dipole and electric quadrupole moments at
each site r are represented by Pauli matrices σ z

r and σ±
r =

(σ x
r ± iσ y

r )/2, respectively, which are defined within the CF
ground-state doublet. The summation of Eq. (1) runs over NN
site pairs 〈r, r′〉. Detailed definitions of the Hamiltonian for
TTO, the CF ground-state doublet, lattice sites, phases φr,r′ ,
etc., are described in Appendix A.

The classical phase diagram of the effective Hamiltonian
[Eq. (1)] for Jnn > 0 at T = 0 [31,35] is reproduced in Fig. 1
to briefly explain the results of our previous work of applying
Eq. (1) to TTO [27] and a technical target of this investiga-
tion. At the origin of Fig. 1, (δ, q) = (0, 0), the Hamiltonian
consists of the first term of Eq. (1) representing the classical
spin-ice (SI) model. A spin configuration of the macroscop-
ically degenerate SI state is illustrated in Fig. 1(a). In a
region close to the origin (|δ|, |q| � 1), the second trans-
verse term of Eq. (1) lifts the macroscopic degeneracy and
the system has the U(1) QSL (QSI) ground state [19,31,32].
On the other hand, in regions far from origin (|δ| � 1 or
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FIG. 1. Classical phase diagram of the effective Hamiltonian H0

[Eq. (1)] for Jnn > 0 at T = 0 [31]. Red circles, points 1–29, denote
parameter sets of (δ, q) where simulations using the TPQ states were
performed. The two regions enclosed by the black dotted lines repre-
sent the acceptable parameters for the QO sample of TTO proposed
in our previous analyses [27]. The region enclosed by the red dashed
line represents the suggested parameters for QO and QSL samples of
TTO (−0.007 < x < 0.003) by this study. (a) A spin configuration
of the classical spin-ice state for (δ, q) = (0, 0), where σtn+dν

= ±zν .
(b) A pseudospin configuration of the quadrupole order 3D PAF (q >

0) [29], where 〈σtn+dν
〉 = yν (ν = 1, 4) and 〈σtn+dν

〉 = −yν (ν =
2, 3), and schematic view of the deformation of the f -electron charge
density. (c) A pseudospin configuration of the quadrupole order 3D
PAF (q < 0), where 〈σtn+dν

〉 = xν (ν = 1, 4) and 〈σtn+dν
〉 = −xν

(ν = 2, 3), and schematic view of the deformation of the f -electron
charge density.

|q| � 1), there are four classical LRO ground states: 3D
planar antiferropseudospin (PAF) (q > 0), 3D PAF (q < 0),
planar ferropseudospin (PF) (q > 0), and PF (q < 0) using the
notations of Refs. [29,31], which correspond to PC, SFM, ψ2,
and ψ3 of Ref. [35], respectively. Pseudospin configurations
of the 3D-PAF (q > 0) and 3D-PAF (q < 0) states are shown
in Figs. 1(b) and 1(c), respectively, where electric quadrupole
(multipole) orders of these states are also illustrated by de-
formation of the f -electron charge density from the SI state
[27–29]. Intermediate states between the QSI and classical
LRO states have not been fully studied [32,57,58]. On the
negative δ-axis large-scale quantum Monte Carlo simulation
was performed [38], which showed that the classical critical
point (δ, q)c = (−1/3, 0) moves to (δ, q)c = (−0.104, 0) for
the quantum system.

In the previous study [27], we made arguments based
mostly on classical approximations that the QO sample of
TTO with x = 0.005 is located close to the phase boundary
between the SI and 3D-PAF phases. The acceptable (δ, q)
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FIG. 2. Three geometrically distinct triplets 〈r, r′, r′′〉 of Eq. (3)
are illustrated in (a), (b), and (c), which correspond to the type
i = 1, 2, and 3 three-spin interaction with the coupling constant J3s,i,
respectively.

ranges for the QO sample correspond to the two regions
enclosed by black dotted lines in Fig. 1 [27]. We note that
the pseudospin configuration of the LRO with q < 0 is related
to that with q > 0 by the transformation of rotating σr about
the local zr axis by π/2 [31].

In classical MC (CMC) simulation, we include the mag-
netic dipolar interaction [27,28] described by

Hd = Dr3
nn

∑ {
zr · zr′

|
r|3 − 3[zr · 
r][zr′ · 
r]

|
r|5
}
σ z

r σ z
r′ , (2)

where the summation runs over all pairs of sites, rnn is the
NN distance, and 
r = r − r′. This interaction can be approx-
imated by Dnn

∑
〈r,r′〉 σ

z
r σ z

r′ with Dnn = 5
3 D [59,60]. Thus, the

effective Hamiltonian of H0 + Hd can be approximated by H0

with replacements Jnn → Jnn + Dnn, δ → Jnnδ/(Jnn + Dnn),
and q → Jnnq/(Jnn + Dnn).

In addition to H0 and Hd, we consider a three-spin interac-
tion term expressed as

H3s =
3∑

i=1

J3s,i

∑
〈r,r′,r′′〉

[
eiφ(i)

r,r′ ,r′′ σ+
r σ z

r′σ
z
r′′ + H.c.

]
, (3)

where 〈r, r′〉 and 〈r, r′′〉 are NN pairs and r′ 
= r′′, which are
satisfied by three distinct types of triplet 〈r, r′, r′′〉 shown in
Fig. 2 [35,40]. By imposing the condition of invariance under
the space-group symmetry to H3s, one can show that the
three-spin interaction term has the form of Eq. (3) with three
real coupling constants J3s,i (i = 1, 2, 3) and phases φ

(i)
r,r′,r′′

listed in Tables III–V in Appendix B. We note that the phases
φ

(i)
r,r′,r′′ (i = 1, 2, 3) with the site triplet 〈r, r′, r′′〉 illustrated in

Figs. 2(a)–2(c) are listed in the first lines of Tables III–V,
respectively. Since the phases φ

(i)
r,r′,r′′ are fixed by the symme-

try, the adjustable parameters of H3s are the three coupling
constants J3s,i.

We used total effective Hamiltonians H = H0 + Hd + H3s

and H = H0 + H3s for the classical and quantum simula-
tions, respectively. The magnitude of the coupling constants of
H0 + Hd, scaled by Jnn and Dnn, should be close to that of our
previous study [27], in which Jnn = 1.0 K and Dnn = 0.48 K.
As for the parameters (δ, q), they should be close to one of
the two regions enclosed by the black dotted lines in Fig. 1
[27]. Thus, the technical target of this study is to find param-
eter sets (J3s,1, J3s,2, J3s,3) of H3s which can explain the spin
correlations of TTO. The magnitude of J3s,i is the order of
J2

nn/
 � 0.1Jnn � 0.1 K, where 
 is the energy of the first
CF excited state [35,40]. It should be noted that since the
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theoretical tools we applied are far from perfect for many-
body quantum states, what we can do best at present would be
to qualitatively reproduce the spin correlations of TTO using
the simulations.

III. METHODS

A. Experimental methods

Single-crystalline samples of Tb2+xTi2−xO7+y with x =
−0.007, 0.000, and 0.003 used in this study are those of
Refs. [26,34], where methods of the sample preparation and
the estimation of x values are described. The QSL sample
with x = −0.007 remains in the paramagnetic state down to
0.1 K. The QO samples with x = 0.000 and 0.003 very likely
have small and large electric quadrupole orders, respectively,
in T � Tc ∼ 0.4 K [24,25].

Neutron scattering experiments were carried out on the
time-of-flight (TOF) spectrometer IN5 operated with λ =
8 Å at ILL for the x = −0.007 and 0.000 crystal samples
[26,34,61,62]. The energy resolution of this condition was

E = 0.021 meV (FWHM) at the elastic position. Neutron
scattering experiments for the x = 0.003 crystal sample were
performed on the TOF spectrometer AMATERAS operated
with λ = 7 Å at J-PARC [26,34]. The energy resolution of
this condition was 
E = 0.024 meV (FWHM) at the elas-
tic position. Each crystal sample was mounted in a dilution
refrigerator so as to coincide its (h, h, l ) plane with the hor-
izontal scattering plane of the spectrometer. The observed
intensity data were corrected for background and absorption
using a home-made program [63]. Construction of a four-
dimensional S(Q, E ) data object from a set of the TOF data
taken by rotating each crystal sample was performed using
HORACE [64].

B. Classical MC simulation

Classical MC simulations of the model described by H =
H0 + Hd + H3s [Eqs. (1)–(3)] were carried out by treating
the pseudospin σr as a classical unit vector [41]. The NN
exchange constant and the dipole interaction parameter were
fixed to Jnn = 1.0 K and Dnn = 0.48 K [27]. The parame-
ter sets of (δ, q) were Jnnδ/(Jnn + Dnn) = −0.1, 0, 0.1 and
Jnn|q|/(Jnn + Dnn) + Jnnδ/[2(Jnn + Dnn)] = 1.1/2, 0.9/2, en-
compassing the 3D-PAF and classical SI states. These are
shown by red circles, the points 31–42, in Fig. 3. The
CMC simulations were performed with typically ∼4 × 105

MC steps per spin and on periodic clusters with N = 16L3

spins (sites), where L (=4, 10) stands for a linear dimen-
sion parallel to the [100] direction. The MC steps were
selected by confirming that further increases of them did
not essentially change results. We used the Metropolis sin-
gle spin-flip update [41] and the exchange Monte Carlo
method [65].

C. Quantum simulation using TPQ states

We have adopted methods of the quantum simulation
based on the mTPQ and cTPQ states which are described
in Refs. [48–50]. These methods enable us to calculate ex-
pectation values of observables and thermodynamic quantities

SI
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FIG. 3. Classical phase diagram of the effective Hamiltonian
H0 + Hd [Eqs. (1) and (2)] where the magnetic dipolar interaction
is approximated by the NN coupling Dnn

∑
〈r,r′〉 σ

z
r σ z

r′ . Red circles,
points 31–42, denote parameter sets of (δ, q) where CMC simula-
tions were performed. The two regions enclosed by the black dotted
lines represent the acceptable parameters for the QO sample of TTO
proposed in our previous analyses [27].

at finite temperatures by applying a computational technique
which is commonly used for the Lanczos method [50,66,67].
The algorithm of the simulation using the mTPQ state can be
performed by storing only two vectors in the 2N -dimensional
Hilbert space, where N is the number of pseudospins (sites).
It is not difficult to carry out this simulation for a system
with N = 32 sites without special techniques on a PC with
about 160 GB memory. We calculated expectation values of
pseudospin correlations and thermodynamic quantities using
the methods of the mTPQ and cTPQ states, respectively.

