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Gapless to gapless phase transitions in quantum spin chains
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We investigate spin chains with bilinear-biquadratic (BLBQ) spin interactions as a function of an applied
magnetic field h. At the Uimin-Lai-Sutherland (ULS) critical point we find a gapless to gapless transition
revealed by the dynamical structure factor S(q, ω) as a function of h. At h = 0, the envelope of the lowest-energy
excitations goes soft at two points, q1 = 2π/3 and q2 = 4π/3, dubbed the phase A. With increasing field, the
spectral peaks at each of the gapless points bifurcate, making in total four soft modes, and combine to form a
new set of excitations that soften at a single point q = π at hc1 ≈ 0.94. Beyond hc1 the system enters another
gapless B phase until the transition at hc2 = 4 to the fully polarized phase. We compare the ULS model results
with those for the Affleck-Kennedy-Lieb-Tasaki model as a representative of the gapped Haldane phase. We
explain the mechanism of the gapless to gapless transition in the ULS model using its conserved charges and a
spinon band picture. We also discuss the universality of central charges of the BLBQ family of models subjected
to a magnetic field.
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I. INTRODUCTION

Quantum magnetism has been a subject of intense study,
from exact solutions in one dimension, to long-range-ordered
states in higher dimensions, to quantum spin liquids aris-
ing from geometric frustration and competing interactions.
Among various quantum magnetic systems, one-dimensional
(1D) spin systems are rather unique. In contrast to its
higher-dimensional counterparts, particles in one-dimensional
systems are highly affected by quantum fluctuations which
prevent the breaking of continuous symmetries, and are much
more likely to exhibit collective behavior because they cannot
avoid the effects of interactions.

One-dimensional magnetic systems have a long history
that dates back to 1931 when the exact solution of the spin- 1

2
Heisenberg chain was found by Bethe [1], predicting alge-
braic correlations in the ground state and gapless excitations.
The mechanism of such gaplessness was given by the Lieb-
Shultz-Mattis theorem whereby the separation between the
ground- and first-excited-state energies of a half-integer spin
chain was shown to vanish in the thermodynamic limit [2].
Haldane’s generalization to larger spin-S SU(2) chains, us-
ing a mapping to a nonlinear sigma model, showed that
one-dimensional Heisenberg antiferromagnets with integer
spins have an excitation gap [3–5], later observed in experi-
ments [6,7]. Following Haldane’s prediction, much research
has been done to study quantum phase transitions (QPTs)
of integer spin chains under the influence of quadratic spin
interactions and magnetic field [8–11]. While these papers
have provided some understanding of the magnetic proper-
ties of the bilinear-biquadratic (BLBQ) model, the static and
dynamic properties of BLBQ models coupled to an external

magnetic field have not been explored and is the topic of this
paper.

The BLBQ Hamiltonian is a good description of
(quasi-)one-dimensional quantum magnetic systems such as
CsNiCl3 [6,12,13] and LiVGe2O6 [14,15]. Recently, we also
proposed that such models naturally arise in strong spin-orbit
coupled Mott insulators, such as OsCl4, in which the transition
metal is in the 5d4 electronic configuration [16,17].

Our two main discoveries of the BLBQ spin-1 quantum
chain as a function of h are as follows: (1) a continuous
phase transition from the gapped Haldane phase to a gap-
less intermediate phase that precedes the polarized phase;
and (2) a continuous phase transition from a gapless phase
to another intermediate gapless phase for the Uimin-Lai-
Sutherland (ULS) critical Hamiltonian [see Eq. (1)]. In case
(2), while both phases harbor gapless excitations, their nature
is different, with modes that go soft at different points in
the Brillouin zone. There have been reports on electronic
gapless to gapless phase transitions in metals that can be
interpreted as a Lifshitz transition [18], whereby the topology
of the Fermi surface of the metal changes at the transition,
resulting in a new metallic phase that gives rise to anomalies
in the electronic properties [19]. We show that the QPT in
the BLBQ model mentioned above can also be understood as
a Lifshitz-type phase transition involving three spinon bands
arising from the SU(3) symmetry at the ULS point, with four
soft magnon modes decreasing to one soft mode across the
transition. We compare the static and dynamical signatures
of the field-induced phases of the BLBQ model at different
points. We propose material candidates of BLBQ magnets
where our predictions for the dynamical structure factor may
be observable by inelastic neutron spectroscopy.
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FIG. 1. Left panel: phase diagram of the spin-1 bilinear-biquadratic (BLBQ) model parametrized by the angle θ : H = ∑
〈i j〉 cos θ Si · S j +

sin θ (Si · S j )2. � denotes the gap which can be zero or finite in different phases. We focus on two representative points: the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model at θ ≈ 0.1024π (β = 1

3 ), and the critical ULS model at θ = π/4 (β = 1). VBS refers to the valence bond solid
ground state of the AKLT model at h = 0. Right panel: schematic phase diagram of BLBQ parametrized by β and h reproduced from Ref. [9].
Phase boundaries are marked by black solid lines. black dashed line marks a crossover to an effective spin- 1

2 XXZ model in a field within the
B phase; at β = 1 the mapping is to an effective spin- 1

2 Heisenberg model. We obtain the evolution of the static and dynamical correlation
functions in the gapless phase A, B phase, and Haldane phase along the two red dashed lines.

The paper is organized as follows. Section II briefly re-
views the BLBQ model and the phase diagram as a function
of external magnetic field. Section III introduces definitions
and computational methods. Section IV discusses the results
for the Affleck-Kennedy-Lieb-Tasaki (AKLT) model as a rep-
resentative of the Haldane phase of the BLBQ, to be compared
with those of the ULS model. Our main results are shown in
Sec. V where we present both statics and dynamics of the
ULS model and the phase transitions in a field. Section VI
includes discussions of density matrix renormalization group
(DMRG), the single-mode approximation, extraction of the
central charge of these models, and prospective materials to
where our predictions may be observed. Section VI concludes
with a summary and open questions.

II. MODEL

It was first argued by Haldane, and later rigorously proved,
that one-dimensional Heisenberg antiferromagnets with inte-
ger spins have an excitation gap and finite correlation length
[3,5]. This gapped one-dimensional integer-spin Heisenberg
antiferromagnet can be considered a particular case of the
Haldane phase in a more generic spin-1 bilinear biquadratic
Hamiltonian (BLBQ) [20], defined on a chain of L sites by

HBLBQ =
∑
〈i j〉

Si · S j + β(Si · S j )
2, (1)

where we have set the exchange energy J = 1. Its well-
known phase diagram, parametrized by β or the related angle
tan θ = β, is shown in Fig. 1. In this paper, we will discuss
the dynamical properties in these one-dimensional quantum
magnets, particularly at the Affleck-Kennedy-Lieb-Tasaki
(AKLT), Uimin-Lai-Sutherland (ULS), and Heisenberg points
marked in the figure. In addition, we add an external magnetic
field h yielding the Hamiltonian

H = HBLBQ + h
∑

i

Sz
i , (2)

where h is measured in units of the exchange energy.

We calculate the static and dynamical structure factors us-
ing the DMRG algorithm [21,22] for the Hamiltonian defined
in Eq. (2) to provide direct signatures that can be probed
by neutron spectroscopy. Specifically, we study β = 1 for
the critical ULS model for which we find two transitions: a
gapless to gapless transition at hc1 and a second transition
from a gapless to a polarized phase at hc2. We contrast the
behavior of the critical ULS point with the AKLT model at
β = 1

3 as a representative of Haldane phase that also shows
two transitions but of different character: a gapped to gapless
transition at hc1, followed by a transition at hc2 to a polarized
phase.

Aside from the unbiased DMRG results, we provide in-
terpretations of the gapless to gapless QPT using a spinon
band picture. In the discussion section we apply a single-mode
approximation (SMA) analysis for the gapped to gapless tran-
sitions of AKLT Hamiltonian under a field, which shows
the extent to which magnons in the Haldane and phase B
can be captured by a single-mode excitation, and indicate
the degree of fractionalization. We also provide insights of
universality of these phases via central charges. Finally, we
describe the candidate materials with 5d4 electronic config-
uration and strong spin-orbit coupling that are suitable to
observe the gapless to gapless phase transition in the orbital
sector.

In the following, we define Sz ≡ ∑
i Sz

i and Eβ (Sz ) the
ground-state energy of the BLBQ model at the parameter β

without a field in spin sector Sz. Because both HBLBQ and
the field term commute with Sz, Sz is a conserved quantum
number of H . This implies that for every h, the ground state
of Eq. (2) with energy Eβ (h) is an eigenstate of HBLBQ with
energy Eβ (h) − hSz for some −L � Sz � L. Moreover, this
eigenstate is the ground state of the sector or block of HBLBQ

with that value of Sz, so that by mapping each h to its Sz sector,
we can find the ground state of Eq. (2) for any h. Therefore, for
a finite-size system the QPT of the new Hamiltonian depends
on the redistribution of the energy spectrum of HBLBQ: the
QPT is driven by level crossings at certain hc1 at which an
old excited state becomes the new ground state.
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To guide the discussion in this paper, we depict a schematic
phase diagram of the BLBQ model at various values of β

for the BLBQ model in an applied magnetic field in Fig. 1
based on our DMRG results. We find that the gap in the
Haldane phase closes at a critical field hc1 and the system
enters a gapless B phase. In a small AKLT chain solved
by exact diagonalization (ED) (see Supplemental Material,
Fig. S7 [23]), this gaplessness can be viewed as a successive
falling of excited states to the new ground states after the
first level crossing at hc1, and becomes a critical region in the
thermodynamic limit.

