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In 5d2 Mott insulators with strong spin-orbit coupling, the lowest pseudospin states form a non-Kramers
doublet, which carries quadrupolar and octupolar moments. A family of double perovskites where magnetic
ions form a face-centered cubic (fcc) lattice was suggested to unveil an octupolar order offering a rare example
in d-orbital systems. The proposed order requires a ferromagnetic (FM) octupolar interaction, since the anti-
ferromagnetic (AFM) Ising model is highly frustrated on the fcc lattice. A microscopic model was recently
derived for various lattices: for an edge-sharing octahedra geometry, AFM Ising octupolar and bond-dependent
quadrupolar interactions were found when only dominant inter- and intraorbital hopping integrals were taken into
account. Here we investigate all possible intra- and interorbital exchange processes and report that interference
of two intraorbital exchanges generates a FM octupolar interaction. Applying the strong-coupling expansion
results together with tight-binding parameters obtained by density functional theory, we estimate the exchange
interactions for the osmium double perovskites, Ba2BOsO6 (B = Mg, Cd, and Ca). Using classical Monte Carlo
simulations, we find that these systems are close to the phase boundary between AFM type-I quadrupole and FM
octupole orders. We also find that exchange processes beyond second-order perturbation theory including virtual
processes via pseudospin-triplet states may stabilize an octupolar order.
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I. INTRODUCTION

In transition-metal Mott insulators, the orbital degeneracy
can be lifted by Jahn-Teller effects leading to low-energy
physics described by a spin- 1

2 dipole moment. However when
spin-orbit coupling (SOC) is strong with relatively weak
Jahn-Teller coupling, spin and orbital degrees of freedom
are entangled and the effective Hamiltonian is described by
the total angular momentum J , often called pseudospin. The
exchange interactions are determined by the pseudospin wave
functions which depend on the number of electrons in d
orbitals. In general, the entangled-spin-orbit feature is man-
ifested in highly anisotropic exchange interactions leading to
rich and novel phenomena in d-orbital Mott insulators [1–7].
The most famous example is the Kitaev interaction [8] in d5

and d7 with Jeff = 1/2 wave functions [9]: note that the wave
functions of d5 and d7 are distinct, leading to very different
strengths of the bond-dependent � interaction [9–13]. Pseu-
dospins can also generate higher-rank multipolar exchange
interactions which can compete, giving rise to vastly different
ground states [14–17].

The d2 pseudospin states form a low-energy, non-Kramers
Eg doublet and excited T2g triplet (see Fig. 1(a) in Ref. [18]).
In contrast to the popular Jeff = 1/2 with a dipole moment,
the non-Kramers doublet has a vanishing dipole moment
similar to that of f 2 ions [19–21]. This two-particle spin-
orbit-entangled state instead carries quadrupolar and octupole
moments, and thus, d2 Mott insulators with strong SOC offer
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a playground to explore multipolar physics in transition-metal
systems. However, unlike f -electron systems where octupolar
orders are extensively investigated [22–25], a long-range oc-
tupolar order in transition metal systems is highly nontrivial
to achieve due to a Jahn–Teller-driven orbital order [26].

Recently, it was proposed that a family of insulating,
osmium (Os) double perovskites exhibits a long-range oc-
tupolar order, offering a first example of octupolar order
in d-orbital materials [27–29]. The magnetically active Os,
hosting a non-Kramers doublet as discussed above, forms a
face-centered-cubic (fcc) lattice as shown in Fig. 1(a). Mea-
surements in the heat capacity and magnetic susceptibility
for Ba2BOsO6, where B = Mg and Ca, show anomalies at
approximately T ∗ ∼ 50 K [30], suggesting a phase transition.
Fitting the suceptibility to the Curie-Weiss law yields a neg-
ative Curie-Weiss temperature, indicating antiferromagnetic
(AFM) interactions [30], but neutron diffraction data finds no
evidence of any magnetic ordering down to 10 K [28]. Fur-
thermore, μSR measurements of the zero-field muon-decay
asymmetry spectra show oscillations implying time-reversal
symmetry breaking below approximately 50 K [30]. These
experimental results suggest they may exhibit octupolar or-
der [28,29]. In particular, octupolar order would provide an
explanation for the small field observed using μSR and the
absence of a detectable dipole order from neutron diffraction
experiments [28].