A series of mTPQ states are generated by iteratively oper-
ating the Hamiltonian H to a random normalized vector |ψ0〉
in the Hilbert space [48]. More specifically, the mTPQ states
are calculated by

|ψk〉 = 1√
Qk

(� − ĥ)k|ψ0〉, (4)

where k = 0, 1, 2, . . . , ĥ = H/N , � is a constant larger than
the maximum eigenvalue of ĥ, and Qk = |(� − ĥ)k|ψ0〉|2 is
a normalization constant. The temperature corresponding to
|ψk〉 is

Tk = N

2kkB
(� − 〈ψk|ĥ|ψk〉). (5)

An equilibrium expectation value of an observable repre-
sented by an operator Â for the mTPQ state |ψk〉 is

〈Â〉k = 〈ψk|Â|ψk〉. (6)

By applying this equation to pseudospin correlations Â =
σα

r σα
r′ (α = x, z), the Fourier transform of their expectation
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values is calculated by〈
σα

Qσα
−Q

〉 ∝
∑
r,r′

〈
σα

r σα
r′
〉
k

exp[−iQ · (r − r′)]. (7)

Similarly, the structure factor S(Q) at Tk is calculated by

S(Q) ∝ f (Q)2
∑
r,r′

[zr · zr′ − (Q̂ · zr)(Q̂ · zr′ )]

× 〈
σ z

r σ z
r′
〉
k exp[−iQ · (r − r′)], (8)

where f (Q) is the magnetic form factor and Q̂ = Q/|Q|.
These expectation values [Eqs. (7) and (8)] are averaged
over different (typically four) realizations of the series of the
mTPQ states.

Once all expectation values of 〈ĥn〉k (n = 1, 2, 3) for the
mTPQ states are obtained, it is straightforward to evaluate
specific heat and entropy at a temperature T = 1/(kBβ ) using
the cTPQ state |β, N〉 which is defined by

|β, N〉 = exp[−βH/2]|ψ0〉. (9)

In the cTPQ method an equilibrium value of Â at T is

〈Â〉T = [〈β, N |Â|β, N〉]av

[〈β, N |β, N〉]av
, (10)

where [. . . ]av stands for the arithmetic mean over the initial
states |ψ0〉 [49]. Specific heat and entropy per pseudospin at
T are expressed as

C(T ) = N

T 2
[〈ĥ2〉T − (〈ĥ〉T )2] (11)

and

S(T ) = 〈ĥ〉T

T
+ 1

N
ln [〈β, N |β, N〉]av + ln 2, (12)

respectively. These C(T ) and S(T ) can be calculated using

〈β, N |ĥn|β, N〉 = e−Nβ�

∞∑
k=0

(Nβ )2k

(2k)!
Qk

×
[
〈ĥn〉k + Nβ

2k + 1
(�〈ĥn〉k − 〈ĥn+1〉k )

]
,

(13)

where n = 0, 1, and 2.
Simulations using the TPQ states were carried out using

the simplified Hamiltonian H = H0 + H3s [Eqs. (1) and (3)].
They were performed on a periodic cluster with N = 4L′3 =
32 sites (L′ = 2), which is illustrated in Fig. 4(a), where L′
stands for a linear dimension parallel to the fcc translation
vector ( 1

2 , 1
2 , 0). We note that this 2 × 2 × 2 lattice is the

minimal cluster size, by which one can study whether a peak
in pseudospin correlations is k ∼ ( 1

2 , 1
2 , 1

2 ) or (0,0,0).
To examine limitations of the TPQ methods especially

due to finite-size effects we compare the 32-site simula-
tion using the TPQ states with the large-scale quantum MC
(QMC) simulation on a cluster of N = 4L′3 = 6912 sites
(L′ = 12) [38], which were performed for the Hamiltonian
H0 in the negative δ direction (δ < 0, q = 0) (Fig. 1). We
performed 32-site simulations with two parameter sets corre-
sponding to the points 1 and 2 in Fig. 1, where QMC data are
available [38].
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3

FIG. 4. (a) Periodic 32-site cluster for the simulation using the
TPQ states. (b), (c) Specific heat and entropy as a function of temper-
ature obtained by 6912-site QMC (black curve) [38] and the 32-site
simulations using the TPQ states without three-spin interaction (red
curve) are shown in (b) for the parameters (δ, q) = (−0.0909, 0) (the
point 1 in Fig. 1) and in (c) for (δ, q) = (−0.2, 0) (the point 2 in
Fig. 1), which correspond to the QSI and quadrupole LRO ground
states, respectively.

At the point 1 in Fig. 1, (δ, q) = (−0.0909, 0), δ is larger
than the critical value δc = −0.104, and the system is in the
QSI state at T = 0. Specific heat and entropy as a function
of temperature are shown in Fig. 4(b). In a high-temperature
range of T/Jnn > 0.2, specific heat and entropy show simi-
lar behavior of the classical SI for both simulations. On the
other hand, in a lower-T range of T/Jnn < 0.2 the TPQ result
of C(T ) shows considerable upturn, which is very different
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FIG. 5. (a), (b) Intensity maps of 3D data S(Q) of the QSL sample with x = −0.007, which were measured on IN5 at 0.1 and 0.7 K, are
shown in (a) and (b), respectively. (c), (d) Intensity maps of 3D data S(Q) of the QO sample with x = 0.000, which were measured on IN5
at 0.1 and 0.7 K, are shown in (c) and (d), respectively. (e) Intensity maps of 3D data S(Q) of the QO sample with x = 0.003, which were
measured on AMATERAS at 0.1 K. The 3D data are viewed by 2D slices, which are parallel cross sections of Q = (k + h, −k + h, l ) with
fixed k = 0, 0.1, and 0.2, are shown in (w0), (w1), and (w2) [w=a–e], respectively. Dashed lines in the 2D slices (a)–(e) are boundaries of
Brillouin zones. The bottom right corner shows the first Brillouin zone of the fcc lattice (thin black lines), and two 2D slice planes with k = 0
and 0.2 (blue lines).

from the QMC result. This is probably a small-size artifact,
which is commonly seen in TPQ results at low temperatures
[49,51,68].

At the point 2 in Fig. 1, (δ, q) = (−0.2, 0), δ is smaller
than the critical value, and the system is in a quadrupole
LRO state at T = 0. Specific heat and entropy as a function
of temperature are plotted in Fig. 4(c). One can see from
this figure that the specific-heat peak at the phase transition
temperature Tc/Jnn � 0.5 is only slightly seen for the TPQ
result, which is the well-known finite-size effect, and that
statistical errors of the TPQ result become very large at low
temperatures (T/Jnn < 1). The large errors at low tempera-
tures are commonly seen in other TPQ results [46,52,54].

From the two comparisons shown in Fig. 4, we can infer
that despite the small system size TPQ results can provide
useful information on low-T states which have high entropy
down to about T/Jnn = 0.2 (for the present case). This is
in agreement with the studies of the frustrated Heisenberg
antiferromagnet on the kagome lattice [49,51]. While we have
to cautiously interpret TPQ results, when ground states have
classical LROs and finite-temperature phase transitions occur.

IV. RESULTS

A. S(Q) observed by neutron scattering experiments

In the simulations using CMC and the TPQ states equal-
time spin correlations are calculated. These correspond to
the structure factor S(Q) = ∫

S(Q, E )dE . To compare results
of the simulations with the previous neutron scattering data
[26,34], we integrated S(Q, E ) in an energy range −0.3 <

E < 0.5 meV, which covers most of the energy spread around
E = 0 and excludes CF excitations. We constructed 3D data
sets of S(Q) = ∫ 0.5 meV

−0.3 meV S(Q, E )dE which are normalized us-
ing the same methods as those described in Refs. [26,34].

Consequently, intensities of S(Q) (arb. units) can be compared
mutually among the three samples of TTO.

In Fig. 5 we show intensity maps of the observed S(Q) of
the QSL sample with x = −0.007 and of the two QO samples
with x = 0.000 and 0.003. It is obvious that the pronounced
peaks in S(Q) at k ∼ ( 1

2 , 1
2 , 1

2 ) appear only at 0.1 K. An
interesting point of these data, which is not seen in the [S(Q)]el

(nominally elastic scattering) data of Ref. [34], is that there
are pinch-point-like structures in the S(Q) data at 0.1 K for
the QSL sample around Q = (0, 0, 2) and (1,1,1), and that
they become weak for the QO samples. This fact is consistent
with the interpretation that the QSL sample is located closer
to the SI phase (Fig. 1) than the QO samples [27]. It should be
noted that the pinch-point-like structures in S(Q) are inelastic
scattering.

B. Classical MC simulations

Classical simulations based on the MC method using the
Hamiltonian H0 + Hd + H3s were carried out. By these CMC
simulations we can search for candidate parameter sets for
TTO in a wider parameter space than the TPQ methods.
A guideline of this search is that the spin correlations of
TTO are most enhanced in the QO sample with x = 0.000
[Fig. 5(c0)], where the quadrupole order is probably small.
Assuming small quadrupole LRO 〈σ+

r 〉, it is expected that an
effective bilinear magnetic coupling term

3∑
i=1

J3s,i

∑
〈r,r′,r′′〉

[
eiφ(i)

r,r′,r′′ 〈σ+
r 〉σ z

r′σ
z
r′′ + H.c.

