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The magnon-phonon interaction is receiving growing attention due to its key role in spin caloritronics
and the emerging field of acoustic spintronics. At resonance, this magnetoelastic interaction forms magnon
polarons, which underpin exotic phenomena such as magnonic heat currents and phononic spin, but is mostly
investigated using mesoscopic spin-lattice models. Motivated to integrate the magnon-phonon interaction into
first-principles many-body electronic structure theory, we set out to derive the exchange contribution, which
is subtler than the spin-orbit contribution, using Schwinger functional derivatives. To avoid having to solve
the famous Hedin-Baym equations self-consistently, the phonons are treated as perturbations to the electronic
structure. A formalism based on imposing a crossing-symmetric electron-electron interaction is developed in
order to treat charge and spin on equal footing to respect the Pauli exclusion principle. Due to spin conservation,
the magnon-phonon interaction first enters to second order through the magnon-magnon interaction, which
renormalizes the magnons. We show by iteration that the magnon-magnon interaction contains a “screened T
matrix” term and an arguably more important term which, in the local-spin limit, enables first-principles phonon
emission and absorption amplitudes, predicted by phenomenological magnetoelastic models. These terms are,
respectively, of first and second order in the screened collective four-point interaction W—a crossing-symmetric
analog of Hedin’s W . Proof-of-principle results are presented at varying temperatures for an isotropic magnon
spectrum in three dimensions in the presence of a flat optical phonon branch.
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I. INTRODUCTION

Magnons and phonons are ubiquitous bosonic quasiparti-
cles in condensed-matter physics. Magnons denote collective
spin flips—spin fluctuations with spin h̄ and with dispersion
and lifetime accessed from the magnetic susceptibility, com-
monly probed by inelastic neutron scattering. Phonons denote
collective lattice deformations, carry no intrinsic spin in the
absence of spin-phonon interaction, and are accessed from
the charge susceptibility, also commonly probed by inelastic
neutron scattering. The two quasiparticles have very distinct
physical properties and applications.

Phonons are first and foremost major heat carriers and pre-
vent overheating in microelectronics, although a major issue
is that downscaled electronics have a large electron-phonon
interaction that inhibits the heat dissipation. The electron-
phonon interaction also has positive usages, such as boosting
thermoelectric generators to reduce environmental waste [1].
Phonons are employed in cavity optomechanics, with appli-
cations ranging from gravitational wave detection to quantum
metrology, where phononic crystal cavities are often used to
confine sound [2], and laser detuning is used to transfer energy
to or from cavity phonons for mechanical amplification or
cooling purposes [3]. Magnons, on the other hand, are well
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known to dissipate Zeeman energy and relax magnetization
but are also used practically for information transport and
processing in the emerging field of magnonics, which aims to
achieve downscaled and faster computing by pushing for in-
creased magnon speeds, lifetimes, and mean free paths [4,5].
A difficulty in magnon spintronics/electronics is converting
information stored in electronic spin/charge to and from the
processing magnonic subsystem [6]. Magnons also allow for
room-temperature condensation when exposed to microwave
pumping [7,8], and through their scattering with electrons,
magnons work as a possible pairing glue in unconventional
superconductors [9,10]. It follows that a unified picture of
superconductivity should necessarily be equipped with proper
accounting of both phonons and magnons. The two generally
cannot be adiabatically separated, which correlates their dy-
namics and opens the door to exotic phenomena with novel
applications.

The magnon-phonon interaction is strong in manganites
[11], nickel nanomagnets and nanopatterned magnetic struc-
tures [12,13], yttrium iron garnet [14], polycrystalline BiFeO3

[15], Eu0.75Y0.25MnO3 [16], and many other multiferroics and
also in ferromagnets such as bcc iron [17,18]. Depending on
the relative scattering strength of magnons and phonons in
magnetic insulators, the interaction can either increase or de-
crease the spin Seebeck effect [19–23], a thermoelectric effect
that converts temperature gradients to spin currents. This puts
the magnon-phonon interaction at the core of spin caloritron-
ics [24], where coupled spin-heat currents are studied—a
path to green devices with waste heat recycling capabilities.
Another promising direction is acoustic spintronics, initiated
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by the room-temperature “spintronics battery” in yttrium iron
garnet, based on acoustic spin pumping by magnon-phonon
resonance [25,26]. The magnon-phonon interaction also leads
to a thermal conductivity increase upon magnetic ordering in
geometrically frustrated magnets [27], magnonic heat currents
[28], and phononic spin [29–31] in quantum magnets and
enables photodrive of curved domain walls [32]. It has also
provided a mechanism for the thermal Hall effect [33], where
local nonequilibrium between magnons and phonons can be
achieved optically [34]. We conclude this acclamation of the
magnon-phonon interaction by mentioning its link to the co-
existence of superconductivity and charge-density waves in
high-temperature superconducting copper oxides [35] and to
condensation of hybrid magnetoelastic bosons [36].