The system at the ULS point is gapless with two incom-
mensurate soft modes, followed by the gapless phase A when
subjected to a small magnetic field. We found that this phase
A has four soft modes instead of two and persists for a large
range of external fields before reaching the first critical point
at hc1. At this point we find a gapless to gapless transition.
In a small system solved by ED, the magnetization of the
ULS model under a field exhibits steadily increasing steps,
and is predicted to increase smoothly within the two phases in
a large system as a function of h, until ultimately reaching the
transition point of the polarization field [24]. The calculation
by DMRG shows more subtle structure prior to the gapless to
gapless phase transition at hc1 ≈ 0.94, and that the magnetiza-
tion is in fact zigzag instead of smooth even for large systems.
We will explain the behavior at this transition quantitatively
by exploiting the SU(3) symmetry of the BLBQ model at the
ULS point and developing a picture of Lifshitz-type transition
that involves depopulation of spinon bands.

III. COMPUTATIONAL METHODS

Statics. We first investigate the static signatures of the
BLBQ model on a chain of L sites using density matrix renor-
malization group (DMRG) [21,22]. We calculate the spin-spin
correlation function between spins separated by a distance R
defined by

CS (R) = 1

L

∣∣∣∣∣
∑

i

〈Si · Si+R〉
∣∣∣∣∣, (3)

where i labels the sites. We also calculate the momentum-
space correlations

S(q) = 1

L2

∑
i, j

eiq(ri−r j )〈Si · S j〉, (4)

in order to elucidate the nature of the ground state. Here, ri

and r j are the real-space coordinates of sites i and j, and k
represents the crystal momentum. It is well known that expo-
nentially decaying spin-spin correlations indicate the presence
of a spectral gap, whereas a power-law decay of correlations
implies a gapless critical state [25,26]. Hence, although the
static spin-spin correlations do not provide information about
the dispersion of the modes, they can nevertheless provide
qualitative information about the nature of the ground state
for varying external fields h.

Dynamics. The dynamical structure factor S(q, ω) as a
function of frequency ω and momentum q can be measured
with inelastic neutron scattering, adding to their importance.

S(q, ω) is defined as usual

Sαβ (q, ω) = 1

L

∑
r

e−iqr
∫ ∞

−∞
dt〈Sα

c (t )Sβ
c+r (0)〉eiωt (5)

which is related to Eq. (4) by S(q) = ∫
S(q, ω)dω. To evaluate

Eq. (5) under open boundary condition (OBC) by DMRG, we
take the central site c, and compute the dynamical structure
factor by its analytic continuation which is given by the real-
space function

Sα,β (r, c, ω) = 〈g.s.|Sα
r

1

ω + iδ + H − E0
Sβ

c |g.s.〉, (6)

for all sites r, where |g.s.〉 is the ground state of the Hamilto-
nian H (either for the AKLT or ULS model), with or without
magnetic field, E0 the corresponding ground-state energy, and
δ a small broadening factor to ensure the convergence of
the Green’s function. From the Fourier transform we obtain
S(q, ω) and by integrating over all momenta, the density of
states S(ω) ≡ S(c, c, ω).

For Sz = 0 or at h = 0 the static and dynamic correlation
functions involving xx, yy, and zz are all equal due to rota-
tional symmetry. However, in a finite field, while xx and yy
correlations remain equal, they can differ from the zz corre-
lations. In what follows, we discuss the dynamical behavior
of both S+S− and SzSz (the SzSz dynamics are shown in the
Supplemental Material [23]).

Reference [27] describes in detail our Krylov-space ap-
proach of dynamical DMRG. The Supplemental Material [23]
provides evidence of convergence with the number of states
m kept within DMRG, and shows when finite-size effects
in the dynamical structure factor can be neglected. We have
used δ = 0.05 as the broadening factor, and have scanned the
frequencies in increments of �ω = 0.025 in units of energy.
Both statics and dynamics are computed with DMRG with a
desired truncation error 10−7 that requires us to retain up to a
maximum number of m = 800 states.

Entanglement. The von Neumann entanglement entropy
SvN also serves as another important signature of the model.
SvN of a subsystem A of the quantum spin chain with the rest
of the chain is calculated by the reduced density matrix ρA:

ρA = TrB[|g.s.〉〈g.s.|], (7)

SvN = −Tr[ρA log(ρA)] (8)

and provides a way to probe its entanglement structure. The
second-order transition point in a field is directly reflected
in the discontinuity of entanglement entropy, which, in the
low-field regime, can be used as a benchmark especially for
exactly solvable models like AKLT.

In addition, we also use entanglement properties to probe
the possible conformal field theory (CFT) description of gap-
less modes. The entanglement entropy of (1+1)-dimensional
CFT under OBC satisfies

SvN (n) = SCFT(n) + SOSC(n) + const, (9)
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FIG. 2. Results of AKLT model under a field (a) magnetization per site sz as a function of h � 0, showing two second-order phase
transitions. Data obtained from different system sizes converge rapidly and coincide with each other. (b) von Neumann entanglement entropy
SvN as a function of h at central bond computed for the same set of system sizes. (c) Static structure factor under different external field.
(d) Real-space correlation functions at h = 0.0, 0.5 for the VBS state, and h = 0.9, 1.0 for the gapless phase B. Curves of the same phase
coincide. (e) Correlation function of longitudinal and transverse components at different fields of phase B. (f) Exponent of real-space correlation
function fitted by S(R) ∼ R−η in the phase B.

where n is the bond position. The first two terms SCFT(n) and
SOSC(n) are defined as [28,29]

SCFT(n) = c

6
log

[
2L

π
sin

(
πn

L

)]
,

SOSC(n) =
∑

a

F a

(
n

L

)
cos(2aπn/N )

|L sin(nπ/L)|�a
, (10)

where c = N − 1 is the central charge and �a the scaling
dimension of the SU(N) Wess-Zumino-Witten (WZW) the-
ory, N defines the SU(N) symmetry of the effective CFT, L
the total length of chain, and F a(n/L) is a universal scaling
factor which has only one scaling dimension a = 1 for SU(2)
and SU(3), and it can be treated approximately as a constant
[30,31]. We fit our data from DMRG against Eq. (10) and
extract the central charge c in the gapless phases as an in-
dicator of their universality class. Extracting central charge
using Eq. (10) involves the fitting of oscillatory waves with
fine periodicity, therefore, we have increased the number of
states to m = 3000 to enhance the accuracy of the fitting. With
this value of m we indeed obtain c = 2 for the ULS model
from Eq. (10), exactly as expected by the SU(3) WZW theory.

IV. HALDANE PHASE

This section discusses the static and dynamical properties
of the AKLT model, as a representative of the Haldane phase
under an external field. It is defined by Eq. (1) with β = 1

3
and a ground-state energy [32] E0/L = − 2

3 . The Hamiltonian

in an external field is

HAKLTz =
∑
〈i j〉

Si · S j + 1

3
(Si · S j )

2 + h
∑

i

Sz
i . (11)

The AKLT Hamiltonian is not integrable. While some of its
stationary eigenstates can be constructed explicitly [33,34],
less in known about the signatures of its excited states beyond
the VBS ground state and about its dynamical properties, and
are discussed below.

A. Statics of AKLT

In this section we discuss the static behavior of an AKLT
chain when subjected to magnetic field. We will look into its
entanglement properties, magnetization, and two-point corre-
lations that probe phase transitions.

The magnetization is obtained both by simulating the
model with a field, and also by using the relation

h(Sz ) = E (Sz + 1) − E (Sz ), (12)

with E (Sz ) = EAKLT(Sz ) being the ground-state energy of the
AKLT model in the Sz symmetry sector without the field.
Since the total magnetization Sz ≡ ∑

i Sz
i is a good quantum

number, it can only increase in integer steps. As a result, we
can compute quantum sectors of different Sz separately, and
the energy differences thereof can be attributed to different
magnetic field h(Sz ). Figure 2(a) shows the magnetization per
site vs magnetic field, where two critical points can be identi-
fied by kinks in the total magnetization. Due to the nonzero
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gap above its |VBS〉 ground state, the zero-magnetization
phase is protected before the gap is closed by the increasing
magnetic field at hc1 ≈ 0.75 ± 0.02, after which the magneti-
zation begins to increase until saturation at a polarization field
hc2 = 4. Further evidence from the von Neumann entropy
shown in Fig. 2(b) also reflects the same transition.