]
(14)

becomes at work to lift the SI degeneracy due to H0 + Hd,
and consequently spin correlations with different wave-vector
dependence appear at low temperatures. Therefore, there is
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FIG. 6. (a)–(f) Specific heat C(T, J3s,i ) (i = 1, 2, 3; J3s, j 
=i =
0) calculated by the 1024-site CMC simulations are shown as
color maps: (w1) C(T, J3s,1), (w2) C(T, J3s,2), and (w3) C(T, J3s,3),
where w=a–f. The parameters (δ, q) of (a)–(f) are Jnn

Jnn+Dnn
(δ, q) =

(−0.1, 0.6), (0.0,0.55), (0.1,0.5), (−0.1,−0.6), (0.0,−0.55), and
(0.1, −0.5), respectively, which correspond to the points 31–36 in
Fig. 3.

a chance to find candidate coupling constants J3s,i, if the
parameters (δ, q) are close to the boundaries of the SI and
3D-PAF phases (Fig. 3), in particular, on the 3D-PAF phase
sides.

1. Specific heat in 3D-PAF phases

A number of CMC simulations with a system size L = 4
(1024 sites) were performed to study effects of each three-
spin interaction on the 3D-PAF phase sides of neighborhoods
of the SI and 3D-PAF phase boundaries. The parameters
(δ, q) were fixed to the six selected sets: Jnn

Jnn+Dnn
(δ, q) =

(−0.1, 0.6), (0.0,0.55), (0.1,0.5), (−0.1,−0.6), (0.0,−0.55),
and (0.1,−0.5). These correspond to the points 31–36 in
Fig. 3, which are in the proposed parameter ranges for the
QO sample [27]. The CMC simulations were carried out with
many three-spin coupling constants J3s,i in a range |J3s,i| <

0.2 K, where one J3s,i 
= 0 is finite and the other two J3s, j 
=i =
0. Resulting specific-heat data are plotted in Fig. 6 as color
maps of C(T, J3s,i ).

The temperature dependence of specific heat with J3s,i = 0,
C(T, J3s,i = 0) [Figs. 6(a–f)], is consistent with our previous

CMC simulation study [29], where a single first-order phase
transition occurs from the paramagnetic to 3D-PAF states. For
finite J3s,i 
= 0 another phase transition at a lower temperature
occurs, which is noticeably seen in Figs. 6(a3–f3). The lower
critical temperature is a phase transition to a state with both
quadrupole and magnetic LROs, as will be discussed later. We
note that the invariance of the Hamiltonian due to the transfor-
mation, σ+

r → −σ+
r and J3s,i → −J3s,i, is seen in Figs. 6(a–f)

as C(T, J3s,i ) � C(T,−J3s,i ). We also note that the symmetry
between positive-q and negative-q states for J3s,i = 0 does
not hold for J3s,i 
= 0, which is seen in Figs. 6(a–f) as, e.g.,
a fact that Fig. 6(a1) (q = 0.6) is different from Fig. 6(d1)
(q = −0.6). Intriguingly, this implies that it is possible to
distinguish the 3D-PAF (q > 0) order from the 3D-PAF (q <

0) order even though the quadrupole order is experimentally
invisible, if the three-spin interaction term is finite.

2. Specific heat in SI phase

To study effects of each three-spin interaction on the
SI phase sides of neighborhoods of the SI and 3D-PAF
phase boundaries, a number of 1024-site CMC simula-
tions were performed with the six selected parameter sets
of (δ, q): Jnn

Jnn+Dnn
(δ, q) = (−0.1, 0.5), (0.0,0.45), (0.1,0.4),

(−0.1,−0.5), (0.0,−0.45), and (0.1,−0.4). These corre-
spond to the points 37–42 in Fig. 3. The CMC simulations
were carried out with many three-spin coupling constants J3s,i

in a range |J3s,i| < 0.2 K, where one J3s,i 
= 0 is finite and the
other two J3s, j 
=i = 0. Resulting specific-heat data are plotted
in Fig. 7 as color maps of C(T, J3s,i ).

Figures 7(a–f) show that in each simulation there is a sin-
gle broad peak in the temperature dependence of C(T, J3s,i )
at T ∼ 0.3 K, which is the characteristic of the SI model,
and that no phase transition appears. These imply that the
mechanism expressed by Eq. (14) is much less clear, if the
quadrupole moments remain SRO. It seems that long-lived
fluctuations of quadrupole moments σ+

r do not well function
in the mechanism compared to the average 〈σ+

r 〉 within the
CMC simulations.

3. S(Q) in 3D-PAF phases (δ = 0)

Classical MC simulations were carried out with a larger
system size L = 10 (16 000 sites) to study effects of each
three-spin interaction on the structure factor S(Q). We calcu-
lated S(Q) in the 3D-PAF phases. Considering the results of
Sec. IV B 1, the parameters (δ, q) were fixed to the two sets:

Jnn
Jnn+Dnn

(δ, q) = (0.0, 0.55) and (0.0,−0.55), corresponding to
the points 32 and 35 in Fig. 3. The three-spin interaction con-
stant was fixed to two typical values: J3s,i = 0.1 and 0.15 K
(J3s, j 
=i = 0). Figure 8 shows the resulting intensity maps of
S(Q) which are calculated with the parameters corresponding
to the red circles in Figs. 6(b1–b3), and at two temperatures
0.2 and 0.35 K, below and above the phase transition tem-
perature of the 3D-PAF (q > 0) LRO. Figure 9 shows the
resulting intensity maps of S(Q) which are calculated with the
parameters corresponding to the red circles in Figs. 6(e1–e3),
and at 0.2 and 0.35 K, below and above the phase transition
temperature of the 3D-PAF (q < 0) LRO.

When the three-spin interactions are set to zero, the cal-
culated S(Q) with Jnn

Jnn+Dnn
q = 0.55 and −0.55, which are
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FIG. 7. (a)–(f) Specific heat C(T, J3s,i ) (i = 1, 2, 3; J3s, j 
=i =
0) calculated by the 1024-site CMC simulation are shown as
color maps: (w1) C(T, J3s,1), (w2) C(T, J3s,2), and (w3) C(T, J3s,3),
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Fig. 3.

Figs. 8(m,n) and Figs. 9(m,n), respectively, show almost the
same characteristics: the pinch-point structure of the SI is seen
around the  points (0,0,2) and (1,1,1), the intensity pattern
becomes weakened owing to the quadrupole order as tem-
perature is lowered below Tc, the intensity pattern is scarcely
affected by the quadrupole structures (q > 0 or q < 0).

When the three-spin interactions are switched on, S(Q)
at 0.35 K [Figs. 8(b,d,f,h,j,l) and 9(b,d,f,h,j,l)] show little
dependence on J3s,i, while S(Q) at 0.2 K [Figs. 8(a,c,e,g,i,k)
and 9(a,c,e,g,i,k)] show large changes depending on the value
of J3s,i. In particular, for J3s,3 = 0.15 K magnetic Bragg
peaks appear at 0.2 K [Figs. 8(i0) and 9(i0)]. This is consis-
tent with the interpretation that the second phase transitions
[Figs. 6(b3,e3)] are ascribed to magnetic ordering in addition
to the 3D-PAF LRO. We will not delve into these magnetic
phase transitions, order parameters, etc., in this study. The
magnetic LRO of the pyrochlore magnet Tb2Sn2O7 [69] may
possibly be accounted for by the three-spin interaction term.

The most interesting results of the calculated S(Q) are
those for J3s,3 = 0.1 K and q > 0 [Figs. 8(k,l)]. It is ob-
vious that the calculated S(Q) at 0.2 K [Fig. 8(k0)] bears
a resemblance to the observed S(Q) of TTO at 0.1 K

[Figs. 5(a0,c0,e0)], in a sense that they commonly show
peaks at Q = ( 1

2 , 1
2 , 1

2 ) and ( 1
2 , 1

2 , 3
2 ). In addition, the tem-

perature dependence of the calculated S(Q) shows that the
intensity pattern changes from the peaked structure around
Q = ( 1

2 , 1
2 , 1

2 ) at 0.2 K to a pinch-point-like pattern of the
classical SI at 0.35 K [Figs. 8(k,l)]. This roughly agrees
with the temperature variation of the observed S(Q) of TTO
[Figs. 5(a–d)]. In contrast, for J3s,3 = 0.1 K and q < 0 the
calculated S(Q) at 0.2 K [Fig. 9(k0)] shows a very differ-
ent intensity pattern from S(Q) shown in Fig. 8(k0). This
can be understood by the difference in the quadrupole or-
ders [Figs. 1(b,c)] and in the effective bilinear interactions
[Eq. (14)]. Thus, we can conclude that the CMC simulation
results suggest that a parameter set that should be further
investigated, especially using techniques for many-body quan-
tum states, is Jnn

Jnn+Dnn
(δ, q) ∼ (0.0, 0.55), J3s,1 = J3s,2 = 0,

and J3s,3

Jnn+Dnn
∼ 0.1 (or −0.1). We also conclude that the q < 0

sides of the phase diagrams (Figs. 1 and 3) can be excluded
from studies of TTO.

It should be noted that the interesting results [Figs. 8(k,
l)] are obtained for the parameters of the Hamiltonian, which
are close to the classical phase boundaries [Fig. 6(b3)]. The-
oretically, effects of proximity to phase boundaries separating
two or three LROs in the pyrochlore magnets were studied in
Refs. [43,70] based on the generic bilinear NN Hamiltonian.
It was shown that a disordered ground state can be induced
by nontrivial degeneracy of the order parameters around the
phase boundary. This mechanism may be related to that of the
disordered ground state of TTO.

4. Other results of S(Q)

To complement S(Q) shown in Sec. IV B 3 (Figs. 8 and
9) we performed several 16 000-site CMC simulations with
parameters Jnn

Jnn+Dnn
(δ, q) = (−0.1, 0.6), (0.1,0.5), (0.0,0.45),

and (0.0,−0.45) corresponding to the points 31, 33, 38,
and 41 in Fig. 3, respectively. These results are presented in
Appendices C and D.