Motivated by these experimental findings, a microscopic
theory was developed for various lattices, including dou-
ble perovskites with different bond geometries [18]. It was
shown that an intraorbital exchange process generates bond-
dependent quadrupolar interactions, whereas interorbital
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FIG. 1. (a) Double perovksite (A2BB′O6) crystal structure. A
atoms are light orange, B atoms are light gray, B′ atoms are blue, and
oxygen atoms are outlined with black. All oxygen atoms surrounding
the B and B′ atoms (besides those belonging to the central octahedra)
are omitted for clarity. (b) Examples of the exchange process among
t2g orbitals. x, y, and z bonds are denoted by the red, green, and blue
dotted lines, respectively.

exchanges generate AFM Ising octupolar interactions in ad-
dition to ferromagnetic (FM) xy-like quadrupolar interaction
[18]. Since the AFM Ising interaction is highly frustrated on
the fcc lattice, the long-range octupolar order has little room
to occur. However, this pioneering work included only the two
dominant hopping paths, leaving a question on the sign of the
octupolar interaction when other hopping paths are included.

In this paper, we investigate all the intra- and interorbital
exchange processes allowed and show that interference of
two intraorbital exchanges generates a FM octupolar inter-
action, which dominates over the AFM contribution from the
interorbital exchange processes. Using these results together
with the tight-binding parameters obtained by first-principle
ab initio calculations on Ba2BOsO6 (B = Mg, Cd, and Ca), we
estimate the multipolar exchange parameters using a strong-
coupling perturbation theory.

Within second-order perturbation theory, we show that
these compounds are close to the boundary between the
AFM type-I quadrupole and the FM octupole. When virtual
processes via the triplet states are included in fourth-order
perturbation theory, the AFM quadrupolar exchange integral
is suppressed. Due to the frusturation of AFM interactions on
the fcc lattice, FM octupolar ordering is found in one of the
systems.

The paper is organized as follows. In Sec. II, we review
the local atomic physics of 5d2 and how the non-Kramers
doublet and excited triplet arise. We then present a nearest-
neighbor (n.n.) tight-binding Hamiltonian based on symmetry
restrictions. Using a strong-coupling expansion, we determine
the pseudospin Hamiltonian which includes the FM Ising
octupolar term from the two paths of intraorbital exchange
processes. In Sec. III, we use density functional theory (DFT)
to find the tight-binding parameters of Ba2BOsO6 (B = Mg,
Cd, and Ca) and estimate the strengths of the exchange inter-
actions. Using classical Monte Carlo simulations, we show a
finite-temperature phase diagram for a given set of exchange
parameters. We also show a zero-temperature phase diagram
as a function of quadrupolar and octupolar exchange interac-
tions to show how close the systems are to the phase boundary.
We summarize our results and discuss implications of our
theory and the possibility of octupolar order in the last section.

II. MODEL DERIVATION

In this section, we derive the microscopic spin exchange
parameters for d2 double perovskites with strong SOC in an
ideal fcc structure. Before we proceed to the strong-coupling
expansion to determine the exchange parameters, we review
the local physics of an isolated Os atom. Since it is local
physics, this can be used as a starting point of any d2 systems
as shown in the earlier work [18].

A. Local physics

First, we discuss the atomic physics for an isolated Os
atom. Since each Os atom is surrounded by an oxygen octa-
hedral cage, the L = 2 irreducible representation splits into eg

and t2g, which are separated by an octahedra crystal field split-
ting, �. The local Kanamori-Hubbard Hamiltonian is written
as follows:

Hint =U
∑

m

nm+nm− + U ′ ∑
m �=m′

nm+nm′−

+ (U ′ − JH )
∑

m<m′,σ

nmσ nm′σ

+ JH

∑
m �=m′

c†
m+c†

m′−cm−cm′+

+ JH

∑
m �=m′

c†
m+c†

m−cm′−cm′+ − λL · S, (1)

where c†
mσ creates an electron with orbital m and spin S = 1/2

denoted by σ = ±. U and U ′(= U − 2JH ) are intra- and
interorbital Coulomb interactions, respectively; JH is Hund’s
coupling; L(= ∑

i li ) and S(= ∑
i si ) are the total orbital an-

gular momentum and spin momentum, respectively, and SOC
λ = ξ

2S , where ξ is single-particle SOC, i.e.,
∑

i ξ li · si [19].
The energy hierarchy we will be considering for the above

parameters is �,U > ξ, JH (see Fig. 1 in Ref. [18]). When
Hint is projected onto the t2g subspace and restricted to the n =
2 sector, we find a J = 2 ground state for an isolated Os atom.
As shown in Refs. [27–29], taking into account the eg orbitals,
spin-orbit coupling mixes the t2g and eg orbitals, which splits
the J = 2 ground state into a non-Kramers Eg doublet and an
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excited triplet. We use the notation Eg to distinguish it from
eg orbitals, dx2−y2 and d3z2−r2 . The splitting between the Eg

doublet and the excited triplet is described by the cubic crystal
field Hamiltonian given by