It is worth pointing out that hc2 = 4 marks the phase tran-
sition point to the polarized phase for all Hamiltonians in
the BLBQ family. We briefly sketch the proof below: The
critical value hc2 is the lowest field at which the BLBQ system
becomes fully saturated. For this to happen, the sector with
Sz = L − 1 has to have lower energy than the sector with
Sz = L, and the field needed satisfies

EBLBQ(L) − hc2 L = EBLBQ(L − 1) − hc2 (L − 1), (13)

where EBLBQ(L′) is the ground-state energy of BLBQ Hamil-
tonian without field in sector Sz = L′. We use PBC, which
coincides with OBC in the thermodynamic limit L → ∞. The
sector with Sz = L has only one state, with all spins having
m = 1 with the total energy contribution from HBLBQ given
by EBLBQ = (1 + β )L. Now the sector with Sz = L − 1 has
exactly L states, and all states have L − 1 spins with m = 1
and one spin with m = 0. We call |kp〉 the state with m = 0 on
the pth site. Then

HBLBQ|kp〉 = |kp+1〉 + |kp−1〉 + [(1 + β )L − 2]|kp〉, (14)

which can be solved by a Fourier transform. The |Sz = L − 1〉
ground state can then be written as

|Sz = L − 1〉 =
∑

p

(−1)p|kp〉, (15)

with energy (1 + β )L − 4; using Eq. (13) yields hc2 = 4.
Moreover, the von Neumann entropy of the ground state of
the Sz = L − 1 sector is exactly equal to ln(2), and that of
the fully saturated state is 0. Therefore, the von Neumann
entropy has a discontinuity at h = hc2 ≡ 4, as expected, due
to the second-order nature of the transition. To conclude the
phase diagram, we have identified three different phases: the
SPT phase for 0 < h < hc1, the gapless intermediate phase for
hc1 < h < 4, and the fully saturated phase for h > 4, that we
now further explore.

Note that in the thermodynamic limit |hc1| =
limL→∞ |hc1(L)|, the results depend on the boundary
conditions: for open boundary conditions (OBC),
|hc1(L)| = EAKLT(Sz = 2) − EAKLT(Sz = 1) > 0, because
the ground state is fourfold degenerate with Sz = 0 and 1.
For periodic boundary conditions (PBC), the ground state
is unique with Sz = 0 and then |hc1(L)| = EAKLT(Sz = 1) −
EAKLT(Sz = 0) > 0 [32].

Figure 2(b) shows von Neumann entanglement entropy as
a function of h at the central bond of AKLT. At small fields
the VBS ground state is unchanged, and Sρ = log 2 due to the
pair of dangling spin- 1

2 bonds at both ends. The Haldane-B
transition at hc1 is evident by the sudden jump from the VBS
plateau to a peak. Then, Sρ drops at higher fields within the
phase B and becomes zero beyond the transition at hc2 to a
product state. The decreasing SvN in phase B of AKLT is qual-
itatively different from that of the ULS model; in the latter it is
a constant in the entire phase as shown in Sec. V. Moreover, it

is interesting that the Sρ of the AKLT model converges at high
field close to hc2 = 4 to about the same value as Sρ of the ULS
model. We can understand this behavior qualitatively in terms
of a single-mode approximation as discussed in Sec. VI B.

The correlation functions of the AKLT model are shown in
real space [Fig. 2(d)] and in momentum space [Fig. 2(c)] for
different h. In the VBS phase 0 < h < hc1, the ground-state
correlation function of Eq. (11) remains the same as that of
the AKLT model’s VBS state because the field is not strong
enough to change the nature of the ground state from the
h = 0 VBS ground state. The two-point correlation function
of a VBS state can be calculated analytically, having an expo-
nential behavior under OBC [35]:

Sαα (r) = (−1)n〈Sα
0 Sα

r 〉 = 1

3

(
1

3

)|r|
,

Sαα (q) = 2[1 − cos(q)]

5 + 3 cos(q)
(16)

which is an exact result in the thermodynamic limit arising
from the hidden string order [36,37]. The finite correlation
length and the static structure factor of the VBS phase in
Eq. (16) are consistent with the fitting of our numerical data
in Fig. 2(d): the correlation function of the VBS ground state
of spin-1 AKLT chain decays exponentially, and the static
structure factor has a smooth peak at q = π . In the gapless
intermediate phase, hc1 < h < hc2, the correlations decay fol-
lowing a power-law correlation, indicating that the gap has
vanished. This is as expected because the SPT phase cannot
make a transition to a trivial phase without either breaking the
symmetry or closing a gap.

The correlation function of the VBS Haldane phase is
known from Eq. (16) analytically and agrees with our numer-
ics. At higher fields in phase B, we have numerical results
for the longitudinal and transverse correlations [Figs. 2(d) and
2(e)]. By fitting the total S(R) ∝ R−η or the transverse corre-
lations for hc1 < h < hc2 (since the longitudinal correlations
are constant), we obtain the field dependence of the exponent
η shown in Fig. 2(f). We find that η varies continuously with
increasing field, which is reminiscent of the dependence of
the exponent on the Tomonaga-Luttinger liquid interaction
parameter. Also, as h approaches hc2, η → 0.7, which is close
to that of the ULS model at large field, supporting the claim
of Fig. 1 that both AKLT and ULS can be effectively captured
by the XXZ model when h is close to (and smaller than) hc2.
This is discussed in greater detail in Sec. V.

B. Dynamics of AKLT

We next present dynamical information of the AKLT
model when subjected to a magnetic field, where we show
explicitly the evolution of magnon bands with increasing field.
Figure 3 shows the dynamics in the S+S− sectors, for different
fields h, calculated using DMRG with the correction vector
method [38] on a L = 200 OBC chain. (The S−S+ and SzSz

dynamics can be found in the Supplemental Material [23].)
These results should be compared with those of the ULS
model to be discussed in the next section. For zero field, the
S+S− and SzSz dynamics coincide, but start differing once
the field is turned on since the field breaks time-reversal
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FIG. 3. Dynamic results of AKLT model under a field. S+−(q, ω) at field h = 0 (sz = 1
200 ), h = 0.5 (sz = 1

200 ), h = 1.0 (sz ≈ 0.3), and at
field h = 1.5 (sz ≈ 0.5). (a)–(c) Are within phase A while (d) is within phase B. Dynamical structure factors are obtained by 200-site DMRG
under OBC.

symmetry. For h < hc1, the SzSz dynamics is similar to that at
h = 0, as can be confirmed analytically, because (i) the ground
state remains a VBS state, and (ii) H − E0 does not depend on
field, as the energy contribution of field in H and E0 cancels
out. On the other hand, the S+S− dynamics already shows a
change: it moves down in energy exactly by h. This can also
be confirmed analytically because (i) the ground state remains
the VBS state, and (ii)

1

ω − H (h) + E0(h)
S±

i |VBS〉

= 1

ω̄± − H (h = 0) + E0(h = 0)
S±

i |VBS〉, (17)

with ω̄± = ω ± h, and implies that the peak that is present at
q = π for h = 0 at ω = hc1 moves down (for S+) linearly with
h, so that at h = hc1 it exactly touches ω = 0.

For hc1 < h < hc2 ≡ 4 (phase B), the SzSz dynamics (see
Fig. S3 of the Supplemental Material [23]) has a peak at
q = π and ω ≈ hc1, a peak that decreases in intensity as h
increases, and develops a FM peak that increases with increas-
ing h for q = 0. Meanwhile, hc1 < h < hc2 ≡ 4, the S+S−
dynamics has a peak at q = π and ω = 0, and two nearly
linear branches of weak intensity, both going up in energy and
away from q = π to q < π, q > π : one with negative slope
and to q > π , and one with positive slope; these branches
slowly converge to each other and toward q = π as the field
h goes to hc1. In other words, the slope of these branches
slowly tends to infinity (become vertical) as h increases to
hc1. Moreover, as h increases, the overall intensity of the S+S−
dynamics decreases and becomes exactly zero at h = hc2 ≡ 4.

It is worth pointing out that the gapless mode at q = π in

AKLT’s phase B has a varying dispersion as magnetic field
increases. This can be seen from Figs. 3(c) and 3(d), where
the dispersion is stretched to a wider energy range and the
slope of the dispersion decreases, where the high-energy tail
gets heavier that reflects the increasing fractionalization from
Figs. 3(c) to 3(d). We explain this behavior in the discussion
below using the single-mode approximation. It shows the dis-
persion at fields close to but smaller than hc2 resembles that of
the phase B of ULS (β = 1) and should be approximately the
same as q = π mode in Fig. 5(d).

At even higher fields, we have the trivially ferromagnetic
h � hc2 ≡ 4 phase has no S+S− dynamics, but has nonzero
S−S+ dynamics, and trivially ferromagnetic (FM) SzSz dy-
namics proportional to δ(ω)δ(k).