Prior to such exciting developments, the magnon-phonon
interaction was mainly theoretically investigated using spin-
lattice models, owing to the success of the Landau-Lifshitz-
Gilbert approach to describe mesoscopic magnetization dy-
namics [37], where precession and damping are included
but faster superposed effects are neglected. The initial field-
theoretic works in this direction by Abrahams and Kittel
were focused on ferromagnets [38–40] and based on tuning
a macroscopic magnon-phonon interaction obtained from a
postulated magnetoelastic free-energy density to match ob-
served magnetostriction and tuning a pseudodipolar spin-spin
interaction to match observed anisotropy. The famous phonon
emission and absorption terms were identified as leading
terms. Since then, many spin-lattice model studies have con-
tributed to further insights into the interaction in ferro-, ferri-,
antiferro- and metamagnets, as well as in complicated setups
in and out of equilibrium [21,41–63]. Self-consistent theo-
ries of coupled magnetoelastic modes induced by a spatially
varying temperature [64] and of phonon pumping based on
magnon-number-conserving processes [65] are two interest-
ing recent developments, but these and the above examples
contain parameters whose connection to the elementary elec-
tronic structure is not fully understood.

The first step towards a first-principles spin-lattice dy-
namics was arguably taken within time-dependent density
functional theory [66], in which molecular dynamics was
studied in conjunction with an adiabatically separated spin-
density matrix, albeit with a limited treatment of dissipation
and temperature. Another major step was the extension of the
Landau-Lifshitz-Gilbert approach to account for short-time
nutation of the magnetization [67], caused by the moment
of inertia and requiring microscopic treatments to access a
retarded exchange interaction [68]. A third noteworthy step
was based on an action formalism, which provided a mini-
mal bilinear model in which spin and lattice variables were
treated on equal footing [69]. What is yet needed is a field-
theoretic treatment of the exchange-mediated magnon-phonon
interaction, which necessitates a foundation in the electronic
structure where the simultaneous screening of charge and spin
is physically guided by the Pauli exclusion principle.

This work therefore aims to derive, from the underly-
ing electronic structure, the magnon renormalization due to
the exchange-mediated magnon-phonon interaction, which is
known to be important at short wavelengths [63]. We leave
out the less subtle anisotropy contribution due to the spin-

orbit interaction, and the thermal equilibrium that we will
assume can readily be extended to nonequilibrium, although
the general ideas will still apply. Since we focus on magnons,
we treat phonons as perturbations to avoid having to self-
consistently solve the Hedin-Baym equations [70] for coupled
electron and phonon systems. Phonons can thus be accounted
for at the end of the derivation by a method of replacements
[71]. A crossing-symmetric formalism based on Hedin’s is
presented in which charge and spin are treated on equal
footing. Without spin-orbit interaction, spin conservation
forbids magnon-phonon conversion but allows for magnon-
number-conserving magnon-phonon interaction [63], which
enters to second order in the magnon-magnon interaction
and thus renormalizes the magnons. We call this contribution
the phonon-assisted magnon-magnon (PAMM) interaction
throughout this work.

We will go through the approximations needed to arrive
at an expression for the PAMM interaction of the same form
as that obtained from phenomenological magnetoelastic mod-
els, like in Ref. [63], but with first-principles access to the
parameters. The most crucial step is the two-point approxima-
tion, which reduces the so-called spin-flip interaction (which
contains the magnon-magnon interaction and thus also the
PAMM interaction) from a four-point to a two-point quantity.
By applying the theory to a simple model, we show how the
PAMM interaction leads to not only dissipative broadening
of the magnon spectrum but also Hubbard-like splittings. In
an upcoming publication, a semirelativistic extension will be
presented in which the orbital magnetic moment and the spin-
orbit interaction will be included in addition to the exchange
contribution considered here.

This paper is organized as follows: in Sec. II we present
the formal theory based on Schwinger functional derivatives,
in which crossing symmetry is used to put charge and spin on
equal footing. In Sec. III a series of approximations is made,
which allows for a simple expression of the PAMM inter-
action. In Sec. IV, a minimal model is considered in which
the effect of phonons on the magnon spectrum is considered.
Finally, in Sec. V we summarize the work and give an outlook
on future developments.