H�c = �c
(
O0

4 + 5O4
4

)
, (2)

where O0
4 and O4

4 are Steven’s operators [28,29]. The resulting
non-Kramers doublet using |Jz〉 states is given by

| ↑〉 = 1√
2

(| − 2〉 + |2〉),

| ↓〉 = |0〉. (3)

Here, | ↑〉 and | ↓〉 are introduced to represent the Eg wave
functions. Since they are either an equal mixture of |Jz =
±2〉 or |Jz = 0〉, they do not carry a dipole moment and,
thus, should be differentiated from pure spin σ = ± in
Eq. (1).

Expressing them in terms of total spin and orbital angular
momentum states, |Lz, Sz〉, is useful, because one can notice
| ↓〉 is elongated in the octahedral z direction, whereas | ↑〉 is
more flattened in the xy plane (see Fig. 1 in Ref. [18]); these
vastly different shapes give rise to interesting features in the
effective psuedo-spin model:

| ↑〉 = 1√
2

(|1, 1〉 + | − 1,−1〉),

| ↓〉 = 1√
6

(|1,−1〉 + 2|0, 0〉 + | − 1, 1〉). (4)

Furthermore, we note that the quadrupole operators (Qx2−y2 =
J2

x − J2
y and Q3z2 = (3J2

z − J2)/
√

3 [20]) and the octupole

operator (Txyz =
√

15
6 JxJyJz [20]) form the Pauli matrices of

pseudospin- 1
2 operators:

sx ≡ 1

4
√

3
Qx2−y2 ,

sy ≡ 1

6
√

5
Txyz,

sz ≡ 1

4
√

3
Q3z2 , (5)

where sx acting on the pseudospin state follows how Pauli
matrices typically act on pure spin- 1

2 states. For example,
sx| ↑〉 = 1

2 | ↓〉 and sx| ↓〉 = 1
2 | ↑〉. It is important to note that

this pseudospin coordinate system is defined in such a way
that sy is along the body diagonal of the fcc lattice, i.e.,
the [111] axis shown in Fig. 1(a). Thus, the quadrupolar
moments lie within the [111] plane while the octupolar mo-
ment is perpendicular to this plane and parallel to the [111]
axis.

B. Tight-binding Hamiltonian

Double perovskites are a fascinating and rich family of
materials exhibiting a variety of magnetic properties [20,30–
38]. They have the general chemical form A2BB′O6, where A
belongs to the family of rare-earth elements or alkaline-earth
metals, B/B′ typically belong to the transition metals and O is

oxygen. The A atoms exist between the B and B′ layers and
form a cubic lattice, and the oxygens form an octahedral cage
around each B and B′ atom as shown in Fig. 1(a).

In an ideal double perovskite, the B and B′ atoms form a
pair of interlocking fcc sublattices which can also be viewed
as stacked checkerboards of B/B′ atoms. This provides a nat-
ural route to geometric frustration and can lead to important
consequences on the observed phases. For Ba2BOsO6 with
B = Ca, Mg, and Cd, B atoms are nonmagnetic leading to
a fcc lattice of d2 doublets.

In this subsection, we present the tight-binding Hamil-
tonian which will be used as a perturbation in the strong
-coupling expansion later on. The n.n. tight-binding Hamil-
tonian between two Os sites on the z bond is given by

ti j =

c j,xy c j,xz c j,yz⎛
⎜⎜⎝

⎞
⎟⎟⎠

c†
i,xy t3 t4 t4

c†
i,xz t4 t1 t2

c†
i,yz t4 t2 t1

, (6)

where ti ∈ R. The C2 axis along the [110] direction, inversion
symmetry about the bond center, and time-reversal symmetry
have all been used to restrict the form of this Hamiltonian
[10]. This bond will be referred to as a z bond since t3 is
the largest hopping integral and describes the effective over-
lap of dxy orbitals on n.n. B′ sites as displayed in Fig. 1(b).
Under trigonal distortions along the [111] direction (or other
distortions where the C2 axis along the bond direction is
broken), t4 will be finite. However, for double perovskites of
interest, we maintain the C2 axis along the bond direction,
which forces t4 = 0 due to the symmetry. A representative
hopping integral of ti (i = 1–4) on x, y, and z bonds is shown
in Fig. 1(b). Note that t2 between dxz and dyz on the z bond
is the hopping between dxy and dyz on the y bond, indicating
the bond dependence of orbital overlaps which in turn leads
to bond-dependent pseudospin exchange interactions as pre-
sented below.