V. ULS CRITICAL POINT

This section presents our main results on the QPTs in
the Uimin-Lai-Sutherland (ULS) model corresponding to the
parameter β = 1 of the BLBQ Hamiltonian family [39–41].
Under an external field the Hamiltonian is given by

HULSz =
∑
〈i j〉

Si · S j + (Si · S j )
2 + h

∑
i

Sz
i . (18)

The ULS model has SU(3) symmetry, which is broken to
U(1) × U(1) by the application of a magnetic field h in the
z direction [9,17]. The ground state of the ULS model with an
h field then becomes the ground state of a block Hamiltonian
with a fixed Sz of the model without a field.

In the 1970s, Uimin, Lai, and Sutherland used the Bethe
ansatz method to describe the power-law correlations in the
ground state [39–41]. Kiwata [8] studied the behavior of
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FIG. 4. Results of ULS model under a field (a) magnetization per site sz as a function of h. Inset is the zoom-in segment of the magnetization
in phase A which shows a zigzag pattern regardless of system size. (b) von Neumann entanglement entropy SvN as a function of h for a cut at the
central bond for the same lattice and again computed with the DMRG. (c) Static structure factor at h = 0, 0.5 for the first phase, and h = 1.0
for the intermediate phase, respectively (d) Real-space correlation function for the same set of fields. (e) Correlation function of longitudinal
and transverse components at different fields of phase B. (f) Exponent of real-space correlation function fitted by S(R) ∼ R−η for phases A and
B separated by the vertical dashed line.

the ULS model under a magnetic field, and estimated the
critical magnetic field hc at which the magnetization curve
has a cusp, and showed that hc is a boundary between two
states: the phase at lower fields containing excitations with
m = +1, 0,−1 and the higher-field phase containing only
m = +1, 0. Later, Fáth and Littlewood [9] showed that in a
field, one can identify a massless phase that is connected to
the gapped Haldane phase and phase A with depleting bands.
These studies provide some intuition of distinct dynamics
in each spinon sector. While the aforementioned works have
provided a good understanding of the magnetic properties of
the ULS Hamiltonian, their dynamics and critical behavior
near the transition have not been explored. In this section we
will discuss the relevant static phenomena first, followed by
numerical and analytical analysis of its dynamics that lead to
testable predictions for experiments.

A. Static response of ULS model

Figure 4(a) shows the magnetization as a function of h,
where Eq. (18) is evaluated for the ULS model using DMRG.
Similar to the description in Sec. IV A, we use the relation
h(Sz ) = E (Sz + 1) − E (Sz ) to find the magnetization under
different magnetic field h. We see a second-order phase tran-
sition at hc1 ≈ 0.94. As explained in previous Sec. IV A,
the transition to the fully saturated phase occurs at hc2 = 4.
Figure 4(b) shows the von Neumann entanglement entropy
obtained by integrating out half the system with a cut at the
center bond, as a function of h.

The transition to the intermediate phase at hc1 demands
a different explanation from the one for the gapped AKLT
model and other gapped models within the Haldane phase. In
the ULS model there is no energy gap, hence, it is not a priori
clear why the phase A of ULS is protected as h increases.
As we show next, the SU(3) symmetry of the ULS model
can be exploited to explain the stability of the gapless phase
A and the transition at hc1. For this purpose, it is helpful to
map the ULS Hamiltonian onto a fermion model, in which
spin-1 operators are decomposed into partons by the map-
ping Si ≡ ψ

†
i Siψi with ψi = (ai,1, ai,0, ai,−1) describing three

annihilation components of a fermionic spinor correspond-
ing to m = 1, 0,−1. We follow the fermionizing approach
of Ref. [42] to show that the ULS Hamiltonian (with some
auxiliary constants) can be written as

HULS-const =
∑
〈i j〉

Si · S j + (Si · S j )
2-const

= −
∑

〈i j〉;mm′
a†

i,maj,ma†
j,m′ai,m′ , (19)

where we have defined the auxiliary constant term const =
nin j + 3ni with ni = ∑

m a†
imaim being the total onsite occu-

pation number operator. This representation is faithful as long
as there is one particle per site:∑

m=−1,0,1

a†
n,man,m = 1 (20)

(see Appendix A 2). The fermionic representation helps un-
derstand if the system has a larger symmetry than apparent,
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without having to write HULS in terms of generators of the
Lie algebra of SU(3). Equation (19) can be compactly written
as −∑

〈i j〉(ψ
†
i ψ j )(ψ

†
j ψi ). This expression is invariant un-

der any symmetry transformations in {U ∈ GL(3,C)|U †U =
I, det(U ) = 1} = SU(3), which directly shows the SU(3)
symmetry of the ULS point. From this representation, we
see three conserved quantities, by computing the following
commutators:

[N̂m, HULS] ≡
[∑

i

a†
i,mai,m, HULS

]
= 0, (21)

where we have defined N̂m to be the total occupation number
operator of m-type fermion of the whole lattice. Let Nm be
the eigenvalue of N̂m, which must be an integer because it
is a good quantum number. We can hereafter identify N−1

as the number of sites with m = −1, N0 the number of sites
with m = 0, and N1 number of sites with m = 1. The ULS
model then conserves N0, N1, and N−1 separately. Because
the sum of the three equals the number of sites L, there are
two linearly independent (l.i.) quantities; thus, the ULS model
has two local symmetries.

Let us choose the total Sz and the total N1: [HULS, Sz] =
[HULS, N1] = 0. A field h in the z direction does not change
these symmetries because

∑
i Sz

i = ∑
i a†

i,1ai,1 − a†
i,−1ai,−1

obviously commutes with all Nm. We can then label the energy
of the ULS in each block (Sz, N1) with EULS(Sz, N1), and the
energy of the ULS with field as EULS(Sz, N1) + hSz. Because
we choose h � 0, N1 tends to decrease as h increases, and
Sz tends to become more negative, so that |Sz| increases as h
increases. For h < hc1, the system can decrease its energy by
either increasing |Sz| or by decreasing N1 (because both are
conserved and l.i.) or both. Decreasing N1 while at the same
time increasing |Sz| increases EULS(Sz, N1) but decreases hSz,
so the two terms compete.

At first, it costs more to constantly increase |Sz|, and the
system must instead zigzag |Sz|. But at some large enough
field h, the field term wins and decreasing |Sz| is no longer
advantageous energetically. This happens when N1 cannot be
decreased any further, that is, when N1 reaches its minimum
value: zero. This point marks the second-order phase transi-
tion at h = hc1 . From h > hc1 onward, there are no longer
ground states with m = 1 sites, the magnetization Sz equals
−N−1, and N1 = 0.

Figures 4(d) and 4(e) shows the numerical results of the
decay of the real-space correlations (both longitudinal and
transverse) for the ULS model subjected to different fields.
The power-law exponent η(h), as shown in Fig. 4(f), varies
continuously in both phase A and phase B but changes dra-
matically at transition hc1, indicating an abrupt change in the
underlying Tomonaga-Luttinger theory. As the field increases
toward hc2, η gradually decreases and converges η → 0.7,
consistent with the behavior in the AKLT model.

Figure 4(e) shows the power-law decay of longitudinal
components Sz

0Sz
R of phase B, which is again almost constant,

thus the decay of S(R) is mainly attributed to the trans-
verse components Sx

0Sx
R and Sy

0Sy
R like in the AKLT model.

This behavior can be quantitatively described by exploiting
the SU(3) symmetry at ULS point and its spinon bands.
In the fermion representation, Sz = n1 − n−1, hence, the

longitudinal correlator is 〈Sz
i Sz

j〉 = 〈ni,1n j,1〉 + 〈ni,−1n j,−1〉 −
〈ni,1n j,−1〉 − 〈ni,−1n j,1〉. Noting that spinon of 1-type is com-
pletely depleted in phase B, the longitudinal correlator is
reduced to 〈

Sz
i Sz

j

〉 = 〈ni,−1n j,−1〉 (22)

for the ULS model in an intermediate field. Also, Fig. 4(e)
shows that, within phase B, the transverse correlator is almost
constant, indicating that n−1 in the phase B is approximately
ordered with

〈n−1〉 �
√〈

Sz
i Sz

j

〉
, ∀ 0 < i, j � L. (23)

Using
∑

m〈ni,m〉 = 1 and the fact that n1 = 0 in phase B, we
must have

〈n0〉 � 1 −
√〈

Sz
i Sz

j

〉
(24)

implying that n0 is also ordered in phase B. In fact, for the
polarized phase h > hc2, our numerical calculation indeed
gives 〈Sz

i Sz
j〉 = 1, ∀ 0 < i, j � L, consistent with 〈n−1〉 = 1

and complete depletion 〈n0〉 = 0. This provides a description
of the phase transition via depopulation of bands and its re-
semblance to Lifshitz transition.