II. FORMAL THEORY

A. Setting the scene

The main goal of this work is to derive the effects of
the magnon-phonon interaction on the magnon spectra from
first principles in the absence of spin-orbit interaction or
other relativistic effects. As explained in the Introduction,
this is done by finding an explicit expression for the PAMM
interaction, which yields the leading-order magnon renormal-
ization due to phonons. We assume that the orbital angular
momentum is quenched in the solid and therefore assume that
the magnons are exclusively attributed to the spin fluctua-
tions. The nonrelativistic contribution to the magnon-phonon
interaction originates from the exchange interaction and is
obtained self-consistently from the Hedin-Baym equations for
systems in which both the electrons and the lattice fluctu-
ate [70]. Unfortunately, this self-consistency not only makes
practical calculations costly but also clouds the connection to
spin-lattice models.
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However, it is well known that due to the high-energy
(plasmonic) charge screening of the electronic subsystem it
is crucial to calculate the phonon Green’s function D after
an initial electronic structure calculation. Having obtained
phonons in such a simplified electronic surrounding, it is natu-
ral to compute the electronic structure in the presence of these
approximate phonons. This can easily be done in Hedin’s
formalism by correcting the well-known screened electron-
electron interaction W by an additional term W DW containing
an intermediate phonon [71]. Since the effects of the approx-
imate phonons exclusively enter through this quantity, it is
possible to first derive the spin-fluctuation spectrum as a func-
tional of W , i.e., in a rigid lattice, and then replace the latter
by W + W DW to account for the magnon-phonon interaction.
We can thus forget about the lattice dynamics completely for
now—its consequence is easily corrected for at the end. In
principle, it is possible to compute how the resulting magnons
affect the electronic structure and “next-iteration phonons,”
but this work focuses on the effect of phonons on magnons.

B. A crossing-symmetric starting point

Since equilibrium magnons and phonons are excited
thermally, it is natural to work with a finite-temperature for-
malism, in which an appropriate starting point is the grand
canonical Hamiltonian, defined as K̂ = Ĥ − μN̂ , where Ĥ is
the Hamiltonian of the electronic system, μ is the chemical
potential, and N̂ is the number operator. In an orthonormal
Wannier basis, this takes the form

K̂ = [h(12) − δ12μ]ĉ†
σ1

(1)ĉσ1
(2)

+ 1
2v(12,34)ĉ†

σ1
(1)ĉ†

σ4
(4)ĉσ4

(3)ĉσ1
(2), (1)

where h is the hopping matrix and

v(12,34) =
∫

dxdy
w∗

n1R1
(x)wn2R2

(x)wn3R3
(y)w∗

n4R4
(y)

|x − y| (2)

are the Coulomb integrals in the Wannier basis {wniRi}, which
fulfill the inversion symmetry v(12, 34) = v(43, 21). The
Wannier functions are assumed to be spin independent for
simplicity. In Eq. (1) and the following, we use Einstein’s
summation convention and Hartree’s atomic units, where h̄ =
me = e = a0 = 1, and let the electron charge be +1 rather
than −1 for convenience. The spin index σi =↑,↓ is kept
explicit, whereas the Wannier orbital ni and unit cell T i are
condensed into index i. To describe the interplay between
charge and spin it is key to start from a crossing-symmetric
interaction which encodes the Pauli exclusion principle in
its definition. This utilizes the fact that the local part of a
spin-conserving interaction between a ↓ and ↑ electron can
be reinterpreted as a simultaneous spin flip of the two, with
both processes conserving the total spin locally.

Using anticommutation, it is possible to reformulate the
interaction term in Eq. (1), which we call K̂int, into a crossing-
symmetric form. The result is

K̂int = 1
2vσ1σ2

σ3σ4
(12, 34)ĉ†

σ1
(1)ĉ†

σ4
(4)ĉσ3

(3)ĉσ2
(2). (3)

The spin-dependent interaction can be written in the Pauli
form (μ = 0, x, y, z)

vσ1σ2
σ3σ4

(12, 34) = −vσ1σ3
σ2σ4

(13, 24) (4)

= σμ1
σ1σ2

vμ1μ2
(12, 34)σμ2

σ4σ3
, (5)

where the first equality shows the crossing symmetry and

vμ1μ2
(12, 34) = δμ1μ2

2

[
δμ10v(12, 34)− 1

2
v(13, 24)

]
. (6)

This is the origin of the exchange interaction between spins in
the Heisenberg model. It forbids unphysical local interactions
between two electrons of identical spin in the many-body
treatment, which is to follow, and is thus the most appealing
form allowed by the Fierz ambiguity [72].

C. Schwinger’s functional derivative method

We now use Schwinger functional derivatives, with the
goal of obtaining the magnon spectrum from the electronic
structure. The starting point is the imaginary-time Green’s
function for an electron in the Dirac picture

Gσ1σ2
(12) = −Tr

[
e−βK̂ T̂ Ŝ ĉσ1

(1)ĉ†
σ2

(2)
]

Tr(e−βK̂ Ŝ )
, (7)

where the imaginary times τi, which are hidden in the com-
bined indices i = (i, τi ), are assumed to be between zero
and the “thermodynamic beta,” β = 1/kBT . Furthermore, T̂
is the time-ordering operator in imaginary time, ĉσ1

(1) =
eK̂τ1 ĉσ1

(1)e−K̂τ1 is the annihilation operator in the Dirac pic-
ture, and Ŝ is the imaginary-time evolution operator from zero
to β due to a virtual (external) two-point field ϕext, i.e.,