C. Pseudospin model

To derive the effective Hamiltonian for the z bond, we
perform a strong-coupling expansion assuming that the energy
scale of the tight-binding parameters are smaller than the
Kanamori interactions. The resulting effective Hamiltonian in
the ground state formed by the on-site doublets can be found
by evaluating

〈ψi|Hi, j |ψ j〉 =
∑
n/∈GS

〈ψi|ti, j + t†
i, j |n〉〈n|ti, j + t†

i, j |ψ j〉
En − E0

, (7)

where |ψi〉 are the ground states, E0 is the ground-state energy,
n sums over all excited states, and ti j is the tight-binding
Hamiltonian for the z bond [Eq. (6)] [39].

The resulting effective Hamiltonian for the z bond is given
by

Hz
i j = J (2)

τ si,zs j,z + J (2)
q (si,xs j,x + si,zs j,z ) + J (2)

o si,ys j,y, (8)

014438-3



DEREK CHURCHILL AND HAE-YOUNG KEE PHYSICAL REVIEW B 105, 014438 (2022)

TABLE I. Hopping integral and exchange integral energies for
Ba2BOsO6 (B = Mg, Ca, Cd). All values are written in meV. The
exchange integrals Jτ , Jq, and Jo are denoted by a superscript (2) or
(4) to denote if they were computed using second- or fourth-order
perturbation theory, respectively.

B t3 t2 t1 J (2)
τ J (2)

q J (2)
o J (4)

τ J (4)
q J (4)

o

Mg −140 19.1 17.2 4.4 −1.3 −1.1 2.8 −1.5 −1.1
Ca −125 16.9 13.6 3.4 −0.93 −0.78 2.4 −1.0 −0.8
Cd −88.8 17.5 13.6 1.9 −0.68 −0.51 1.6 −0.7 −0.5

where

J (2)
τ = 4

9U
(t1 − t3)2,

J (2)
q = 2

3U

[
t1(t1 + 2t3) − t2

2

]
,

J (2)
o = 2

3U

[
t1(t1 + 2t3) + t2

2

]
, (9)

where J (2)
q and J (2)

o contain the product of two intraorbital
hopping integrals, and (t1t3) is negative, as t1 and t3 come in
opposite signs, and dominates over the other terms. Here we
have set JH = 0 and λ = 0 since these are much smaller than
U . The effect of finite JH and λ on the exchange parameters
is shown in the next section. We denote exchange integrals
obtained through second-order perturbation theory by a super-
script (2). The corrected exchange integrals including virtual
triplet processes are shown in Appendix, are denoted by a
superscript (4) [see Eq. (A1)], and are included in Table I.

There are three unique effective Hamiltonians for the 12
n.n. bonds which can be obtained by applying C3 rotations
about the [111] direction to Eq. (8). Under a counterclockwise
C3 rotation, the pseudospin operators transform according to

sx → −1

2
sx −

√
3

2
sz,

sy → sy,

sz →
√

3

2
sx − 1

2
sz. (10)

Applying these transformations to Eq. (8) generates terms
like si,xs j,z in the x- and y-bond Hamiltonians. To write the
total Hamiltonian compactly, we thus introduce the following
operator:

τ
γ

i = cos(φγ )si,z + sin(φγ )si,x, (11)

where γ ∈ {z, x, y} referring to three different bonds as shown
by the blue, red, and green dotted lines in Fig. 1(b), and their
corresponding angle φz,x,y = 0, 2π

3 , and 4π
3 .