Now that 〈Sz
i Sz

j〉 is a constant in phase B (both n0 and
n−1 are ordered), the decay of S(R) = 〈S0 · SR〉 is entirely
attributed to transverse spin components like 〈Sx

i Sx
j 〉, which

arise from the exchange of particles between the two spinon
bands. It is simple to check that within phase B the transverse
contribution is related to a kinetic exchange of spinons among
two flavors at a given site, described by〈

Sx
i Sx

j

〉 = 〈KiKj〉,

Ki ≡ 1√
2

(a†
i,0ai,−1 + ai,0a†

i,−1). (25)

Hence, even though spinons are ordered in the original lattice,
transverse correlations of spins nonetheless show a power-law
decay.

B. Dynamics of ULS model

It was shown in Ref. [11] that at β = 1, the spin-1 chain
has an exact mapping to a Schwinger boson representation
by projecting out the antiparallel states in the bond-operator
representation at large enough magnetic field before saturation
at hc2. Thus, in a large enough magnetic field the spin-1 chain
can be considered a spin- 1

2 chain. This boson representation
gives a very good picture for understanding the magnetiza-
tion of spin-1 ULS at large field qualitatively. There are two
more questions we can ask based on this insight: How does
the SU(3) system continuously transit to an effective SU(2)
system? How can we describe the dynamical evolution from
a spin-1 chain to its effective spin- 1

2 map? In this section we
will discuss these questions using the results of the dynamical
correlations for the ULS model obtained from DMRG.

Figure 5 shows the S+S− component of the dynamical
structure factor calculated using DMRG for a lattice of 200
sites with open boundary conditions, with and without field
h, as indicated. (The SzSz and S−S+ components are shown
in the Supplemental Material [23].) Before the first transition
at hc1, the dynamical structure factor S(q, ω) in Fig. 5(a)
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FIG. 5. S+−(q, ω) dynamics of ULS model at field h = 0 (sz = 1
200 ), h = 0.5 (sz ≈ 0.16), h = 0.9 (sz ≈ 0.50), and h = 1.5 (sz ≈ 0.60).

(a)–(c) Are within phase A while (d) is within phase B. Results of dynamics are obtained by 200-site DMRG under under OBC.

shows that a wide range of frequencies are excited at a
given momentum, in contrast to the gapped Haldane phase
that shows sharper modes. At low energies, the spectrum for
the ULS model has two gapless incommensurate modes at
q ∼ 2π/3, 4π/3 corresponding to the two peaks shown in
Fig. 4(c) at h = 0. This is a distinct fingerprint observable
by inelastic neutron scattering. The broad spectrum provides
clear evidence for fractionalized excitations.

Adding a field breaks the SU(3) symmetry of the ULS
model into U(1)×U(1). As shown in Fig. 5(b), this reduc-
tion of symmetry is accompanied by the bifurcation of the
two incommensurate modes that are both twofold degenerate,
resulting in four distinct gapless modes. Upon increasing the
field, we find that the two pairs of modes move in opposite
directions in momentum space. Near hc1 one pair of modes
recombines into a degenerate mode at π , the other pair moves
further away from each other and becomes fainter as the field
reaches hc1. Finally, as shown in Fig. 5(d), at h = 1.5 > hc1

we see only one gapless mode at π while the other pair is
completely washed out.

Importantly, in Fig. 5(d) which shows the dynamical struc-
ture factor at h = 1.5, the S(q, ω) is not as sharp and linear as
in the AKLT model or Heisenberg model shown in the Supple-
mental Material [23], instead, it forms a fan emanating from
the gapless point at q = π to higher energies with decreasing
spectral weight. This behavior resembles the spectrum of a
spin- 1

2 Heisenberg chain obtained by Bethe ansatz [1,43,44].
In order to understand how the phase transition is reflected

in the bifurcation in dynamical structure factor shown in
Figs. 5(a)–5(d), we adopt a fermion band representation of the
problem. Let km denote the Fermi momentum of the spinon of
m flavor. The single-particle density of m-flavor spinon can
thus be approximated by ρm � ∫ km

−km
dk/2π = km/π . Notice

that the spinon representation is faithful iff ni ≡ 1, and that
ρm = ∑

i〈ni,m〉/N , the three Fermi momenta are thus related
by ∑

m=−1,0,1

km = π. (26)

The magnetic field contribution in terms of spinons is

hSz =
∑

i

h(a†
i,1ai,1 − a†

i,−1ai,−1) (27)

without which all three bands are degenerate, hence, on the
ULS point km = π/3 for all three bands. As SU(3) is broken
by a small but nonzero field, k0 will remain intact, yet the other
two momenta will change by k1,−1 = π/3 ± h/v, where v is
the spinon velocity.

Next we show this fermion band picture provides an ex-
planation of the dynamical spectral function shown in Fig. 5.
Low-energy spinons of the SU(3) model can be approximated
by a pair of chiral fermions [45]

ai,m ≈ fL,m(x)e−ikmx + fR,m(x)eikmx, (28)

where fL,m and fR,m, respectively, denote left and right chiral
fermion annihilation operators relevant for m spinon with
momenta km = π/3. Therefore, in the low-energy sector for
h � vkm, the magnon excitation can be approximated by

S+(x) ≈ f †
R,1 fL,0e−i(k1+k0 )x + f †

L,1 fR,0ei(k1+k0 )x

+ f †
R,0 fL,−1e−i(k0+k−1 )x + f †

L,−1 fR,0ei(k0+k−1 )x (29)

in terms of the scattering channels between left and right
chiral fermions. From previous analyses of fermion bands, it
is readily seen that the momenta relevant for these processes
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are

k1 + k0 = 2π/3 − h/v,

k0 + k−1 = 2π/3 + h/v · (30)

This explains the bifurcation of modes at q = 2π/3 and 4π/3
shown in Fig. 5(b). Further increasing h towards hc1 leads to
the reduction of Fermi momentum k1, thus, the depopulation
of spinon of m = 1 type. Its complete depopulation happens at
h = hc1, exactly the end of the zigzag magnetization pattern.
In other words, hc1 can be viewed as the chemical potential
μ1 ≡ hc1 of the 1-type spinon, which touches the bottom of
the 1-type spinon band and gives a zero occupation at ground
state. Therefore, upon entering the B phase, all excitation
channels in S+ relevant for fR/L,1 vanish, and the only modes
left are those with k−1 + k0 = π . This explains the “recombi-
nation” of modes shown in Figs. 5(a)–5(d).

Furthermore, this fermionic band picture also allows us to
explain the square-root-like scaling behavior in the magneti-
zation for 0 < hc1 − h = δh < hc1 near the critical point hc1.
As is clear from Eq. (27), varying h is equivalent to a varying
chemical potential μ1(h) of relevant spinon. Its dispersion for
small δh > 0 can then be written as

ε1,q − μ1 = ε1,q − δh. (31)

Assuming a parabolic dispersion ε1,q = αq2 of the 1-type
spinon near the bottom of the band, where α is a constant,
at the Fermi momentum we have

k1 = (δh/α)1/2. (32)

From Eq. (27) its magnetization near hc1 can be evaluated by

Sz = |k1 − k−1| = k−1 − (δh/α)1/2 (33)

which immediately determines the critical exponent of mag-
netization near hc1:

δSz(hc1) ∝ δh1/2 (34)

which agrees with numerical results in Fig. 4(a). The same
physics takes place at the second phase transition near hc2 =
4, where, instead of 1-type spinon, it is the 0-type spinon
that gets depopulated due to the shift of its Fermi momentum
k0 or, equivalently, its chemical potential μ0. Because of the
complete depopulation of 1-type spinon at hc1, the constraint
of Eq. (26) changes into k0 + k−1 = π . The Zeeman term
relevant for (−1)-type spinon −ha†

n,−1an,−1 lowers the chem-
ical potential μ−1, thus continuously lowers the energy of the
lowest occupied state. This leads to the transfer of spinons
from m = 0 into m = −1 band. Assuming a parabolic band of
0-type spinon again gives the same magnetic critical exponent
Sz(hc2) ∝ δh1/2. Ultimately, at hc2 the m = 0 band becomes
completely unoccupied and we obtain k−1 = π as in Fig. 5(d).

Moreover, the magnetic critical exponent on the right side
of hc1 (hc2 > h > hc1) is readily derived starting from the
phase B. Noting that h

∑
i Sz

i is a good quantum number,
previous analysis on Sz(hc2) ∝ δh1/2 applies to all the ULS
models of phase B, including those near hc1 from the right
side. Taylor expansion of the aforesaid square-root scaling
at finite δh = h − hc1 > 0 immediately gives a linear de-
pendence on δh. The same argument applies to the critical

behavior at small h near h = 0. In all, near h = 0 we have

Sz(h) ∝ h1, (35)

near hc1 we have

Sz(h) ∝
{

(hc1 − h)1/2, h < hc1

(h − hc1)1, hc1 < h
(36)

and near hc2

Sz(h) ∝ (hc2 − h)1/2, h < hc2. (37)

Therefore, in this spinon band language, the two phase tran-
sitions at hc1 and hc2 are both continuous transitions in the
thermodynamic limit, as a “topological” phase transition of
the Lifshitz type that involves three distinct spinon bands: the
Fermi surface (point) of the 1-type spinon vanishes at hc1; the
Fermi surface (point) of the 0-type spinon vanishes and gives
rise to the emergence of the (−1)-type at hc2.