Ŝ = T̂ exp
[ − ϕext

σ3σ4
(34)ĉ†

σ3
(3)ĉσ4

(4)
]
, (8)

with implicit integration from zero to β over both τ3 and τ4.
The equation of motion for G can easily be obtained from the
Heisenberg equation, which reads

−∂τ1 ĉσ1 (1) = [
ĉσ1 (1), K̂

]
. (9)

This commutator is evaluated using Eqs. (1) and (3) and
results in the equation of motion

δσ1σ2δ12

= −{
δσ1σ3

[
δ13∂t1 + k(13)

] + ϕext
σ1σ3

(13)
}
Gσ3σ2

(32)

+ vσ1σ3
σ4σ5

(13, 45)
Tr

[
e−βK̂ T̂ Ŝ ĉ†

σ5
(5+)ĉσ4

(4)ĉσ3
(3)ĉ†

σ2
(2)

]
Tr(e−βK̂ Ŝ )

,

(10)

where we have defined [δτ1τ2 = δ(τ1 − τ2)]

k(13) = δτ1τ3
[h(13) − δ13μ], (11)

vσ1σ3
σ4σ5

(13, 45) = δτ1τ3
δτ3τ4

δτ4τ5
vσ1σ3

σ4σ5
(13, 45). (12)

The last term in Eq. (10) contains the two-electron Green’s
function, which in terms of G reads

Tr
[
e−βK̂ T̂ Ŝ ĉ†

σ5
(5+)ĉσ4

(4)ĉσ3
(3)ĉ†

σ2
(2)

]
Tr(e−βK̂ Ŝ )

= −Gσ3σ2 (32)Gσ4σ5 (45+) + δGσ3σ2 (32)

δϕext
σ5σ4

(5+4)
, (13)

as verified with the chain rule by differentiating Eq. (7),
where the ϕext dependence is contained in Ŝ through Eq. (8).
Inserting Eq. (13) into Eq. (10) shows that the term contain-
ing δG/δϕext complicates the access to a practically useful
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functional of G−1 in terms of G. In Hedin’s formalism [73],
which does not impose a crossing-symmetric interaction,
the analogous term defines the self-energy �. But unlike
Hedin’s formalism, the δG/δϕext contribution to Eq. (10)
does not correspond to exchange and correlation, but to half
the Hartree-Fock potential plus correlations. The crossing-
symmetric starting point thus hints at a pathology of treating
the two terms in Eq. (13) asymmetrically, so we avoid intro-
ducing �. However, to invert Eq. (10) using the chain rule
δG = −GδG−1G is unavoidable, so that both terms in Eq. (13)
contain a suitable factor of G, yielding

G−1
σ1σ2

(12) = −[
δ12∂t1 + k(12)

]
δσ1σ2

− ϕtot
σ1σ2

(1+2). (14)

The total field splits into two components,

ϕtot
σ1σ2

(1+2) = ϕext
σ1σ2

(1+2) + ϕind
σ1σ2

(1+2), (15)

where the induced field reads

ϕind
σ1σ2

(1+2) = vσ1σ2
σ3σ4

(12,34)Gσ3σ4(34+)

− vσ1σ3
σ4σ5

(13,45)Gσ3σ6 (36+)
δϕtot

σ6σ2
(6+2)

δϕext
σ5σ4

(5+4)
. (16)

This is the “mass operator” in Hedin’s theory. Since this is var-
ied when deriving the spin susceptibility, the Green’s function
has to be kept nondiagonal in the spin index until the end, de-
spite the absence of spin-orbit interaction. Before continuing
along these lines, we turn to the four-vector representation in
Sec. II D, where the connection to the macroscopic Maxwell
fields is clarified.

D. Four-vector representation

The external, induced, and total fields can all be written in
the generic Pauli form

ϕσ1σ2
(1+2) = σμ

σ1σ2
ϕμ(1+2), (17)

ϕμ(1+2) = 1
2σμ

σ4σ3
ϕσ3σ4

(1+2), (18)

with four-vector index μ = 0, x, y, z, and

ϕμ(1+2) = (φ(1+2),− 1
2 Bi(1

+2)). (19)

Here, φ is the electric scalar potential (Ei = −∂iφ), Bi is the
magnetic flux density, and 1

2 is the Bohr magneton. To be
consistent with Eqs. (17) and (18), field derivatives must be
related as

δ

δϕσ1σ2
(1+2)

= 1

2
σμ

σ2σ1

δ

ϕμ(1+2)
, (20)

δ

δϕμ(1+2)
= σμ

σ3σ4

δ

δϕσ3σ4
(1+2)

. (21)

The spin-density matrix 
, which is related to the Green’s
function through the simple relation


σ1σ2 (1+2) = Gσ2σ1 (21+), (22)

has the same Pauli form as the field derivatives, namely,


σ1σ2 (1+2) = 1
2σμ

σ2σ1

μ(1+2), (23)