Therefore, the full effective Hamiltonian is given by

Hγ
i j = J (2)

τ τ
γ
i τ

γ
j + J (2)

q (si,xs j,x + si,zs j,z ) + J (2)
o si,ys j,y. (12)

Fundamentally, bond dependence of the quadrupolar in-
teractions originates from the vastly different shapes of the
doublet wave functions; namely, | ↑〉 is flattened in the xy
plane, whereas | ↓〉 is stretched in the octahedral z direction
[18]. These differences generate the Jτ term in Eq. (8). In-
terestingly, there is also interference between the t1 and t3

hopping processes as evident by the t1t3 terms in Eq. (9) as
mentioned above. The origin of these terms can be traced
back to | ↓〉 containing terms like c†

yz+c†
xz− and c†

yz−c†
xz+

when written in the spin-orbital basis, which are absent in
| ↑〉. These terms allow for a combination of t1 and t3 vir-
tual processes to mix | ↑〉 with | ↓〉 and | ↓〉 with | ↓〉,
generating finite t1t3 terms responsible for a FM octupolar
interaction. Overall intraorbital hopping t1 and t3 gives rise to
bond-dependent quadrupolar and bond-independent octupolar
interactions, whereas interorbital hopping t2 gives rise to only
bond-independent interaction. This is in contrast to d5 systems
with Jeff = 1/2 where intraorbital hopping t2 is essential for
Kitaev interaction [9], while the interference of intra- and
interorbital exchange t2t3 leads to � interaction [10].

It is worthwhile to note that without t1, we have J (2)
o =

−J (2)
q and Eq. (12) reduces to the result shown in Ref. [18].

Moreover, the bond-independent octupolar interactions with-
out t1 are AFM. This results in purely quadrupolar order since
the AFM octupolar interaction is frusturated on the fcc lattice.
However, the introduction of t1 now causes J (2)

o �= J (2)
q and

also results in FM octupolar interactions (Sec. IV) which
may allow for the possibility of octupolar order. This will be
presented after we show the tight-binding parameters obtained
by DFT.

III. DENSITY FUNCTIONAL THEORY

In this section, we use DFT to estimate values for the
octahedra crystal field splitting (�), atomic SOC (ξ ), and
tight-binding parameters (t1, t2, t3) for Ba2XOsO6 (X = Mg,
Ca). They determine Jτ , Jq, and Jo, which are then used to ob-
tain the classical ground-state order for these materials. Since
there has been no observed distortions in these materials, we
set t4 = 0 to represent an ideal structure. Here we show the
results for Ba2MgOsO6, and similar results are obtained for
Ba2BOsO6 (B = Cd and Ca).

The band structures obtained by generalized gradient
approximation (GGA) and GGA + SOC are presented in
Figs. 2(a) and 2(b), respectively, where the Perdew-Burke-
Ernzerhof functional [40,41] and an 8 × 8 × 8 k-grid are used.
The bands well below the Fermi energy are dominated by
contributions from Ba, Mg, and O, while the bands around
the Fermi energy mainly arise from the Os atoms. The orbital
composition of the bands near the Fermi energy are dominated
by the t2g orbitals and the eg orbitals lie around 4 eV, giving
us an estimation for the octahedra crystal field splitting, � ∼
4 eV. We also determine the tight-binding parameters using
maximally localized Wannier functions (MLWF) generated
from OpenMX [42–44].

Figure 2(b) shows how t2g bands near the Fermi energy are
modified by the finite SOC. The black solid line represents
the band structure obtained by GGA + SOC. By fitting the
n.n. tight-binding bands to the GGA + SOC bands from DFT,
we estimate ξ ≈ 0.25 eV. The blue dashed line in Fig. 2(b)
represents the band structure obtained by the tight-binding
parameters (listed in Table I) with ξ = 0.25 eV.

We also estimate the splitting between the doublet and
triplet �c. Taking U = 2.5 eV and JH = 0.25 eV, which are
typical for 5d transition metal materials [3,45], and � =
4 eV, we find the non-Kramers doublet and triplet splitting
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FIG. 2. (a) Band structure of Ba2MgOsO6 computed using GGA
without SOC. (b) Solid black lines represent the band structure of
Ba2MgOsO6 around the Fermi energy computed using GGA + SOC.
Dashed blue lines denote the tight-binding bands with ξ = 0.25 eV
and the tight-binding parameters obtained using the MLWF derived
from DFT for Ba2MgOsO6.

�c ∼ 22 meV by numerically diagonalizing Eq. (1) including
the eg orbitals. This estimation can be compared to recent
inelastic neutron scattering results which suggest �c is ap-
proximately 10–20 meV [28].