C. Quantum simulations using TPQ states

Quantum simulations using the TPQ states were carried
out to confirm the classical MC results shown in Figs. 8(k0),
16(c0), and 17(c0). There were two practical problems. First,
since the computation was very time consuming, the number
of the simulations was limited to far less than that of the CMC
simulations. Second, since it was memory-intensive task, the
system size was limited to only 32 sites, which precluded us
from studying systematic size dependence. Thus, we had to
carefully interpret results of the simulations by paying partic-
ular attention to changes of results with varying interaction
parameters. For example, by comparing results with J3s,3 = 0
and J3s,3 
= 0 it was not difficult to discern effects of J3s,3

from those due to the small size. Based on this idea, many
32-site simulations using the TPQ states were carried out
using the Hamiltonian H0 + H3s with J3s,3/Jnn = 0.1 and 0,
where J3s,1 = J3s,2 = 0 were fixed to zero. The parameters
(δ, q) were systematically changed mainly on the q axis (δ =
0) in Fig. 1, where (δ, q) values we selected are indicated by
the red circles, the points 3–29.
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FIG. 8. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown in
Figs. 6(b1–b3) (J3s,i; i = 1, 2, 3; J3s, j 
=i = 0) and by the point 32 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (0.0, 0.55)]. They are viewed by 2D slices of

Q = (k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w = a–n], respectively. They are calculated
at two temperatures 0.2 K (a,c,e,g,i,k,m) and 0.35 K (b,d,f,h,j,l,n), below and above the phase transition temperature of the 3D-PAF (q > 0)
LRO. Intensity maps for J3s,1 = 0.15 and 0.1 K [Fig. 6(b1)] are shown in (a,b) and (c,d), respectively. Intensity maps for J3s,2 = 0.15 and 0.1 K
[Fig. 6(b2)] are shown in (e,f) and (g,h), respectively. Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 6(b3)] are shown in (i,j), (k,l), and
(m,n), respectively.

1. Specific heat and entropy on q axis

Several 32-site simulations using the cTPQ state with
the parameters (δ = 0, q) on the q axis were carried
out for J3s,3/Jnn = 0 and 0.1 (J3s,1 = J3s,2 = 0). Resulting
temperature dependence of specific heat C(T ) and entropy
S(T ) are plotted in Figs. 10 and 11. For J3s,3 = 0, C(T )
and S(T ) curves with positive q values [Figs. 10(a,c)] are
almost the same as corresponding curves with negative q
[Figs. 10(b,d)]. This fact [C(T, q) = C(T,−q), S(T, q) =
S(T,−q)] reflects the invariance of the Hamiltonian H0 under
the transformation of rotating σr about the local zr axis by
π/2 and q → −q. For J3s,3 
= 0 this invariance does not hold,
resulting in C(T, q) 
= C(T,−q) [Figs. 11(a,b)] and S(T, q) 
=
S(T,−q) [Figs. 11(c,d)].

For J3s,3/Jnn = 0, each curve of C(T ) and S(T ) (Fig. 10)
with q in a range 0 � |q| � 0.45 has a single broad
peak [Figs. 10(a,b)] and an entropy plateau (S � 0.25)
[Figs. 10(c,d)], respectively. These behaviors are the charac-
teristics of the classical SI [Fig. 4(b)], which are expected also
for QSI at intermediate temperatures [38]. The discrepancy
of the value of the entropy plateau S � 0.25 from the the
Pauling entropy S = 1

2 ln 3
2 may be caused by a small size

effect. Each curve of C(T ) and S(T ) (Fig. 10) with q in
a range |q| � 0.5 has a low-T peak and the zero-T limit
S(T → 0) � 0, respectively. The low-T peak of C(T ), which
is similar to that of Fig. 4(c), implies that a phase transition
to a quadrupole-ordered state occurs. These results shown
in Fig. 10 for J3s,3/Jnn = 0 suggest that the quantum phase
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FIG. 9. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown in
Figs. 6(e1–e3) (J3s,i; i = 1, 2, 3; J3s, j 
=i = 0) and by the point 35 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (0.0,−0.55)]. They are viewed by 2D slices of

Q = (k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w=a–n], respectively. They are calculated
at two temperatures 0.2 K (a,c,e,g,i,k,m) and 0.35 K (b,d,f,h,j,l,n), below and above the phase transition temperature of the 3D-PAF (q < 0)
LRO. Intensity maps for J3s,1 = 0.15 and 0.1 K [Fig. 6(e1)] are shown in (a,b) and (c,d), respectively. Intensity maps for J3s,2 = 0.15 and 0.1 K
[Fig. 6(e2)] are shown in (e,f) and (g,h), respectively. Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 6(e3)] are shown in (i,j), (k,l), and
(m,n), respectively.

boundaries on the q axis are not very different from the clas-
sical phase boundaries |qc| = 1

2 (δ = 0, Fig. 1).
For J3s,3/Jnn = 0.1, each curve of C(T ) and S(T ) (Fig. 11)

with q in a range −0.4 � q � 0.45 has a single broad
peak [Figs. 11(a,b)] and the entropy plateau (S � 0.25)
[Figs. 11(c,d)], respectively. These can be understood by
the classical SI behaviors expected for QSI at intermediate
temperatures. The upturn of C(T ) [Figs. 11(a,b)] and the
downturn of S(T ) [Figs. 11(c,d)] in a low-T range of T/Jnn <

0.2 suggest certain QSL behavior [38] or/and an artifact
caused by the small size [Fig. 4(b)]. It seems difficult to
correctly draw information from low-T data in T/Jnn < 0.2.
This sort of difficulty due to the small system size has been ob-

served in studies of the frustrated Heisenberg antiferromagnet
on the kagome lattice at low temperatures [49,51,68].

For J3s,3/Jnn = 0.1, each curve of C(T ) and S(T ) (Fig. 11)
with q in ranges q � 0.6 and q � −0.55 has a low-T peak and
the zero-T limit S(T → 0) � 0, respectively. The low-T peak
of C(T ) [Figs. 11(a,b)], which is similar to that of Fig. 4(c),
implies that a phase transition to a quadrupole-ordered state
occurs. The low-T peaks of C(T ) with q = −0.45,−0.5
[Fig. 11(b)] could also be understood by Tc of the quadrupole
LRO, although these are less clear. On the other hand, the low-
T behavior of C(T ) with q = 0.5, 0.55 [Fig. 11(a)] suggests
that something different happens at low temperatures. These
C(T ) curves show roughly the behavior of C(T ) ∼ const in
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T/Jnn < 1, which is reminiscent of C(T ) data of the TTO
experiments [24]. Intriguingly, the Hamiltonian with one of
these parameters, q = 0.55, is one of the candidates for TTO
suggested by the CMC simulations [Fig. 8(k0)].

2. S(Q) on q axis (q � 0)

We calculated S(Q) and the expectation values of pseu-
dospin correlations using the mTPQ method [Eqs. (7) and (8)]
to take a closer look at temperature and q dependence of the
states. By choosing two typical temperatures T/Jnn = 1 and
0.2, which are above and below the specific heat peak (or
bump), 2D slice view data of S(Q) and 〈σα

Qσα
−Q〉 (α = z, x) in

the plane Q = (h, h, l ) were calculated. These 2D slices with
the parameters (δ = 0, q � 0), the points 3–12 in Fig. 1, for
J3s,3/Jnn = 0 and 0.1 (J3s,1 = J3s,2 = 0) are shown in Figs. 12
and 13, respectively.

For J3s,3/Jnn = 0 and (δ, q) = (0, 0), i.e., the classi-
cal SI model, S(Q) and 〈σα

Qσα
−Q〉 (α = z, x) are shown

in Figs. 12(j1–j6). Since there is no interaction between
quadrupole moments, 〈σ x

Qσ x
−Q〉 [Figs. 12(j3,j6)] do not de-

pend on Q. Wave-vector dependence of S(Q) [Figs. 12(j1,j4)]
and 〈σ z

Qσ z
−Q〉 [Figs. 12(j2,j5)] show intensity patterns which

scarcely appear in simulations of pyrochlore magnets. They
probably reflect the periodic 32-site cluster because 〈σ z

Qσ z
−Q〉

[Figs. 12(j2,j5)] bear a resemblance to Fig. 6 of Ref. [56],
in which a DMRG technique on the 32-site cluster was used
for the Heisenberg antiferromagnet on the pyrochlore lattice
[(δ, q) = (1, 0)]. In addition, owing to the 32-site cluster with-
out the cubic symmetry, S(Q), 〈σ z

Qσ z
−Q〉, and 〈σ x

Qσ x
−Q〉 show

distinct intensity patterns along the [111] and [111̄] directions.
Therefore, the intensity pattern of S(Q) [Figs. 12(j1,j4)] can
be regarded as a 32-site-cluster version of the classical SI. We
note that for large clusters the pattern should be characterized
by the pinch point [see Fig. 3 of Ref. [38], Fig. 18(n0), etc.].

For J3s,3/Jnn = 0 and (δ, q) = (0, 0.7), where the system
has the ground state with the 3D-PAF (q > 0) quadrupole
order (Fig. 1), S(Q) and 〈σα

Qσα
−Q〉 (α = z, x) are shown in

Figs. 12(a1–a6). Bragg-type peaks due to the 3D-PAF (q > 0)
order are seen in 〈σ x

Qσ x
−Q〉 [Fig. 12(a3)] at Q = (1, 1, 1) and

(1,1,3). While S(Q) [Fig. 12(a1)] and 〈σ z
Qσ z

−Q〉 [Fig. 12(a2)]
at T/Jnn = 0.2 show magnetic SRO patterns which resemble
those of the classical SI [Figs. 12(j1,j2)], although intensities
become weaker.

For J3s,3/Jnn = 0 and (δ = 0, 0 < q < 0.7), S(Q) and
〈σα

Qσα
−Q〉 (α = z, x) [Figs. 12(b–i)] continuously change in

the range 0 < q < 0.7, i.e., from the classical SI to the
3D-PAF (q > 0) order. At T/Jnn = 0.2 and around q = 0.5
[Figs. 12(c1–e1,c2–e2,c3–e3)] they change steeply as a func-
tion of q, which is in agreement with the q dependence of
C(T ) curves [Fig. 10(a)]. This steep change can be ascribed to
a first-order phase transition at T = 0 in the thermodynamic
limit N → ∞ [31,32].