μ(1+2) = σμ
σ3σ4


σ3σ4
(1+2), (24)

where, notably, 
0 = n is the electronic density and 
z = m is
the spin magnetization. Likewise, the spin-density derivatives
are in the same form as the fields,

δ

δ
σ1σ2 (1+2)
= σμ

σ1σ2

δ

δ
μ(1+2)
, (25)

δ

δ
μ(1+2)
= 1

2
σμ

σ4σ3

δ

δ
σ3σ4 (1+2)
. (26)

The four-vector representation of Eq. (16) is obtained from
Eqs. (5), (12), (18), (21), (22), and (23), yielding

ϕind
μ1

(1+2) = vμ1μ3 (12, 34)
μ3(4
+3)

− 1

4
tr (σμ1σμ2σμ3σμ4 )vμ2μ5 (13, 45)
μ3(6

+3)
δϕtot

μ4
(6+2)

δϕext
μ5

(5+4)
,

(27)

where tr (σμ1σμ2 ) = 2δμ1μ2 is used twice in the first term.
The trace in the second term can be evaluated but contains
many terms. This shows the benefit of the usual “spin
representation”; another benefit is that it naturally expresses
the crossing symmetry, like in Eq. (4). Since this will be
relevant later when deriving the spin-flip interaction, we
will return to the spin representation, but we first stress
the correspondence to field quantities in the macroscopic
Maxwell theory, reading [74]

ϕtot
μ = (

φ,− 1
2 Bi

)
, (28)

ϕext
μ = (

1
ε0

φD,− 1
2μ0Hi

)
, (29)

ϕind
μ = (−1

ε0
φP,− 1

2μ0Mi

)
, (30)

where φD and φP are scalar potentials for the electric
displacement and polarization fields, which are assumed to be
conservative, i.e., Di = −∂iφD and Pi = −∂iφP. In addition,
Hi is the inductive magnetic field, and Mi is the magnetization
field. For clarity, we have refrained from utilizing ε0 = 1/4π

and μ0 = 4πα2 in atomic units, where α ≈ 1/137 is the
fine-structure constant. With this correspondence, it is easy
to identify the inverse relative dielectric function as well as
relative permeability as

ε−1
r (12, 34) = δϕtot

0 (1+2)

δϕext
0 (3+4)

, (31)

μr i j (12, 34) = δϕtot
i (1+2)

δϕext
j (3+4)

. (32)

There are also the components δϕtot
0 /δϕext

j and δϕtot
i /δϕext

0 ,
which are important in the presence of spin-orbit interaction.
Common to all components is the fact that they describe an
“inverse electromagnetic screening factor” S. We therefore
define

S−1
μ1μ3

(12, 34) = δϕtot
μ1

(1+2)

δϕext
μ3

(3+4)
. (33)
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The static limits of the charge-charge and spin-spin
components are small in metals and diamagnets, respectively,
whereas in ferromagnets the latter instead diverges. The
required higher-order field variations in ferromagnets are
implicitly included in the formalism despite the fact that only
the linear screening S appears explicitly.

E. Screened collective four-point interaction

Having established connections to Maxwell’s theory, we
continue on the path towards the PAMM interaction. In
Eq. (16), the main quantity to find is

S−1|σ1σ2
σ3σ4

(12, 34) = δϕtot
σ1σ2

(1+2)

δϕext
σ3σ4

(3+4)
. (34)

Using Eq. (15) and the chain rule yields

S−1
∣∣σ1σ2

σ3σ4
(12,34)

=δσ1σ3
δσ2σ4

δ13δ24+Vσ1σ2
σ5σ6

(12,56)Pσ5σ6
σ7σ8

(56,78)S−1
∣∣σ7σ8

σ3σ4
(78,34),

(35)

where

Vσ1σ2
σ3σ4

(12, 34) = δϕind
σ1σ2

(1+2)

δ
σ4σ3
(4+3)

(36)

is the collective four-point interaction, which in Hedin’s for-
malism amounts to the sum of Coulomb interaction and
irreducible four-point vertex δ�/δG [75,76], and

Pσ1σ2
σ3σ4

(12, 34) = δ
σ2σ1
(2+1)

δϕtot
σ3σ4

(3+4)
(37)

= Gσ1σ3
(13+)Gσ4σ2

(42+) (38)

is the free electron-hole pair propagator, which might also
be called the four-point electromagnetic polarization function.
By defining the screened collective four-point interaction

Wσ1σ2
σ3σ4

(12, 34) = S−1
∣∣σ1σ2

σ5σ6
(12, 56)Vσ5σ6

σ3σ4
(56, 34), (39)

it is possible to write

S−1
∣∣σ1σ2

σ3σ4
(12, 34) = δσ1σ3

δσ2σ4
δ13δ24

+ Wσ1σ2
σ5σ6

(12, 56)Pσ5σ6
σ3σ4

(56, 34), (40)

which when plugged into Eq. (16) yields

ϕind
σ1σ2

(1+2) = 2vσ1σ2
σ3σ4

(12,34)Gσ3σ4
(34+)