To further understand the end of the phase diagram shown
in Fig. 5(d), we would like to point out that it was obtained in
Refs. [10,11] that in the spin- 1

2 bond operator representation
of spin 1, the spin states antiparallel to the applied field can
be projected out, thus the bond operator representation can be
approximated by

S+
√

2
∼ u†tz ≡ S+,

S−
√

2
∼ t†

z u ≡ S−,

Sz ∼ 1
2 (u†u − t†

z tz ) + 1
2 ≡ Sz + 1

2 , (38)

where t†
z creates a triplet state of spin- 1

2 bond by t†
z |0〉 =

1/
√

2(|↑ ↓〉 + |↓ ↑〉) and u† the bosonic creation operator
defined by u†|0〉 = |↑ ↑〉. Equation (38) is the Schwinger
boson representation of the pseudo-spin- 1

2 operators. Apply-
ing such projection produces an effective spin- 1

2 anisotropic
Heisenberg model subject to an effective magnetic field:

Heff ∝
∑
〈i j〉

Sx
i Sx

j + Sy
i S

y
j + �Sz

i Sz
j + heff

∑
i

Sz
i , (39)

where heff = (h + β − 1)/2 and � = (1 + β )/2. This ex-
plains the resemblance between the spin- 1

2 system and spin-1
system near saturation at hc2. Such a mapping from the spin-1
system to the spin- 1

2 system is exact for β = 1 at h � hc1.
In particular, for β = 1 and h = hc2 = 4 where ULS model
is polarized, the effective field in Eq. (39) becomes heff = 2,
which is exactly the field that polarizes the spin- 1

2 XXZ model
[46]. At fields above but close to hc1, we expect the dynami-
cal structure factor of the ULS model’s gapless intermediate
phase to coincide with that of the spin- 1

2 model calculated
by Bethe ansatz, whose intensity decreases as the field be-
comes stronger. Figure 4(c) (for h = 1.0 > hc1) validates such
a mapping in the intermediate phase of ULS. Moreover, the
evolution of dynamical structure factor shows explicitly how
the mapping into spin- 1

2 model emerges from the bifurcation
and recombination of degenerate soft modes.
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FIG. 6. Entanglement entropies as a function of bond position n and fits to the data (red solid line) for (a) the spin- 1
2 Heisenberg model

with c = 1, which is equivalent to ULS under a field larger than hc1, (b) AKLT model, (c) spin-1 Heisenberg model. (d) Shows central charge c
as a function extracted from EE of AKLT and spin-1 Heisenberg model within the intermediate phase. Results obtained from 200-site DMRG
under OBC.

VI. DISCUSSION

A. Central charge

In this section we turn to a brief discussion of the cen-
tral charge to provide insight into their effective underlying
CFT descriptions. Many pioneering works have been done for
the spin-1 antiferromagnetic chain using the nonlinear sigma
model (NLσM) [3,4], which has been recently extended from
the Heisenberg model with β = 0 to the BLBQ Hamiltonian
with a wider range of β > 0 [47].

While NLσM captures the presence of the elementary
magnon at q = π in the extended region of the Haldane phase,
it fails to accurately capture correlation functions beyond the
AKLT point at β = 1

3 . In this section, we investigate a possi-
ble field theory starting from the Haldane phase boundary at
the ULS point at β = 1 by looking into the central charge of
the phase B. We show that perturbation of β is irrelevant in
phase B, that is, a theory with c = 1 is robust for a very wide
range of β in the gapless regions that emerge in the ULS or
Haldane model under a field.

It is well known that in the continuum limit an antiferro-
magnetic spin- 1

2 chain can be described by an SU(2) WZW
theory with central charge c = 1, which can be generalized to
many other (1+1)-dimensional quantum critical systems with
higher SU(N) symmetries with central charge c = N − 1. We
present below the entanglement entropy at different bonds in
models studied in previous sections, and investigate the exis-
tence of possible effective CFT correspondence by extracting
the central charge in the phase B.

The ULS model at h = 0 can be captured by a SU(3)
WZW theory with c = 2. Under hc1 < h < hc2, the ULS
model can be mapped exactly to a spin- 1

2 Heisenberg model
[10,11], hence, in the low-energy regime this intermediate
phase should have an effective CFT with central charge c = 1.
As we move away from the ULS point by increasing β from
β = 1, the mapping to the spin- 1

2 Heisenberg model is no
longer exact in the intermediate phase because the antiparallel
states in the bond-operator representation cannot be projected
out, unless the field is close to saturation at hc2. The deviation
from the effective spin- 1

2 chain can be seen from the difference
in their spectral weight distribution of intermediate phase
shown in Figs. 3(d) and 5(d). However, as we are to show
next, the c = 1 theory can be robust against a nonperturbative
deviation of β = 1 where the mapping to the spin- 1

2 model is
not valid.

The entanglement entropy of (1+1)-dimensional CFT un-
der OBC satisfies

SvN (n) = SCFT(n) + SOSC(n) + const, (40)

where n is the bond position. The first two terms are as defined
in Eq. (10). Figure 6 shows results of entanglement entropy
(EE) as a function of bond position n, and is fitted by Eq. (10)
to extract the central charge at different fields. As a benchmark
we show in Fig. 6(a) the EE(n) of the spin- 1

2 Heisenberg
model with c = 1, which is equivalent to ULS model un-
der fields hc1 < h < hc2. Figure 6(b) shows the EE(n) of the
AKLT model near the first critical field hc1(β = 1

3 ) ≈ 0.75.
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TABLE I. Summary of energy gap �, momentum of gapless
modes q0, and central charge c of Heisenberg and AKLT models
under different fields. The central charge of the ULS model at fields
corresponding to the XXX intermediate phase is c = 1 due to its
mapping to the spin- 1

2 chain. Although such a mapping is no longer
exact on the path from β = 1 to 0, the behavior of the central charge
in the B and XXZ phases is shown in Fig. 6(d). Away from the
phase transition at the corresponding hc1 the central charge is close
to c = 1. The right arrow in the table c → 1 indicates that the central
charge is unity only away from the transition within the accuracy of
the numerical results.

Field AKLT Heisenberg

� >0 >0
h = 0 q0

c
� >0 >0

|h| < hc1 q0

c
� 0 0

hc1 < |h| < hc2 q0 π π

c c → 1 c → 1

It is worth pointing out that while the EE of the spin- 1
2

Heisenberg model oscillates strongly under OBC, the EE of
AKLT’s intermediate phase does not, hence, we can drop the
SOSC

n term in Eq. (10). When δh1 = h − hc1 < 0.1, i.e., hc1 <

h < 0.85, the central charge c ≈ 0.5 deviates from spin- 1
2

chain’s c = 1 which reflects the invalidity of the mapping, yet,
as shown in Fig. 6(d), the central charge converges rapidly
after δh1 > 0.1 to c = 1 and remains such up to saturation
at hc2 = 4. In the spin-1 Heisenberg model where β = 0, the
central charge also quickly converges to c = 1, but this time
EE oscillates with larger amplitude and periodicity than that
of AKLT for small δh1 = h − hc1, as shown in Fig. 6(c). In
the Heisenberg model, the central charge converges to c = 1
beyond δh1 > 0.4, i.e., h > 0.8, and remains the same until
saturation, and the oscillation of EE also disappears after
the convergence like that of the AKLT. Hence, although β

deviates nonperturbatively from β = 1 to the AKLT model
with β = 1

3 , or to the Heisenberg model with β = 0, a central
charge c = 1 continues to describe the gapless intermediate
phase. These results are summarized in Table I.

B. Single-mode approximation

Motivated by the sharp signal of the dynamical structure
factor in Figs. 3(a)–3(d) and 5(d), we investigate the extent
to which a single-mode approximation (SMA) can describe
the spectrum of the aforementioned models. To understand
the nature of the excitations in the intermediate phase B of
H (h; β ) we turn to Bijl and Feynman’s SMA method [48],
which successfully described the phonon-roton curve in 4He
and was later used to explain the antiferromagnetism in ex-
tended Heisenberg models with a Haldane gap [35,49,50].
SMA assumes the existence of well-defined modes with a
sharp dispersion S(q, ω) ∝ S(q)δ[ω − ω(q)]. It was shown
previously that SMA works well in capturing the gap above

the AKLT ground state [51]. As we discuss below, SMA is
able to capture the essence of the field-induced gapless modes
at fields above but close to hc1 near the Haldane-phase B
boundary (see Fig. 1) with good accuracy. However, SMA
becomes too coarse of an approximation to capture the gapless
modes at higher fields in the B intermediate phase due to
increasing magnon fractionalization.