Finally, Jτ , Jq, and Jo, are shown in Table I. Notice that J (2)
τ ,

which contributes to the bond-dependent quadrupolar interac-
tions, is the dominant interaction which is approximately 4
times larger than the bond-independent FM octupolar and FM
quadrupolar interactions. J (4)

τ shows the suppression of the
quadrupolar interaction by taking into account fourth-order
processes via the triplet states (see Table I); this brings these
systems much closer to the FM octupolar phase boundary
(see Fig. 6). The suppression of the quadrupolar interaction
in Ba2MgOsO6 is large enough to push this compound across
the phase boundary from the AFM type-I quadrupole phase
to a FM octupole phase (Fig. 6). Due to the reduced t3 in
Ba2BOsO6 (B = Ca and Cd), the suppression of the quadrupo-
lar interaction is not as large and both of these compounds
remain in the AFM type-I quadrupole phase (Fig. 6).

These exchange parameters depend on the Hund’s cou-
pling, even though we omitted it in the analytical expression
in Eq. (9). To show its impact on them, we show their depen-
dence on JH in Fig. 3. Note that AFM Jτ becomes stronger

FIG. 3. Exchange parameters for Ba2BOsO6 as a function of JH

with fixed ξ = 0.25 eV. Note that we plot |J (2)
o | and |J (2)

q |. The solid
and dashed lines denote B = Mg and Ca, respectively.

as JH increases. This is discussed in the following section
when we present the classical ground state using the exchange
parameters in Table I.

IV. CLASSICAL MONTE CARLO SIMULATIONS

In this section, we determine the classical ground-state or-
der of our spin model using Monte Carlo simulations and give
an estimate for the transition temperature. We use a classical
Monte Carlo algorithm known as simulated annealing; our
simulated annealing code is based on the framework provided
by the ALPS project [46–48]. We use an N = 1728 site cluster
(12 × 12 × 12 primitive unit cells) with periodic boundary
conditions. Once the system is thermalized at a temperature
of interest, 105 measurements are acquired with 500 sweeps
between each measurement.

A. Exchange integrals without triplet contributions

The resulting order for Ba2BOsO6 (B = Mg, Ca, and Cd),
using the exchange parameters obtained from second-order
perturbation theory (J (2)

τ , J (2)
q , and J (2)

o ), is quadrupolar AFM
type-I order. The order parameter is measured by the ther-

mal average 〈n〉 where n =
√∑

i j eiq·(ri−rj )si · s j , where q =
(0, 0, 2π/a). A plot of the order parameter denoted by the red
line as a function of temperature is shown in Fig. 4(a). There
is a sharp jump at the transition temperature Tc1 = 1.07Jτ , in-
dicating a first-order transition. The susceptibility is measured
by χn ∝ 〈n2〉 − 〈n〉2 denoted by the blue line which shows a
peak at the transition temperature. This order is expected since
the quadrupolar and octupolar FM terms are approximately 4
times smaller than the Jτ term, which we have shown in an
earlier work carries a quadrupolar AFM type-I order on the
fcc lattice [18]. This order is also observed using the exchange
interactions at a finite Hund’s coupling (JH = 0.25 eV) and
fixed SOC (ξ = 0.25 eV).

Surprisingly, there is an additional shoulder above Tc1

which eventually disappears above Tc2 (∼ 1.25Jτ ). To un-
derstand the nature of the shoulder, we compute the
quadrupole-quadruple correlation among moments within the

same sublattice, i.e., 〈ns〉 = 〈
√∑

i j∈A si · s j〉, where s = sxx̂ +
szẑ and i and j belong to a same sublattice A. Its associated
order parameter is shown as a gray line 〈ns〉 in Fig. 4(a).
This implies that there is a partial order, where the stripy
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FIG. 4. (a) AFM type-I order parameter 〈n〉 and the suscepti-
bility χn as a function of temperature (T ) with Jτ = 1 are shown
by the red and blue lines, respectively. The other order parameter
measured by the correlation among the same sublattice 〈ns〉 is shown
by the gray line, indicating the same sublattice correlation appears
at Tc2 ∼ 1.25Jτ , while the long-range type-I AFM occurs only below
Tc1 ∼ 1.07Jτ . The static structure factors S(q) at fixed qz = 2π in
the AFM ordered and partial ordered phases are shown in the left
and right insets, respectively. The maximum intensity of S(q) in the
partial order phase is 3 × 10−3. This plot was computed using J (2)

τ ,
J (2)

q , and J (2)
o for Ba2MgOsO6. (b) FM order parameter 〈m〉 and the

susceptibility χm as a function of temperature (T ) with Jτ = 1 are
shown by red and blue lines, respectively. This plot was computed
including triplet processes (using J (4)

τ , J (4)
q , and J (4)

o ) for Ba2MgOsO6.

quadrupole ordered pattern is lost within the unit cell, while
keeping the long-range order between unit cells. This also
occurs in the pure Jτ model and was missed in earlier work
[18].