− vσ1σ3
σ4σ5

(13,45)Gσ3σ6
(36+)

× Gσ7σ5
(75+)Gσ4σ8

(48+)Wσ6σ2
σ7σ8

(62, 78). (41)

The first term is the Hartree-Fock potential, where the factor
of 2 is a consequence of the crossing symmetry of v in Eq. (4).
The second term employs Eq. (38) and contains all correla-
tions through W, which, like v, fulfils the crossing symmetry

Wσ1σ2
σ3σ4

(12, 34) = −Wσ1σ3
σ2σ4

(13, 24) (42)

or a similar equation if 1σ1 and 4σ4 are interchanged. This
guarantees that the wave function is antisymmetric when
interchanging electrons and is proven by repeating the deriva-
tion when initially anticommuting the annihilation operators

in Eq. (3). W has another symmetry related to pair hopping,
proven by using anomalous probing fields which interchange
electrons and positrons, but it is of little interest in this work.

F. Spin susceptibility and spin-flip interaction

The interacting electron-hole propagator is defined as

Rσ1σ2
σ3σ4

(12, 34) = δ
σ2σ1
(2+1)

δϕext
σ3σ4

(3+4)
, (43)

which is analogous to P in Eq. (37), but with ϕtot replaced by
ϕext. The physical charge and spin susceptibilities are obtained
by contraction, through

Rσ1σ2
σ3σ4

(13) = Rσ1σ2
σ3σ4

(11, 33), (44)

which, with Eqs. (20), (22), and (23), can be expressed as

Rσ1σ2
σ3σ4

(13) = σμ
σ1σ2

2

δ
μ(1+1)

δϕext
ν (3+3)

σ ν
σ4σ3

2
. (45)

Since z is the spin direction, Eq. (45) shows that the transverse
spin fluctuations are contained in R

↓↑
↓↑ and R

↑↓
↑↓, which yield the

magnon spectra through their imaginary parts. Since the two
are related by reflection symmetry, we will consider only the
former. From (43) and the chain rule, we get

R
↓↑
↓↑(12, 34) =P

↓↑
↓↑(12, 34)

+ P
↓↑
↓↑(12, 56)V↓↑

↓↑(56, 78)R↓↑
↓↑(78, 34). (46)

With spin-orbit interaction, this equation would, due to a spin-
nondiagonal G, also couple charge and spin components of
R and, when accounting for phonons, would contain the pro-
cess of magnon-phonon interconversion [54,63]. This could
be solved at the level of the random-phase approximation,
but as emphasized earlier, this work focuses on the nonrela-
tivistic magnon-number-conserving processes. The goal is to
derive a contribution to the spin-flip interaction V

↓↑
↓↑ describing

the simultaneous propagation of spin and charge excitations,
which allow for spin conservation and, after the inclusion
of phonons, will be shown to contain the PAMM interac-
tion. Since the spin-flip interaction is a four-point quantity,
it is necessary to solve for the full four-point R↓↑

↓↑ and con-
tract it afterwards according to Eq. (44) to access the spin
susceptibility.

III. APPROXIMATE THEORY

A. Low-energy model

The long-range interaction v, which enters the spin-flip in-
teraction through Eqs. (36) and (41), makes calculations very
expensive. Trading rigor for clarity, we assume that a renor-
malized low-energy model has properly been constructed in
advance and make the replacement

vσ1σ2
σ3σ4

(12, 34) := Uσ1σ2
σ3σ4

(1)δ12δ23δ34, (47)

Uσ1σ2
σ3σ4

(1) = Un1

2

(
δσ1σ2

δσ3σ4
− δσ1σ3

δσ2σ4

)
, (48)

which assumes an instantaneous, local, and orbital-diagonal
interaction, which still fulfils crossing symmetry. This ne-
glects retardation and couplings between different unit cells
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and between different orbitals in the same unit cell and is
justified if the low-energy electronic structure has a single
isolated spin-resolved band at the Fermi energy. This step is
easily avoided if needed but is instructive for investigating the
magnon-phonon interaction, owing to the fact that a single
magnon branch requires only a one-band model.