For J3s,3/Jnn = 0.1, at T/Jnn = 1 S(Q) [Figs. 13(a4–j4)]
and 〈σα

Qσα
−Q〉 (α = z, x) [Figs. 13(a5–j5,a6–j6)] are almost the

same as those for J3s,3/Jnn = 0 [Figs. 12(a4–j4,a5–j5,a6–j6)].
This means that at this temperature kBT is much larger than
the energy scale of the three-spin interaction. On the other
hand, at T/Jnn = 0.2 S(Q) [Figs. 13(a1–j1)] and 〈σα

Qσα
−Q〉

(α = z, x) [Figs. 13(a2–j2,a3–j3)] are very different from

those for J3s,3/Jnn = 0 [Figs. 12(a1–j1,a2–j2,a3–j3)]. This im-
plies that kBT becomes comparable to (or lower than) the
energy scale of the three-spin interaction.

For J3s,3/Jnn = 0.1 and at T/Jnn = 0.2, S(Q) with q in
a range 0 � q � 0.4 [Figs. 13(f1–j1)] show mutually sim-
ilar intensity patterns, which are very different from those
for J3s,3/Jnn = 0 [Figs. 12(f1–j1)]. This difference can be
brought about by lifting the SI degeneracy due to the three-
spin interaction, which is probably small, because S(T )
curves (0 � q � 0.4) plotted in Figs. 10(c) and 11(c) show
only slight difference between J3s,3/Jnn = 0.1 and 0 in
T/Jnn > 0.2.

For J3s,3/Jnn = 0.1 and at T/Jnn = 0.2, S(Q) with q =
0.5, 0.55, 0.6 [Figs. 13(b1–d1)] show a novel intensity pat-
tern characterized by magnetic spin correlations with k ∼
( 1

2 , 1
2 , 1

2 ). These spin correlations roughly agree with those
of the CMC results [Figs. 8(k0),16(c0), and 17(c0)]. There-
fore, we may conclude that the spin correlations of TTO
[Figs. 5(a0,c0,e0)] can be basically accounted for by these
TPQ and CMC results, although detailed structures of the
intensity patterns are not the same. In other words, the TPQ
results suggest that the effective Hamiltonian minimally de-
scribing TTO is H0 + H3s with J3s,1 = J3s,2 = 0, J3s,3/Jnn ∼
0.1 (or −0.1) and the parameters (δ, q) in the region which is
enclosed by the red dashed line in Fig. 1, where δ 
= 0 will
be discussed in Appendix E. Another interesting point one
can see from Figs. 13(c1–c3,d1–d3) is that 〈σ x

Qσ x
−Q〉 with q =

0.5, 0.55 [Figs. 13(c3,d3)] show broad peaks around  points,
i.e., electric quadrupole correlations with k ∼ 0. These re-
sults [Figs. 13(c1–c3,d1–d3)] imply that the magnetic dipole
correlations and electric quadrupole correlations coexist at
T/Jnn = 0.2. This coexistence may possibly continue down
to T = 0.

3. S(Q) on q axis (q < 0)

Two-dimensional slices of S(Q) and 〈σα
Qσα

−Q〉 (α = z, x)
calculated with the parameters (δ = 0, q < 0), the points 13–
21 in Fig. 1, for J3s,3/Jnn = 0 and 0.1 (J3s,1 = J3s,2 = 0) are
shown in Figs. 14 and 15, respectively.

For J3s,3/Jnn = 0, S(Q) [Figs. 14(a1–i1,a4–i4)] and
〈σ z

Qσ z
−Q〉 [Figs. 14(a2–i2,a5–i5)] are the same as those with

(δ = 0, q > 0) [Figs. 12(a1–i1,a4–i4) and 12(a2–i2,a5–i5)],
while 〈σ x

Qσ x
−Q〉 [Figs. 14(a3–i3,a6–i6)] are different from

those with (δ = 0, q > 0) [Figs. 12(a3–i3,a6–i6)]. These are
consequences of the invariance of H0 under the transforma-
tion of rotating σr about the local zr axis by π/2 and q → −q,
confirming the correctness of the simulations using the TPQ
states.

For J3s,3/Jnn = 0.1 and at T/Jnn = 0.2, S(Q) and 〈σ z
Qσ z

−Q〉
with q � −0.45 [Figs. 15(a1–e1,a2–e2)] are different from
those with q � 0.45 [Figs. 13(a1–e1,a2–e2)], which results
from breaking of the invariance for H0 + H3s. In relation
to the analysis of TTO, none of S(Q) [Figs. 15(a1–e1)]
show spin correlations with k ∼ ( 1

2 , 1
2 , 1

2 ), which is in agree-
ment with the CMC results with q < 0 (Figs. 9 and 19).
Therefore, we conclude again that the q < 0 side of the
phase diagram (Fig. 1) can be excluded from studies of
TTO.
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FIG. 12. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–j] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0 (J3s,1 = J3s,2 = 0) with parameters (δ = 0, q � 0), the points 3–12 in Fig. 1.
The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–j], respectively.

For J3s,3/Jnn = 0 and (δ = 0,−0.7 < q < 0), S(Q) and
〈σα

Qσα
−Q〉 (α = z, x) [Figs. 14(b–i)] continuously change in

the range −0.7 < q < 0, i.e., from the classical SI to
the 3D-PAF (q < 0) order. At T/Jnn = 0.2 and around

q = −0.5 [Figs. 14(c1–e1,c2–e2,c3–e3)] they change very
steeply as a function of q, which is consistent with
the q dependence of C(T ) [Fig. 10(b)]. This steep
change can be ascribed to a first-order phase tran-
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FIG. 13. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–j] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0.1 (J3s,1 = J3s,2 = 0) with parameters (δ = 0, q � 0), the points 3–12 in Fig. 1.
The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–j], respectively.

sition at T = 0 in the thermodynamic limit N → ∞
[31,32].

For J3s,3/Jnn = 0.1 and (δ = 0,−0.7 < q < 0), S(Q) and
〈σα

Qσα
−Q〉 (α = z, x) [Figs. 15(b–i)] continuously change in

the range −0.7 < q < 0. At T/Jnn = 0.2 and around q =
−0.5 [Figs. 15(c1–e1,c2–e2,c3–e3)] they change very steeply
as a function of q, which is consistent with the q depen-
dence of C(T ) [Fig. 11(b)]. This steep change suggests a
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FIG. 14. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–i] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0 (J3s,1 = J3s,2 = 0) with parameters (δ = 0, q < 0), the points 13–21 in Fig. 1.
The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–i], respectively.

first-order phase transition at T = 0 because the variation of
〈σ x

Qσ x
−Q〉 [Figs. 15(c3–e3)] is as steep as that for J3s,3/Jnn =

0 [Figs. 14(c3–e3)]. In contrast, S(Q) and 〈σα
Qσα

−Q〉 (α =
z, x) for J3s,3/Jnn = 0.1 vary much more gradually around
q = 0.5 at T/Jnn = 0.2 [Figs. 13(c1–e1,c2–e2,c3–e3)], which
is consistent with the corresponding q dependence of C(T )
[Fig. 11(a)]. These suggest a possibility that at T = 0
there is another disordered ground state in the vicinity of
(δ, q) = (0, 0.5), i.e., between the QSI and 3D-PAF (q > 0)

states, in the quantum phase diagram with J3s,3/Jnn = 0.1
(Fig. 1).

4. Results of C(T ), S(T ), and S(Q) for δ �= 0

To complement the simulation results on the q axis
shown in Secs. IV C 1–IV C 3 a few 32-site simulations us-
ing the TPQ states with the eight sets of the parameters
(δ = ±0.1, q), the points 22–29 in Fig. 1, were carried out
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FIG. 15. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–i] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0.1 (J3s,1 = J3s,2 = 0) with parameters (δ = 0, q < 0), the points 13–21 in
Fig. 1. The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–i], respectively.

for J3s,3/Jnn = 0 and 0.1 (J3s,1 = J3s,2 = 0). These results are
presented in Appendix E.

V. DISCUSSION

An answer to the initial question “why does S(Q) of TTO
show the spin correlations with k ∼ ( 1

2 , 1
2 , 1

2 )?” has been
obtained by the results of the CMC simulations and the quan-
tum simulations using the TPQ states to a certain extent. It

is an effect of one of the three-spin interactions, the i = 3
term of H3s [Eq. (3)]. This answer seems to provide basic
understanding of TTO because of the following affirma-
tive background reasoning or/and narratives. The three-spin
interaction term is naturally expected from a perturbation ex-
pansion via virtual CF excitations [35,40]. The magnitude of
J3s,3 is consistent with this perturbation theory. Since the cou-
pling constant J3s,3 is an order smaller than Jnn, the three-spin
interaction affects the spin correlations only at low temper-
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atures and only if the system is located close to classical
phase boundaries of the three states: the SI state, the 3D-PAF
(q > 0) quadrupole-ordered state, and the state possessing
both the quadrupole and magnetic orders. This proximity
to the phase boundaries may have a profound theoretical
meaning [43,57,70]. In the CMC simulation, where thermal
fluctuations disappear at T = 0, the spin correlations with
k ∼ ( 1

2 , 1
2 , 1

2 ) appear in the intermediate temperature ranges.
In contrast, the quantum simulation suggests that the spin cor-
relations exist down to T = 0 owing to quantum fluctuations.

However, there remain unresolved problems, mainly be-
cause the simulation methods are far from perfect. Although
there are obviously the peaked structures with k ∼ ( 1

2 , 1
2 , 1

2 )
in the simulated S(Q), these do not quantitatively reproduce
the experimentally observed S(Q). It is likely that the number
of model parameters has to be increased for better fitting.
The small size effect of the 32-site quantum simulation makes
its results obscure and its interpretation difficult especially at
low temperatures. As discussed in Ref. [35] the modeling of
TTO is a nontrivial problem. In this work, we deal with the
excited CF doublet state perturbatively, i.e., state vectors in
the Hilbert space consisting of one doublet state per site. A
larger Hilbert space, i.e., two doublet states per site may have
to be taken into account [71]. Therefore, much work will have
to be performed to solve the conundrum of TTO.