The static structure factors S(q) for fixed qz = 2π in the
type-I AF at T = 0 and partial ordered phases at T = 1.07Jτ

are also plotted in the inset of Fig. 4(a); we set a ≡ 1, the
side length of the fcc unit cell. As expected, there is a sharp
δ-function feature at (0, 0, 2π ) inside the type-I AFM order
and the moments are all in the plane perpendicular to the
[111] axis, implying the quadrupolar order. On the other hand,

FIG. 5. (a) Stripy quadrupole order and (b) partially ordered
quadrupolar state at T = 1.07Jτ , with exchange integral energies
equal to those in Table I for Ba2MgOsO6. A, A′, B, and B′ label the
four different moments within FM sublattices, and the psuedospin x
axis is denoted as sx . The same phase is observed for Ba2CaOsO6, in
a similar temperature regime.

the static structure factor inside the partial order shows the
blur feature maximized around (0, 0, 2π ) with the maximum
intensity of 3 × 10−3, indicating the type-I AFM order is lost.

To understand the nature of the partial order, we compute
the averaged quadrupole moment in this phase, which appears
immediately after the first phase transition Tc1 and below Tc2 .
The averaged moment is shown in Fig. 5. Due to thermal
fluctuations, the moment fluctuates widely within the plane,
but it has a finite moment on average. The new partially
ordered phase has four different moments inside the fcc unit
cell, which then repeat forming FM ordering among the same
sublattices. This order along with the sublattices (A, A′, B, B′)
are shown in Fig. 5. This result was obtained using classical
Monte Carlo simulations with a 1372-site cluster (7 × 7 × 7
conventional unit cells each with 4 sites) at T = 1.07Jτ . This
figure shows the average spin configuration over 105 sweeps.
All pseudospins lie within the [111] plane, and thus, this order
is purely quadrupolar. On average, moments on the A sublat-
tice make a 42◦ angle with the sx axis, and the angle between
moments on the A and A′ sublattices is 190◦. Moments on the
B sublattice make a 98◦ angle with the sx axis, and the angle
between moments on the B and B′ sublattices is 173◦.

B. Exchange integrals including triplet contributions

The zero-temperature phase diagram computed with clas-
sical Monte Carlo simulations, using the exchange integrals
including the triplet processes which appear at fourth order
(J (4)

τ , J (4)
q , and J (4)

o ), is shown in Fig. 6. The resulting order
for Ba2MgOsO6 is the FM octupolar order, consistent with
other recent studies on these materials [49,50]. The FM order
parameter is given by the thermal average 〈m〉, where m =√∑

i j si · s j , and is plotted in red along with its susceptibility

χm ∝ 〈m2〉 − 〈m〉2 in blue [Fig. 4(b)]. The long-range FM
octupolar order sets in at temperatures below Tco ∼ 1.4Jτ .
Note this order is stabilized at a temperature higher than that
of the AFM type-I quadrupolar order because FM interactions
are not frustrated on the fcc lattice and are thus more resistant
to thermal fluctuations.

However, both Ba2CaOsO6 and Ba2CdOsO6, even in-
cluding triplet contributions which suppress the quadrupolar
interactions, exhibit AFM type-I quadrupole ground states
at zero temperature; this can be contrasted to Refs. [49,50]
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FIG. 6. Zero-temperature phase diagram of Eq. (12) in a pa-
rameter regime relevant for Ba2BOsO6 (B = Mg, Ca, and Cd).
The square, the triangle, and the circle correspond to the exchange
integrals including fourth-order triplet processes (J (4)

τ , J (4)
q , and J (4)

o )
for Ba2MgOsO6, Ba2CaOsO6, and Ba2CdOsO6, respectively.

which predict a more negative Jo and FO octupolar order
for Ba2CaOsO6. This discrepancy is likely caused by our
result only including processes via the triplet up to fourth
order. Moreover, Ref. [49] uses a smaller value for �c for
Ba2CaOsO6 which will further suppress our quadrupolar
interactions and bring Ba2CaOsO6 even closer to the FM
octupolar boundary.