Since the spin-flip interaction is obtained by varying ϕind
↓↑ ,

we insert the replacement of Eq. (47) into Eq. (41) and get

ϕind
↓↑ (1+2) = 2δ12U

↓↑
↓↑(1)G↓↑(22+)

− U↓σ3
σ4σ5

(1)Gσ3σ6
(16+)

× Gσ7σ5
(71+)Gσ4σ8

(18+)Wσ6↑
σ7σ8

(62, 78), (49)

which, when used in Eq. (36), yields

V
↓↑
↓↑(12, 34) = 2δ12δ23δ34U

↓↑
↓↑(1)

− 2δ13U
↓↓
↑↑(1)G↑(15+)G↑(61+)W↑↑

↑↑(42, 65)

+ 2δ14U
↓↑
↓↑(1)G↓(15+)G↑(16+)W↓↑

↓↑(52, 36)

− 2U↓↓
↑↑(1)G↓(16+)G↑(71+)G↑(18+)

× δW
↓↑
↑↑(62, 78)

δG↓↑(34+)
, (50)

where the crossing symmetries of U and W have been used
along with the spin diagonality of G, which is valid in the
absence of spin-orbit interaction. U has been treated as G
independent, in analogy to v in the full Hilbert space. The
functional derivative δW/δG will be shown to contain the
interaction between spin and charge fluctuations and, when
generalized to dynamical lattices, to generate the PAMM in-
teraction. The generalization of Eq. (50) for arbitrary spin
components of V together with Eq. (39) for W forms a self-
consistent set, even when G and P are treated as predetermined
inputs, for example, from density functional theory. Since this
is beyond the reach of present-day computational capacities,
we will solve Eq. (50) iteratively.

B. Iterative spin-flip interaction

A practical scheme is iterative rather than self-consistent.
The first iteration is obtained by dropping W on the right-hand
side of Eq. (50). Using Eq. (48), the first iteration yields

V·↓↑
↓↑(12, 34) = δ12δ34V

·↓↑
↓↑(13) = −δ12δ23δ34Un1

, (51)

where the number of · symbols denotes the iteration number.
The one-point structure, which also holds for the other spin
components of V·, implies that W· has the same two-point
structure for all spin components. Since this clearly breaks the
crossing symmetry of W·, we use a trick where W·

c = W· −
V· = W·PV· is approximated as

W·
c
σ1σ2
σ3σ4

(12, 34) ≈ δ12δ34W
·
c
σ1σ2
σ3σ4

(13) − δ13δ24W
·
c
σ1σ3
σ2σ4

(12),

(52)

where we, for convenience, denote the two-point interactions
as W·

c, although their physical dimensions differ from the
four-point interactions by two factors of time. Equation (52)
corresponds to keeping direct and exchange matrix elements,

but we have used the crossing symmetry on the latter. Notice
that the double counting of the component W·

c|σ1σ2
σ3σ4

(11) intro-
duces no error, unless the imaginary time is discretized. Since
our goal is to express the next iteration interaction V·· in terms
of G, V·, and W·

c, it is clear from Eqs. (50), (51), and (52) that
it only remains to find expressions for the factors δW·/δG,
with W· corresponding to the two-point reductions in Eq. (52).
For arbitrary spin components, it follows from Eqs. (39) and
(40) that W·−1 = V·−1 − P, and consequently, from the chain
rule

δW·σ1σ2
σ3σ4

(13)

δGσ5σ6(56+)
= W·σ1σ2

σ7σ8
(17)

δPσ7σ8
σ9σ10

(79)

δGσ5σ6(56+)
W·σ9σ10

σ3σ4
(93), (53)

where the G independence of V· in Eq. (51) has been used.
The two factors of W· on the right-hand side do, in general,
have three-point contributions, but these must vanish due to
Eq. (52). From Eq. (38) it follows that

δPσ7σ8
σ9σ10

(79)

δGσ5σ6
(56+)

= δσ7σ5
δσ9σ6

δ75δ96Gσ10σ8
(97+)

+ δσ10σ5
δσ8σ6

δ95δ76Gσ7σ9
(79+). (54)

Using Eqs. (38), (47), (48), (51), (52), (53), and (54), the
second iteration of the spin-flip interaction in Eq. (50), which
is obtained by treating screening perturbatively through the
approximation W ≈ W·, takes the form

V··↓↑
↓↑(12,34)

= −δ13δ24W
·↓↓
↑↑(12)

− P
↓↓
↓↓(13,24)[W·↓↓

↓↓(13)W·↓↑
↓↑(24) −

����V·↓↓
↓↓(13)V·↓↑

↓↑(24)]

− P
↑↑
↑↑(13,24)[W·↓↑

↓↑(13)W·↑↑
↑↑(24) − V·↓↑

↓↑(13)
����V·↑↑

↑↑(24)]

− P
↓↑
↓↑(13,24)[W·↓↓

↑↑(14)W·↓↑
↓↑(23) − V·↓↓

↑↑(14)V·↓↑
↓↑(23)]

− P
↑↓
↑↓(13,24)[W·↓↑

↓↑(14)W·↑↑
↓↓(23) − V·↓↑

↓↑(14)V·↑↑
↓↓(23)]