The electric quadrupole (multipole) operators represent
the deformation of the f -electron charge density of Tb3+,
and inevitably couple to displacements of surrounding atoms
[33,72–75]. An interesting point of the quantum simulation
results is that the quadrupole correlations coexist with the
spin correlations [Figs. 13(c1–c3,d1–d3)]. If this is really the
case for QSL samples of TTO, it will be fascinating to ob-
serve these quadrupole correlations or/and correlated lattice
deformations associated with them, which is a challenging
experimental task.

Several neutron scattering experiments were performed
on TTO samples, of which stoichiometries are mostly un-
known. They showed that spin correlations are clearly
seen in energy-resolution-limited (nominally and instrument-
dependent) elastic scattering at low temperatures. Spin
correlations were reported to show many features including
the three main features: magnetic SRO with k ∼ ( 1

2 , 1
2 , 1

2 )
[76–79], pinch-point-like structures at k ∼ 0 [77,78], and tiny
Bragg reflections at k = ( 1

2 , 1
2 , 1

2 ) and k = 0 [24,27]. These
may have to be revisited using well-controlled TTO samples
and under well-tuned instrumental conditions.

It should be noted that the spin correlations, i.e., neu-
tron scattering intensity patterns, reported in Refs. [77,78]
are significantly different from those shown in Fig. 5, which
has been puzzling for many years. On the other hand, the
intensity patterns [77,78] show a similarity to those of the
related pyrochlore magnet Tb2Hf2O7, which has a strongly
disordered structure [21]. These experimental facts possibly
suggest that there is another QSL state in TTO which is
changed by a structural disorder for a stoichiometry range
x > 0.04, where QO is suppressed and the system remains
paramagnetic down to the lowest temperatures [Fig. 4(b) in
[25]]. If one assumes that there are site-random quadrupole
moments 〈σ+

r 〉 fixed by defects, QO can be suppressed by
a random-field mechanism [80,81]. The site random 〈σ+

r 〉

may give rise to magnetic bond-random interactions due to
the three-spin interaction [Eq. (14)] and significantly modify
spin correlations. At present, disorder effects in pyrochlore
magnets are little understood.

VI. CONCLUSIONS

We have studied spin correlations characterized by the
modulation wave vector k ∼ ( 1

2 , 1
2 , 1

2 ) observed in the puta-
tive QSL pyrochlore magnet Tb2+xTi2−xO7+y [26,34]. Since
they could not be accounted for by adding further-neighbor
magnetic interactions to the NN pseudospin- 1

2 Hamiltonian
proposed in Ref. [27], in this work we have explored another
possibility of adding a three-spin interaction term of a form
σ±

r σ z
r′σ

z
r′′ , which is a correction to the Hamiltonian due to the

low crystal-field excitation.
Classical MC simulation and quantum simulation using

the TPQ states are applied to analyze experimentally ob-
served structure factor S(Q). The simulation results show that
spin correlations with k ∼ ( 1

2 , 1
2 , 1

2 ), coexisting with electric
quadrupole correlations with k ∼ 0, are induced at low tem-
peratures by the three-spin interaction. The results suggest
that the QSL state of Tb2+xTi2−xO7+y is located close to
phase boundaries of the spin-ice, quadrupole-ordered, and
both quadrupole- and magnetic-ordered states in the classi-
cal approximation, and that the three-spin interaction brings
about a quantum disordered ground state with both spin and
quadrupole correlations.

As a by-product, the quantum simulation roughly repro-
duces the puzzling behavior of specific heat C(T ) ∼ const,
which was experimentally observed at low temperatures.
Therefore, we conclude that the classical and quantum simu-
lation results suggest that the effective Hamiltonian minimally
describing Tb2+xTi2−xO7+y is H0 + H3s [Eqs. (1) and (3)]
with J3s,1 = J3s,2 = 0, J3s,3/Jnn ∼ 0.1 (or −0.1) and the pa-
rameters (δ, q) in the region which is enclosed by the red
dashed line in Fig. 1. A novel viewpoint of the QSL state
of Tb2+xTi2−xO7+y and/or elaborate theories which quan-
titatively reproduce the spin correlations will be hopefully
constructed based on this work.
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APPENDIX A: CF GROUND-STATE DOUBLET, LATTICE
SITES, ETC.

The CF ground-state doublet of TTO at each site is written
by

| ± 1〉D = A| ∓ 4〉 ± B| ∓ 1〉 + C| ± 2〉 ∓ D| ± 5〉, (A1)
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TABLE I. Four crystallographic sites dν and their local symme-
try axes xν , yν , and zν . These coordinates are defined using (global)
cubic XYZ axes shown in Fig. 1(a). The four sites dν are illustrated
by vertices with light blue numbers (ν = 1–4) of a tetrahedron in
Fig. 1(a).

ν dν xν yν zν

1 1
4 (0, 0, 0) 1√

6
(1, 1, −2) 1√

2
(−1, 1, 0) 1√

3
(1, 1, 1)

2 1
4 (0, 1, 1) 1√

6
(1, −1, 2) 1√

2
(−1, −1, 0) 1√

3
(1, −1, −1)

3 1
4 (1, 0, 1) 1√

6
(−1, 1, 2) 1√

2
(1, 1, 0) 1√

3
(−1, 1, −1)

4 1
4 (1, 1, 0) 1√

6
(−1, −1, −2) 1√

2
(1,−1, 0) 1√

3
(−1,−1, 1)

where |m〉 stands for the |J = 6, m〉 state within a JLS mul-
tiplet [82]. The coefficients of Eq. (A1) are A = 0.9581, B =
0.1284, C = 0.1210, and D = 0.2256 using the CF param-
eters of Ref. [83]. Magnetic-dipole and electric-quadrupole
moment operators [84] within |±1〉D are proportional to the
Pauli matrices σα (α = x, y, z) and the unit matrix [28,85].
The magnetic dipole moment operators are given by

Jx = Jy = 0,

Jz = −(4A2 + B2 − 2C2 − 5D2)σ z. (A2)

The electric quadrupole moment operators are expressed as

1

2

[
3J2

z − J (J + 1)
] = 3A2 − 39

2
B2 − 15C2 + 33

2
D2,

√
3

2

[
J2

x − J2
y

] =
(

−21
√

3

2
B2 + 9

√
10AC

)
σ x,

√
3

2
[JxJy + JyJx] = −

(
−21

√
3

2
B2 + 9

√
10AC

)
σ y,

√
3

2
[JzJx + JxJz] = −

(
3
√

30BC + 9

√
33

2
AD

)
σ x,

√
3

2
[JyJz + JzJy] = −

(
3
√

30BC + 9

√
33

2
AD

)
σ y. (A3)

The operators σα
r of Eq. (1) act on | ± 1〉D at each py-

rochlore lattice site r = tn + dν , where tn is an fcc translation
vector and dν (ν = 1, 2, 3, and 4) are four crystallographic
sites in the unit cell. Coordinates of the sites dν and their
local axes xν , yν , and zν are listed in Table I. Under these
definitions the effective Hamiltonian is described by Eq. (1)
with the phases φr,r′ listed in Table II [31].

TABLE II. Phases φr,r′ of the quadrupole interactions
Jnn2q exp[i2φr,r′ ]σ+

r σ+
r′ + H.c. [Eq. (1)], where r = tn + dν

and r′ = tn′ + dν′ .

ν ν ′ r′ − r φr,r′
/(

2π

3

)
1 2 1

4 (0, 1, 1) −1

1 3 1
4 (1, 0, 1) 1

1 4 1
4 (1, 1, 0) 0

2 3 1
4 (1, −1, 0) 0

2 4 1
4 (1, 0, −1) 1

3 4 1
4 (0, 1, −1) −1

TABLE III. Phases φ
(1)
r,r′,r′′ of the type i = 1 three-spin interaction

J3s,1 exp[iφ (1)
r,r′,r′′ ]σ

+
r σ z

r′σ
z
r′′ + H.c. [Eq. (3)], where r = tn + dν , r′ =

tn′ + dν′ , and r′′ = tn′′ + dν′′ . The site triplet 〈r, r′, r′′〉 of the first line
is illustrated in Fig. 2(a).

ν ν ′ ν ′′ r′ − r r′′ − r φ
(1)
r,r′,r′′

/(
2π

3

)
1 2 2 1

4 (0, 1, 1) 1
4 (0,−1, −1) −1

1 3 3 1
4 (1, 0, 1) 1

4 (−1, 0, −1) 1

1 4 4 1
4 (1, 1, 0) 1

4 (−1,−1, 0) 0

2 1 1 1
4 (0, 1, 1) 1

4 (0,−1, −1) −1

2 3 3 1
4 (1, −1, 0) 1

4 (−1, 1, 0) 0

2 4 4 1
4 (1, 0, −1) 1

4 (−1, 0, 1) 1

3 1 1 1
4 (1, 0, 1) 1

4 (−1, 0, −1) 1

3 2 2 1
4 (1, −1, 0) 1

4 (−1, 1, 0) 0

3 4 4 1
4 (0, 1, −1) 1

4 (0, −1, 1) −1

4 1 1 1
4 (1, 1, 0) 1

4 (−1,−1, 0) 0

4 2 2 1
4 (1, 0, −1) 1

4 (−1, 0, 1) 1

4 3 3 1
4 (0, 1, −1) 1

4 (0, −1, 1) −1

TABLE IV. Phases φ
(2)
r,r′,r′′ of the type i = 2 three-spin interaction

J3s,2 exp[iφ (2)
r,r′,r′′ ]σ

+
r σ z

r′σ
z
r′′ + H.c. [Eq. (3)], where r = tn + dν , r′ =

tn′ + dν′ , and r′′ = tn′′ + dν′′ . The site triplet 〈r, r′, r′′〉 of the first line
is illustrated in Fig. 2(b).