Although the AKLT chain does not order unless it is in the
saturated phase h > 4, when the requirement for SMA to be
valid is rigorously met, nevertheless, we find that SMA can
capture the essence of the modes when the fractionalization
of the magnon modes is weak, and the deviation from SMA
provides a quantitative measure of the degree of fractional-
ization. One point to note is that the gap deduced by SMA
is the upper bound of the actual gap as is evident from Fig. 1.
The strength of SMA is that it provides qualitative information
on the excitations based only on the static structure factor,
without detailed information on the dynamical information.
In order to compare with the well-known result by Arovas,
Auerbach, and Haldane [35] we scale down the Hamiltonian
by 1

2 hereafter in this section. By SMA we assume the magnon
excitations can be described by

Sα
q |g.s.〉 = 1

L

∑
i

eiqri Sα
i |g.s.〉, (41)

where |g.s.〉 is the ground state of Hamiltonian H which can
be readily computed by DMRG, α = x, y, z are three differ-
ent magnon branches. This is a good approximation if the
magnon dispersion is strongly peaked at the energy of the state
Sα

q |g.s.〉. The dispersion within SMA is then given by

ωSMA = 〈g.s.|[Sα
−q, [H, Sα

q ]
]|g.s.〉

2〈g.s.|Sα−qSα
q |g.s.〉 , (42)

where the denominator is simply the static structure factor
evaluated in the ground state. In the presence of inversion
symmetry (or PBC) commutators in the numerator can be
worked out directly. Here we choose the Sz magnon branch
and the energy is evaluated to be

ωSMA = (1 − cos q)C(β )

S(q)
, (43)

where C(β ) is a collection of correlators between nearest
neighbors. It is also independent of q and fully determined
by the choice of the magnon branch, the parameter β in
the BLBQ Hamiltonian. For a derivation of ωSMA, readers
can refer to Appendix A 1. Furthermore, in the Sz branch
the z-field term of the commutators in Eq. (42) vanishes,
thus, we can simply use the nonperturbed Hamiltonian for
the numerator. The spectrum becomes gapless, i.e., ωSMA =
0, when the structure factor S(q) diverges, as seen from
Eq. (43).

We make no attempt to apply SMA to the phase A be-
cause it is an extremely fractionalized phase that strongly
violates S(q, ω) ∝ S(q)δ[ω − ω(q)]. It turns out that, even
though for hc1 < h < hc2 the ULS gives much sharper signal
in dynamical structure factors shown in Fig. 5(d), SMA is
a poor approximation to capture the dynamical information,
which is reflected by a nonzero minimum of ωSMA in Fig. 7(f).
This can be qualitatively accounted by the fact that, at least
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FIG. 7. SMA results (solid lines) compared with S(q, ω) obtained by DMRG (intensity plot) in (a) AKLT VBS state; (b)–(e) AKLT phase
B at h = 0.8, h = 1.8, h = 2.8, h = 3.8 > hc1 calculated for different L. The gap of the VBS state is remarkably close to the exact result of
�VBS = 0.350. Within the phase B of AKLT, at field slightly larger than hc1, e.g., h = 0.8 in (a), the (upper bound of) gap given by ωSMA(k) is
close to zero and decreases as L increases, indicative of a gapless mode in the thermodynamic limit. However, as h keeps increasing in (b) and
(c), the gapless mode is no longer captured by SMA. (f) ULS: SMA and DMRG for the gapless intermediate phase at h = 1.5 > hc1 ≈ 0.94.
The upper bound is not tight enough to capture the gapless mode at π .

for fields close to but smaller than saturation field hc2 = 4, the
behavior of spin-1 BLBQ chains very much resembles that
of a spin- 1

2 Heisenberg chain, and can be mapped exactly to
spin- 1

2 chain for ULS point [10,11]. The dynamical solution
of spin- 1

2 chain from Bethe ansatz is qualitatively consistent
with phase B of ULS shown in Fig. 5(d), both of which have a
S(q, ω) that resembles a fuzzy fan area of fractionalized signal
emanated from q = π . SMA loses too much information by
ignoring these fractionalized modes.

Figure 7 shows the single-mode dispersion ωSMA at dif-
ferent fields obtained for different L. Figures 7(a)–7(e) show
results for the AKLT model. In the VBS ground state,
the SMA dispersion can be solved exactly: ωSMA = 5(5 +
3 cos k)/27 with the SMA gap ωSMA(π ) = 0.370, which is
very close to the number � ≈ 0.350 given by ED. At h = 0.8,
which is slightly larger than hc1 and belongs to the gapless
phase B of AKLT, the lowest excitation energy for L = 180
obtained by SMA is about ωSMA ∼ 0.03 at q = π , which is
tiny compared to that of the VBS state. This upper bound
of the gap is affected by the finite size L and decreases with
increasing L, so we can speculate that there is a gapless mode
at fields larger than but close to hc1 within the intermediate
phase, and the slope of the two nearly linear branches slowly
tends to infinity as h gets close to hc1, which actually rep-
resents a one-dimensional Bose condensation at the critical
point [52]. Such Bose condensation breaks down as the field
h increases beyond hc1.

Figures 7(b)–7(e) show the same SMA calculation at larger
fields within phase B of AKLT. As the field h increases within
B and gets further away from the Haldane-B boundary, the
lowest excitation energy captured by SMA no longer con-
verges to zero. This can be readily seen in the static structure
factor S(q) in Fig. 2(d), that the spiky S(q) of phase B at q = π

decreases as magnetic field h increases, hence, the approxi-
mated gap by ωSMA in Eq. (43) becomes larger. In other words,
since the existence of a gapless mode is already guaranteed
by the diverging correlation length, a nonzero gap in SMA
means the upper bound of the gap is not asymptotically tight,
which suggests the assumption S(q, ω) ∝ S(q)δ[ω − ω(q)] is
no longer accurate for the dynamical structure factor at higher
field away from Haldane-B boundary and the Bose condensate
breaks down. Further increase of magnetic field enhances
fractionalization and ultimately the system resembles a spin- 1

2
model somewhere near saturation field hc2, where all spin
states antiparallel to the applied field can be asymptotically
projected out as in the case of the A-B transition in the ULS
model in a field. Therefore, from the calculated data in Fig. 7,
we can speculate that the SMA result of AKLT after some
large enough field between Figs. 7(d) and 7(e) should be the
same as an effective XXZ model under an effective magnetic
field, whose S(q, ω) is similar to that of the phase B of ULS
shown in Fig. 7(f). This qualitatively explains the shape of
intensity distribution in Fig. 7(e), thus, the heavier tail at
higher energy in AKLT phase B shown in Figs. 2(k) and 2(l),
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and the decreasing of entanglement entropy at larger fields
shown in Fig. 2(c).

C. Material candidates

In this section we discuss candidate materials with d4

configuration where the field-induced Lifshitz-type transition
of ULS Hamiltonian may be observed. Contrary to common
wisdom that d4 materials are nonmagnetic in both strong
spin-orbital coupling (SOC) and Hund’s coupling limits [53],
our recent study using the full multiorbital Hubbard model
of d4 configurations indicates that a magnetic phase transi-
tion is possible in a realistic parameter regime [16,54]. For
example, Ca2RuO4 was shown to have finite magnetic mo-
ments [55–57], and experiments on double-perovskite iridates
[58–64], honeycomb ruthenates [65–67] have also revealed
nontrivial magnetism for the d4 configuration.

In our previous work [17] using DMRG on the model
derived for d4 transition metal oxides we also find a gapless
to gapless transition with increasing SOC. The behavior near
the transition point of the d4 model captured by a mean-field
theory described by a ULS model comprised of only L = 1
orbital degrees of freedom at β = 1 with an additional spin-
orbital interaction. In the following, we briefly describe the
origin of the model and its connection with the ULS Hamilto-
nian in the orbital sector.