V. SUMMARY AND DISCUSSION

In summary, we find that the interference of two intraor-
bital hopping processes generates FM octupolar interactions,
which dominate over the other contributions leading to AFM
interaction, and the overall octupolar interaction is thus the
FM type. This exchange process also contributes to the bond-
independent quadrupolar interactions, which compete with
the FM octupole order. The origin of such bond-dependent
and -independent exchange interactions can be traced back
to the shape of the doublet wave functions. Using ab initio
calculations, we determine the SOC and tight-binding param-
eters which in turn determine the strengths of the exchange
interactions of the pseudospin model. For Ba2BOsO6, where
B = Mg, Cd, and Ca, we find FM octupolar interactions to-
gether with FM bond independent and AFM bond-dependent
quadrupolar interactions.

We used classical Monte Carlo simulations to determine
the classical ground state for these double perovskites. When
processes via the triplet were ignored, we found the AFM
type-I quadrupolar order with an ordering temperature to be
approximately Tc1 ∼ 50 K, despite octupolar FM exchange
interactions. Just above Tc1 , there is a partial quadrupolar order
between Tc1 and Tc2 where the stripy pattern within the unite
cell is lost, while a long-range correlation among the same
sublattice, i.e., FM sublattice, is preserved. When exchange
processes via the triplet are considered using fourth-order per-
turbation theory, we find FM octupolar order in Ba2MgOsO6
and that AFM type-I quadrupolar order persists in Ba2BOsO6

(B = Ca and Cd).

We find that octupolar order can be achieved with
Jq = −0.30Jτ (like in the case ofBa2MgOsO6), when Jo <

−0.41Jτ . If one can reduce Jq slightly, the threshold to
achieve octupolar order is moved closer to the value of Jo

for Ba2MgOsO6. This implies that these materials exist in a
parameter regime close to octupolar FM order. However, this
also suggests that coupling to the lattice through distortions
may become significant and amplify the quadrupolar inter-
actions via Jahn-Teller coupling. Its relation to the internal
magnetic field reported by μSR measurements is a puzzle
for future study. Due to strong SOC, the coupling to the
lattice would be strong, and quantifying such effects remains
to be studied further. Another interesting direction is design-
ing new materials exhibiting an intriguing pattern of vortex
quadrupole and ferri-octupolar order [18]. Theoretically this
can be achieved by tuning interorbital t1 to be negligible, while
enhancing interorbital t2. Synthesizing such new material is an
excellent project for future studies.
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APPENDIX: FOURTH-ORDER PERTURBATION THEORY
INCLUDING VIRTUAL PROCESSES VIA TRIPLET STATES

At fourth-order perturbation theory, the dominant pro-
cesses are those which connect the non-Kramers doublet to
the excited T2g triplet. Processes via the triplet simultaneously
suppress the AFM Jτ term and enhance the FM Jo term.
The exchange integrals including triplet processes are shown
below:

J (4)
τ = 4t32

9U

[
1 − 3t3(t3 − t1) + 2t22

3U�c

− 2
(
t3(7t3 − 22t1) + 15t22 + 33t12

)
9U 2

]

− 8t1t3
9U

(
1 − 4t22 + 3t12

6U�c
− 30t22 + 28t12

9U 2

)

+ 4t12

9U

(
1 − 11t22 + 3t12

3U�c
− 30t22 + 20t12

9U 2

)

− 2t24

3U 2�c
,

J (4)
q = 2t1

3U

[
t1

(
1 − 12t3(3t3 + 2t1) + 33t12 + 10t22

24U�c

− 18t3(t3 + 4t1) + 36t12 + 4t22

9U 2

)
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+ 2t3

(
1 − 3t32 + 2t22

12U�c
− 18t32 + 32t22

9U 2

)]

− 2t22

3U

(
1 + 2t32 + 7t22

8U�c
− 14t32 + 36t22

9U 2

)

− t34

12U 2�c
,

J (4)
o = 2t1

3U

[
t1

(
1 + 3t3(t3 − 2t1) + 68t22 + 3t12

12U�c

− 18t3(t3 + 4t1) + 36t2
1 + 56t2

2

9U 2

)

+ 2t3

(
1 + 11t22

12U�c
− 18t32 + 28t22

9U 2

)]

+ 2t22

3U

(
1 + 2t32 + 3t22

4U�c
− 14t32 + 36t22

9U 2

)
. (A1)

Notice these reduce to J (2)
τ , J (2)

q , and J (2)
o when the fourth-

order processes are removed.
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