ν ν ′ ν ′′ r′ − r r′′ − r φ
(2)
r,r′,r′′

/(
2π

3

)
1 2 3 1

4 (0, 1, 1) 1
4 (1, 0, 1) 0

1 2 3 1
4 (0, −1, −1) 1

4 (−1, 0, −1) 0

1 2 4 1
4 (0, −1, −1) 1

4 (−1, −1, 0) 1

1 2 4 1
4 (0, 1, 1) 1

4 (1, 1, 0) 1

1 3 4 1
4 (−1, 0, −1) 1

4 (−1, −1, 0) −1

1 3 4 1
4 (1, 0, 1) 1

4 (1, 1, 0) −1

2 1 3 1
4 (0, −1, −1) 1

4 (1,−1, 0) 1

2 1 3 1
4 (0, 1, 1) 1

4 (−1, 1, 0) 1

2 1 4 1
4 (0, −1, −1) 1

4 (1, 0, −1) 0

2 1 4 1
4 (0, 1, 1) 1

4 (−1, 0, 1) 0

2 3 4 1
4 (−1, 1, 0) 1

4 (−1, 0, 1) −1

2 3 4 1
4 (1,−1, 0) 1

4 (1, 0, −1) −1

3 1 2 1
4 (−1, 0, −1) 1

4 (−1, 1, 0) −1

3 1 2 1
4 (1, 0, 1) 1

4 (1,−1, 0) −1

3 1 4 1
4 (−1, 0, −1) 1

4 (0, 1, −1) 0

3 1 4 1
4 (1, 0, 1) 1

4 (0,−1, 1) 0

3 2 4 1
4 (−1, 1, 0) 1

4 (0, 1, −1) 1

3 2 4 1
4 (1,−1, 0) 1

4 (0,−1, 1) 1

4 1 2 1
4 (−1, −1, 0) 1

4 (−1, 0, 1) −1

4 1 2 1
4 (1, 1, 0) 1

4 (1, 0, −1) −1

4 1 3 1
4 (−1, −1, 0) 1

4 (0,−1, 1) 1

4 1 3 1
4 (1, 1, 0) 1

4 (0, 1, −1) 1

4 2 3 1
4 (−1, 0, 1) 1

4 (0,−1, 1) 0

4 2 3 1
4 (1, 0, −1) 1

4 (0, 1, −1) 0
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TABLE V. Phases φ
(3)
r,r′,r′′ of the type i = 3 three-spin interaction

J3s,3 exp[iφ (3)
r,r′,r′′ ]σ

+
r σ z

r′σ
z
r′′ + H.c. [Eq. (3)], where r = tn + dν , r′ =

tn′ + dν′ , and r′′ = tn′′ + dν′′ . The site triplet 〈r, r′, r′′〉 of the first line
is illustrated in Fig. 2(c).

ν ν ′ ν ′′ r′ − r r′′ − r φ
(3)
r,r′,r′′

/(
2π

3

)
1 2 3 1

4 (0, −1, −1) 1
4 (1, 0, 1) 0

1 2 3 1
4 (0, 1, 1) 1

4 (−1, 0, −1) 0

1 2 4 1
4 (0, −1, −1) 1

4 (1, 1, 0) 1

1 2 4 1
4 (0, 1, 1) 1

4 (−1, −1, 0) 1

1 3 4 1
4 (−1, 0, −1) 1

4 (1, 1, 0) −1

1 3 4 1
4 (1, 0, 1) 1

4 (−1, −1, 0) −1

2 1 3 1
4 (0, −1, −1) 1

4 (−1, 1, 0) 1

2 1 3 1
4 (0, 1, 1) 1

4 (1,−1, 0) 1

2 1 4 1
4 (0, −1, −1) 1

4 (−1, 0, 1) 0

2 1 4 1
4 (0, 1, 1) 1

4 (1, 0, −1) 0

2 3 4 1
4 (−1, 1, 0) 1

4 (1, 0, −1) −1

2 3 4 1
4 (1, −1, 0) 1

4 (−1, 0, 1) −1

3 1 2 1
4 (−1, 0, −1) 1

4 (1,−1, 0) −1

3 1 2 1
4 (1, 0, 1) 1

4 (−1, 1, 0) −1

3 1 4 1
4 (−1, 0, −1) 1

4 (0,−1, 1) 0

3 1 4 1
4 (1, 0, 1) 1

4 (0, 1, −1) 0

3 2 4 1
4 (−1, 1, 0) 1

4 (0,−1, 1) 1

3 2 4 1
4 (1, −1, 0) 1

4 (0, 1, −1) 1

4 1 2 1
4 (−1, −1, 0) 1

4 (1, 0, −1) −1

4 1 2 1
4 (1, 1, 0) 1

4 (−1, 0, 1) −1

4 1 3 1
4 (−1, −1, 0) 1

4 (0, 1, −1) 1

4 1 3 1
4 (1, 1, 0) 1

4 (0,−1, 1) 1

4 2 3 1
4 (−1, 0, 1) 1

4 (0, 1, −1) 0

4 2 3 1
4 (1, 0,−1) 1

4 (0,−1, 1) 0

APPENDIX B: THREE-SPIN INTERACTION

Following Refs. [35,40], the three-spin interactions con-
sist of terms with a form (cσ+

r + c∗σ−
r )σ z

r′σ
z
r′′ , where the site

triplet 〈r, r′, r′′〉 satisfies geometrical conditions: 〈r, r′〉 and
〈r, r′′〉 are NN site pairs, the site r′ is different from r′′. Under
these conditions the three-spin interaction term can be ex-
pressed by Eq. (3) with unknown phases φ

(i)
r,r′,r′′ . By imposing

the condition that the three-spin interaction term is invariant
under the space-group symmetry (Fd 3̄m, No. 227), it is not
difficult to determine the phases using the symmetry method
employed for the two-spin interaction term of pyrochlore
magnets [31,86,87]. The phases φ

(i)
r,r′,r′′ with i = 1, 2, and 3

are listed in Tables III–V, respectively.

APPENDIX C: CMC SIMULATION RESULTS: S(Q) IN
3D-PAF (q > 0) PHASE δ �= 0

To complement the simulation results of S(Q) shown in
Figs. 8(i–n), we performed a few 16 000-site CMC sim-
ulations with slightly different parameters: Jnn

Jnn+Dnn
(δ, q) =

(−0.1, 0.6) and (0.1,0.5), corresponding to the points 31 and
33 in Fig. 3, respectively. The three-spin interaction constants
were fixed to J3s,1 = J3s,2 = 0 and J3s,3 = 0, 0.1, 0.15 K. Fig-

ures 16 and 17 show the resulting intensity maps of S(Q)
which were calculated with the parameters corresponding to
the red circles in Figs. 6(a3) and 6(c3), respectively, and at
two temperatures 0.2 and 0.35 K, below and above the phase
transition temperature of the 3D-PAF (q > 0) LRO.

The calculated S(Q) of Figs. 16(a–f) and 17(a–f) bear close
resemblances to S(Q) of Figs. 8(i–n). This is in parallel with
the analyses of Ref. [27], in which the acceptable parameter
range we proposed has the elongated shape (Fig. 3). Thus, we
can conclude that the parameter sets used for Figs. 16(c,d)
and 17(c,d) are also candidates for the further investigation.
We note that S(Q) maps of Figs. 16(a,c) and 17(a,c), which
are obtained from simulations at 0.2 K with J3s,3 = 0.15 and
0.1, show certain difference from those of Figs. 8(i,k). This
may be caused by high degeneracy due to proximity to the
SI phase boundary, where the S(Q) map is easily changed by
small perturbations. To obtain better fit of the calculated S(Q)
to the observed S(Q) of TTO, we have tried several parameter
adjustments by adding small parameters: J3s,1, J3s,2, second-
and third-neighbor magnetic exchange couplings (J2, J3, J4

[34]). The fit, however, could not be improved.

APPENDIX D: CMC SIMULATION RESULTS:
S(Q) IN SI PHASE

Several 16 000-site CMC simulations were performed to
study effects of each three-spin interaction on S(Q) on the SI
phase sides of neighborhoods of the SI and 3D-PAF phase
boundaries. Considering the results of Sec. IV B 2, the pa-
rameters (δ, q) were fixed to the two sets: Jnn

Jnn+Dnn
(δ, q) =

(0.0, 0.45) and (0.0,−0.45), the points 38 and 41 in Fig. 3.
The three-spin interaction constant was fixed to two typical
values: J3s,i = 0.1 and 0.15 K (J3s, j 
=i = 0). Figure 18 shows
the resulting intensity maps of S(Q) which are calculated with
the parameters corresponding to the red circles in Figs. 7(b1–
b3), and at 0.2 and 0.35 K, below and above the specific
heat peak. Figure 19 shows the resulting intensity maps of
S(Q) which are calculated with the parameters corresponding
to the red circles in Figs. 7(e1–e3), and at 0.2 and 0.35 K,
below and above the specific-heat peak. One can notice that
statistical errors of S(Q) at 0.2 K shown in Figs. 18 and 19
are much larger than those in Figs. 8 and 9. This indicates that
pseudospin fluctuations are considerably slowed down in the
SI phase within the CMC simulation.

When the three-spin interactions are set to zero, the calcu-
lated intensity maps with Jnn

Jnn+Dnn
q = 0.45 and −0.45, which

are Figs. 18(m,n) and 19(m,n), respectively, show almost the
same characteristics: the pinch-point structure of SI is seen
around the  points (0,0,2) and (1,1,1), the intensity pattern
becomes strengthened as temperature is lowered below the
specific-heat peak. The intensity pattern is scarcely affected
by the sign of the parameter q.

When the three-spin interactions are switched on, S(Q) at
0.35 K [Figs. 18(b,d,f,h,j,l) and 19(b,d,f,h,j,l)] depend little
on J3s,i. On the other hand, S(Q) at 0.2 K [Figs. 18(a,c,e,g,i,k)
and 19(a,c,e,g,i,k)] show various intensity patterns depending
on J3s,i, which are attributable to the lifting of the degeneracy
of the SI manifold. In relation to the analysis of TTO, there
is only one somewhat interesting S(Q) shown in Fig. 18(i),
of which the parameters are J3s,3 = 0.15 K and q > 0. These
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FIG. 16. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown in
Fig. 6(a3) (J3s,3; J3s,1 = J3s,2 = 0) and by the point 31 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (−0.1, 0.6)]. They are viewed by 2D slices of Q =

(k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w=a–f], respectively. They are calculated at
two temperatures 0.2 K [(a), (c), (e)] and 0.35 K [(b), (d), (f)] below and above the phase transition temperature of the 3D-PAF (q > 0) LRO.
Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 6(a3)] are shown in (a,b), (c,d), and (e,f), respectively.

parameters are very close to the suggested range for the further
investigation discussed in Sec. IV B 3.