The effective Hamiltonian for d4 materials is effectively
described by [16,17]

Hd4 = −J
∑
〈i j〉

(Si · S j )P (Li + L j = 1) + λ
∑

i

Li · Si. (44)

The effective coupling constants J and λ represent ferromag-
netic exchange and spin-orbit interactions. The projection op-
erator in the first term P (Li + L j = 1) = − 1

8 L2
〈i j〉(L

2
〈i j〉 − 6)

is defined on a bond connecting orbital sectors of two adja-
cent sites. For a two-site problem, the total orbital angular
momentum can be LT = 0, 1, or 2. Therefore, the projec-
tor P (Li + L j = 1) = 0, 1, 0 for LT = 0, 1, 2, respectively.
For J > 0, this projector makes the L〈i j〉 = 0 and 2 quantum
sectors energetically unfavorable on the two-site bond, while
preferring L〈i j〉 = 1 angular momentum on the bond. Upon
expanding the projector we arrive at the explicit form of the
Hamiltonian

Hd4 = J

2

∑
〈i j〉

(Si · S j )((Li · L j )
2 + Li · L j − 2)

+ λ
∑

i

Li · Si, (45)

In Ref. [17] we have shown that the model exhibits an
emergent spin-orbital separation in a spin-orbital interacting
system. Therefore, we can factorize our Hamiltonian into a
spin and orbital part, similar to a mean-field approximation,

Hd4 ≈ J

M2
S

2
∑
〈i j〉

((Li · L j )
2 + Li · L j − 2) + λMS

∑
i

Lz
i ,

(46)
where we assume M2

s � ∑
〈i j〉〈Si · S j〉 and treat the spin-orbit

coupling in the Ising limit with MS = ∑
i |〈Sz

i 〉|. This approx-
imation is justified by the numerical results that show the

magnetization of spins remains large for weak enough SOC.
In summary, the similarity with Ref. [9] leads us to expect
that our model [Eq. (44)] can be well approximated by only
the orbital term in the Hd4 Hamiltonian with a Zeeman field
Lz [Eq. (46)]. The first term in Hmf is exactly the ULS Hamil-
tonian up to a constant. Therefore, the effective Hamiltonian
can be interpreted as the ULS Hamiltonian with an additional
Zeeman field. Setting the energy scale J = 1 we have

Heff =
∑
〈i j〉

((Li · Lj)
2 + Li · Lj) + heff

∑
i

Lz
i , (47)

where Li are the spin-1 Pauli operators at site i, and heff =
2λ/Ms is the strength of an effective external Zeeman field
experienced by the orbital degree of freedom. This is an or-
bital analog of ULS model with a field, as discussed in Sec. V,
Eq. (18). Therefore, we expect our predictions in Sec. V are
useful to guide explorations for 5d4 transition metal oxides
like OsCl4, Ca2RuO4, and other double-perovskite iridates.

VII. SUMMARY AND OUTLOOK

In summary, we have investigated the one-parameter bilin-
ear biquadratic Hamiltonian family for two parameter values
β = 1

3 , the AKLT model as a representative of the Haldane
phase, which is compared with β = 1, the ULS critical point,
and shown the process by which the ground state evolves un-
der a magnetic field. Both models undergo two second-order
transitions: the AKLT model first transitions from the Haldane
phase to a gapless phase B, and then to the fully saturated
phase at field hc2 = 4. The ULS critical point, already gapless
at zero field, goes through a second transition to the gapless
phase B before reaching the fully polarized phase at hc2 = 4.
We showed that the gapless to gapless transition in ULS model
under a field can be understood as a Lifshitz-type transition
that involves three distinct spinon bands in the gapless to
gapless transition. In the spinon band language, the two phase
transitions at hc1 and hc2 are both continuous transitions in
the thermodynamic limit, as a “topological” phase transition
of the Lifshitz type that involves three distinct spinon bands:
the Fermi surface (point) of the 1-type spinon vanishes at hc1;
the Fermi surface (point) of the 0-type spinon vanishes and
gives rise to the emergence of the (−1)-type at hc2. We have
scrutinized the universality of central charge in the gapless
phase B which can be effectively captured by a CFT with
c = 1. We expect our predictions of the spin dynamics will
open the door for inelastic neutron scattering measurements
in candidate materials of relevant quasi-one-dimensional d4

materials [16,17]. Future theoretical work will involve the na-
ture of edge modes of BLBQ models under OBC, the effect of
thermal fluctuations on symmetry-protected topological states
in addition to a field, and a field-theoretic approach to deter-
mine the effective CFT to describe the gapless intermedate
phases.
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APPENDIX

1. Derivation of C(β) of SMA

In this section we sketch the derivation of C(β ) mentioned
in Eq. (43). As an example we will derive the SzSz channel.
Here we use the conventional BLBQ parametrized by β:

H =
∑
i,i+1

(�Si · �Si+1) + β(�Si · �Si+1)2. (A1)

The evaluation of SMA can be reduced to the evaluation of
the commutator in Eq. (42):[

Sα
−q,

[
Hβ, Sα

q

]] =
∑
inn′

([Sα
n′ , �Si · �Si+1]Sα

n

− Sα
n [Sα

n′ , �Si · �Si+1])
e−iq(n−n′ )

L

−β([Sα
n′ , (�Si · �Si+1)2]Sα

n

− Sα
n [Sα

n′ , (�Si · �Si+1)2])
e−iq(n−n′ )

L
≡ HL + HQ, (A2)

where we have moved to Fourier basis. The two terms in
the above equation are from the linear and quadratic terms
of BLBQ Hamiltonian, respectively. We evaluate the linear
term first then the quadratic term. The linear term in the
commutator is∑

inn′

([
Sz

n′ , �Si · �Si+1
]
Sz

n − Sz
n

[
Sz

n′ , �Si · �Si+1
])

e−iq(n−n′ ). (A3)

Noting that if n �= i and n �= i + 1, then the commutation
factor of linear term must vanish. So, we only need to add
up these two indices. In presence of inversion symmetry the
summation becomes, this gives

HL = −2(1 − cos q)
1

L

∑
i

Sy
i Sy

i+1 + Sx
i Sx

i+1, (A4)

where the normalized sum over i contributes to C(β ). This
alone will be the SMA for the spin-1 Heisenberg chain. Note

that the two-point correlation in the summation will evalu-
ate to a negative number in antiferromagnetic chain, so the
dynamical signal is proportional to 1 − cos q. In a similar
way, we apply the inversion symmetry to HQ and have which
is again proportional to 1 − cos q. So, in arbitrary units we
may ignore the multiple-point correlation functions that are
independent of momentum during the evaluation of single-
mode dynamical structure factor. In fact, for the AKLT model
C(β ) ∼ 1 [50] so the arbitrary units should be very close to
the actual value.

2. Fermionization of the ULS model

In this section we show a detailed derivation of ULS’s
fermionic representation. Rewriting the Hamiltonian in the
fermion language allows us readily to notice the SU(3) sym-
metry as mentioned in the main text, and is a useful tool in
finding conserved charges that are not explicit otherwise. For
spin-1 sites, define spin-1 operator Si = ψ

†
i
�Sψi, where �S is the

spin matrix in spin-1 Hilbert space:

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, S+ =

⎛
⎝0

√
2 0

0 0
√

2
0 0 0

⎞
⎠ (A5)

and ψ = (ai,1, ai,0, ai,−1)T , with ai,m(a†
i,m) being the fermion

annihilation (creation) operator for a spinon of flavor m at site
i. So we have

Sz = a†
1a1 − a†

−1a−1, (A6)

S+ = (S−)† =
√

2(a†
1a0 + a†

0a−1). (A7)

There is a constraint that the spin on each site is 1, thus,

1
2 S2 = 1

2 SzSz + 1
4 (S+S− + S−S+)

= (n − n0n1 − n0n−1 − n1n−1)
!= 1,

(A8)

where nm is the onsite occupation number operator of m-type
fermion, and ni = ∑

m a†
imaim is the total onsite occupation

number operator. The standard ULS Hamiltonian in spin lan-
guage is written as

HULS =
∑
〈i j〉

Si · S j + (Si · S j )
2 − 2I. (A9)

Note the identity I is spanned in 3 ⊗ 3 Hilbert space. The on-
site identity is I0 = ∑

α〈α|I0|α〉a†
αaα = ∑

α a†
αaα = n, hence,

I = nin j . Therefore, we can make use of the fermion repre-
sentation of identity as auxiliary parameters. Let us define
a diagonal constant c = nin j + 3ni, then the equivalent ULS
Hamiltonian H can be expressed by

HULS = HULS − c =
∑
〈i j〉

Si · S j + (Si · S j )
2 − c

= −
[ ∑

〈i j〉
a†

i,1a j,1a†
j,1ai,1 + a†

i,0a j,0a†
j,1ai,0 + a†

i,−1a j,−1a†
j,−1ai,−1 + a†

i,1a j,0a†
j,0ai,1 + a†

i,0a j,−1a†
j,−1ai,0
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+
∑
〈i j〉

a†
i,1a j,−1a†

j,−1ai,1 + a†
i,0a j,1a†

j,1ai,0 + a†
i,−1a j,0a†

j,0ai,−1 + a†
i,−1a j,1a†

j,1ai,−1

]

= −
∑

〈i j〉;mm′
a†

i,maj,ma†
j,m′ai,m′ = −

∑
〈i j〉

(ψ†
i ψ j )(ψ

†
j ψi ). (A10)

It is then obvious that HULS remains invariant under transformations in SU(3) ≡ {U ∈ GL(3,C)|U †U = I, det(U ) = 1}. It
is then straightforward to show the three conserved quantities explicitly by the fermion representation. That is, [Nn, HULS] =
[
∑

n a†
nan, HULS] = 0. Hence, the total occupation number Nm of m = −1, 0, 1 are good quantum numbers separately.
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