APPENDIX E: OTHER RESULTS OF QUANTUM
SIMULATION USING TPQ STATES: SPECIFIC HEAT,

ENTROPY, AND S(Q) FOR δ �= 0

To complement the simulation results on the q axis, a few
32-site simulations using the TPQ states with the eight sets
of the parameters (δ = ±0.1, q), the points 22–29 in Fig. 1,
were carried out for J3s,3/Jnn = 0 and 0.1 (J3s,1 = J3s,2 = 0).
Temperature dependencies of specific heat C(T ) and entropy

S(T ) are plotted in Figs. 20 and 21. Two-dimensional slices
of S(Q) and 〈σα

Qσα
−Q〉 (α = z, x) calculated with q > 0, the

points 22–25 in Fig. 1, for J3s,3/Jnn = 0 and 0.1 are shown
in Figs. 22 and 23, respectively. Two-dimensional slices of
S(Q) and 〈σα

Qσα
−Q〉 (α = z, x) calculated with q < 0, the points

26–29 in Fig. 1, for J3s,3/Jnn = 0 and 0.1 are shown in Figs. 24
and 25, respectively.

For J3s,3/Jnn = 0, since H0 is invariant under the trans-
formation of rotating σr about the local zr axis by π/2 and
q → −q, C(T ) and S(T ) curves with q > 0 [Figs. 20(a,c)]
are almost the same as corresponding curves with q <

0 [Figs. 20(b,d)]. For J3s,3 
= 0 the invariance does not

FIG. 17. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown
in Fig. 6(c3) (J3s,3; J3s,1 = J3s,2 = 0) and by the point 33 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (0.1, 0.5)]. They are viewed by 2D slices of Q =

(k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w=a–f], respectively. They are calculated at
two temperatures 0.2 K [(a), (c), (e)] and 0.35 K [(b), (d), (f)] below and above the phase transition temperature of the 3D-PAF (q > 0) LRO.
Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 6(c3)] are shown in (a,b), (c,d), and (e,f), respectively.
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FIG. 18. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown in
Figs. 7(b1–b3) (J3s,i; i = 1, 2, 3; J3s, j 
=i = 0) and by the point 38 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (0.0, 0.45)]. They are viewed by 2D slices of

Q = (k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w=a–n], respectively. They are calculated
at two temperatures 0.2 K (a,c,e,g,i,k,m) and 0.35 K (b,d,f,h,j,l,n), below and above the specific-heat peak. Intensity maps for J3s,1 = 0.15 and
0.1 K [Fig. 7(b1)] are shown in (a,b) and (c,d), respectively. Intensity maps for J3s,2 = 0.15 and 0.1 K [Fig. 7(b2)] are shown in (e,f) and (g,h),
respectively. Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 7(b3)] are shown in (i,j), (k,l), and (m,n), respectively.

hold, resulting in C(T, δ, q) 
= C(T, δ,−q) [Figs. 21(a,b)] and
S(T, δ, q) 
= S(T, δ,−q) [Figs. 21(c,d)].

For J3s,3/Jnn = 0, S(Q) and 〈σ z
Qσ z

−Q〉 with q > 0
[Figs. 22(a1–d1,a4–d4) and 22(a2–d2,a5–d5)] are the same as
those with q < 0 [Figs. 24(a1–d1,a4–d4) and 24(a2–d2,a5–
d5)], while 〈σ x

Qσ x
−Q〉 with q > 0 [Figs. 22(a3–d3,a6–d6)] are

different from those with q < 0 [Figs. 24(a3–d3,a6–d6)].
These are consequences of the invariance of H0. For
J3s,3/Jnn = 0.1 and at T/Jnn = 0.2, since the invariance
does not hold for J3s,3 
= 0, S(Q) and 〈σ z

Qσ z
−Q〉 with q > 0

[Figs. 23(a1–d1,a2–d2)] are different from those with q < 0
[Figs. 25(a1–d1,a2–d2)].

In relation to the analysis of TTO, from experience in Secs.
IV C 1–IV C 3 we think that the important parameters can be

found by inspection of C(T ) curves, i.e., by selecting C(T )
satisfying three conditions: J3s,3/Jnn = 0.1, q > 0, tempera-
ture dependence of C(T ) is similar to that with q = 0.5 or 0.55
shown in Fig. 11(a). By inspecting Fig. 21(a), it is obvious that
these conditions are met by three C(T ) curves with J3s,3/Jnn =
0.1 and with (δ, q) = (0.1, 0.5), (0.1,0.4), and (−0.1, 0.6), the
points 22–24 in Fig. 1. The corresponding three 2D slices
of S(Q) at T/Jnn = 0.2 [Figs. 23(a1–c1)] show spin corre-
lations with k ∼ ( 1

2 , 1
2 , 1

2 ), which resemble those shown in
Figs. 13(b1–d1). Therefore, we conclude that the TPQ results
suggest that the effective Hamiltonian minimally describing
TTO is H0 + H3s with J3s,1 = J3s,2 = 0, J3s,3/Jnn ∼ 0.1 (or
−0.1) and the parameters (δ, q) in the region which is en-
closed by the red dashed line in Fig. 1.
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FIG. 19. Intensity maps of S(Q) calculated by the 16 000-site CMC simulations using parameters indicated by red circles shown in
Figs. 7(e1–e3) (J3s,i; i = 1, 2, 3; J3s, j 
=i = 0) and by the point 41 in Fig. 3 [ Jnn

Jnn+Dnn
(δ, q) = (0.0,−0.45)]. They are viewed by 2D slices of

Q = (k + h, −k + h, l ) with fixed k = 0, 0.1, and 0.2, which are shown in (w0), (w1), and (w2) [w=a–n], respectively. They are calculated
at two temperatures 0.2 K (a,c,e,g,i,k,m) and 0.35 K (b,d,f,h,j,l,n), below and above the specific-heat peak. Intensity maps for J3s,1 = 0.15 and
0.1 K [Fig. 7(b1)] are shown in (a,b) and (c,d), respectively. Intensity maps for J3s,2 = 0.15 and 0.1 K [Fig. 7(b2)] are shown in (e,f) and (g,h),
respectively. Intensity maps for J3s,3 = 0.15, 0.1, and 0 K [Fig. 7(b3)] are shown in (i,j), (k,l), and (m,n), respectively.

We chose the eight parameter sets (δ = ±0.1, q), the
points 22–29 in Fig. 1: the two points 22 and 24 are in
the 3D-PAF (q > 0) phase, the two points 26 and 28 are
in the 3D-PAF (q < 0) phase, the four points 23, 25, 27,
and 29 are in the SI phase because simulation results were
expected to be similar to those of the four points 5, 7, 15,
and 17 on the q axis (δ = 0). But, this was not the case.
For example, the intensity patterns of 〈σ x

Qσ x
−Q〉 with (δ, q) =

(−0.1, 0.5) [Figs. 22(d3,d6) and 23(d3,d6)] and with (δ, q) =
(−0.1,−0.5) [Figs. 24(d3,d6) and 25(d3,d6)] are very differ-

ent from those with δ = 0. Since these seem to be caused
by certain quantum corrections, simulations with systematic
(δ, q) variation have to be performed to gain detailed infor-
mation. Thus, instead of making further comments, we make
two plausible remarks. A quantum correction would explain
the reason why the region enclosed by red dashed line in
Fig. 1 is not parallel to the classical phase boundary. All the
results using the TPQ methods support that the q < 0 side
of the phase diagram (Fig. 1) can be excluded from studies
of TTO.
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FIG. 20. Temperature dependence of specific heat C(T ) and entropy S(T ) obtained by the 32-site simulations using the cTPQ state for
J3s,3/Jnn = 0 (J3s,1 = J3s,2 = 0) with parameters (δ 
= 0, q), the points 22–29 in Fig. 1. In (a) and (b) C(T ) for q � 0 and q � 0 are shown,
respectively. In (c) and (d) S(T ) for q � 0 and q � 0 are shown, respectively.
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FIG. 21. Temperature dependence of specific heat C(T ) and entropy S(T ) obtained by the 32-site simulations using the cTPQ state for
J3s,3/Jnn = 0.1 (J3s,1 = J3s,2 = 0) with parameters (δ 
= 0, q), the points 22–29 in Fig. 1. In (a) and (b) C(T ) for q � 0 and q � 0 are shown,
respectively. In (c) and (d) S(T ) for q � 0 and q � 0 are shown, respectively.
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FIG. 22. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–d] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0 (J3s,1 = J3s,2 = 0) with parameters (δ = ±0.1, q > 0), the points 22–25 in
Fig. 1. The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–d], respectively.

FIG. 23. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–d] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0.1 (J3s,1 = J3s,2 = 0) with parameters (δ = ±0.1, q > 0), the points 22–25 in
Fig. 1. The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–d], respectively.
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FIG. 24. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–d] in the plane Q = (h, h, l ) calculated
by the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0 (J3s,1 = J3s,2 = 0) with parameters (δ = ±0.1, q < 0), the points 26–29 in
Fig. 1. The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–d], respectively.

FIG. 25. Two-dimensional slices of (w1,w4) S(Q), (w2,w5) 〈σ z
Qσ z

−Q〉, and (w3,w6) 〈σ x
Qσ x

−Q〉 [w=a–d] in the plane Q = (h, h, l ) calculated
by the the 32-site simulations using the mTPQ state for J3s,3/Jnn = 0.1 (J3s,1 = J3s,2 = 0) with parameters (δ = ±0.1, q < 0), the points 26–29
in Fig. 1. The 2D slice data at T/Jnn = 0.2 and 1 are shown in (w1)–(w3) and (w4)–(w6) [w=a–d], respectively.
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