(55)

if “particle-particle” two-point contractions of P, with 1 = 4
and 2 = 3, are neglected. The crossed-out spin components
of V· in the second and third rows are zero due to crossing
symmetry but are kept to illustrate the analogy to the nonvan-
ishing terms in the fourth and fifth rows. The four terms that
contain two W· are presented in Fig. 1 and describe the si-
multaneous propagation of spin and charge excitations. When
including lattice vibrations, we will show that they contain
the magnon-number-conserving magnon-phonon interaction
to second order—the PAMM interaction. If Hedin’s formalism
was to be used, the analogous terms to second order in W
would miss out on this interaction since W has no spin-flip
components. This shows why the PAMM interaction should
be expanded in the collective screened four-point interaction
W, which is crossing symmetric, rather than in W . Also the
first “screened T matrix” term [77] in Eq. (55) can be gen-
eralized to contain phonons, but their effects in this term are
averaged out when treating the spin fluctuations as quasiparti-
cles. This will be clarified in the following section.
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FIG. 1. Diagrammatic representation of the part of the spin-flip
interaction describing simultaneous propagation of spin and charge
fluctuations. Spin ↑ and ↓ Green’s functions are distinguished by
their colors, and spin conservation in W·↓↑

↓↑ is emphasized with the
same colors.

C. Two-point approximation in a one-band model

In order to arrive at an efficient approximation with a closer
connection to local spin models [48,52,63,78] we contract 1
and 2 as well as 3 and 4 in Eq. (55). It is clear from Fig. 1 that
this leaves intact the simultaneous propagation of spin and
charge fluctuations. We assume a one-band model and drop
the band index since interband couplings are of secondary
interest for understanding the effect of phonons. Dropping
also the · symbols for convenience, the first term in Eq. (55) is
easily made into a one-point quantity through the replacement

W
↓↓
↑↑(12) := δ12(U + Wc), (56)

Wc =
∫ β/2

−β/2
dτ 〈Wc

↓↓
↑↑(τ )〉BZ. (57)

Here, 〈· · · 〉BZ denotes the Brillouin zone average, and we have
used the fact that the two-point Wc only depends on the rela-
tive imaginary time τ . Since the τ dependence is β periodic,
the integral is restricted to [−β/2, β/2] rather than to [−β, β].
The shifted corrections to Eq. (56) are obtained by replacing
δτ1τ2

, implicit in δ12, with δτ1,τ2±β . These are excluded since
they have no effect on Eq. (46), where all imaginary-time
integrals are restricted to the interval [0, β]. Similarly, the free
electron-hole pair propagator, which enters into the remaining
terms in Eq. (55), is replaced by the two-point quantity

Pσσ ′
σσ ′ (13, 24) := δ12δ34GσGσ ′, (58)

Gσ =
∫ β/2

−β/2
dτ 〈Gσ (τ )〉BZ. (59)

This integral would vanish if it ranged from −β to β due to
the antisymmetry of Gσ under shifts of −β in the imaginary-
time interval τ ∈ [0, β]. But despite this antisymmetry, the
contributions outside the interval [−β/2, β/2] are suppressed
in Eq. (55), motivating the choice of Eq. (59). It is of interest
to find an expression for Gσ since it will be shown to appear
in the PAMM interaction when including lattice dynamics.
Since we have already broken self-consistency in Sec. III B,

we assume that the Green’s function is obtained from a single-
particle calculation. In practice this may be a Hartree-Fock
or a (spin-)density functional theory [79] calculation. We can
then write

〈Gσ (τ)〉BZ =
〈

e−ξσ τ

eξσ β +1

〉
BZ

θ (−τ) −
〈

eξσ (β−τ )

eξσ β +1

〉
BZ

θ(τ). (60)

ξσ is shorthand notation for the momentum-dependent spin-σ
electronic dispersion ξσ (k) measured relative to the chemical
potential μ. The two terms are strongly peaked close to τ = 0
if ξσβ 
 0 and ξσβ � 0, respectively, which approximately
holds if ξσ < 0 and ξσ > 0 since typical electronic energy
scales are large compared to thermal energies. Consistent with
this is the replacement of the exponential functions in the two
terms of Eq. (60) with properly normalized δ functions,

〈Gσ (τ )〉BZ ≈ 1

2

〈
θ (−ξσ )

eξσ β +1

∫ 0

−β

dτ ′e−ξσ τ ′
〉

BZ

δ(τ )

− 1

2

〈
eξσ βθ (ξσ )

eξσ β +1

∫ β

0
dτ ′e−ξσ τ ′

〉
BZ

δ(τ ), (61)

where θ (0) = 1
2 has been used twice. By integrating

Eq. (61) and using the Fermi occupations nσ = nβ
F (ξσ ), where

nβ
F (ω) = (eωβ + 1)−1, Eq. (59) becomes

Gσ =
〈

nσ − 1/2

|ξσ |

〉
BZ

. (62)

This does not, in general, vanish at half filling. The divergence
of 1/|ξσ | cancels via the numerator. The two-point approx-
imation to the spin-flip interaction in Eq. (55) can now be
expressed as

V
↓↑
↓↑(12,34) = −δ12δ23δ34U + δ12δ34�

↓↑
↓↑(13), (63)

where Eqs. (56) and (58) can be used to show that

�
↓↑
↓↑(12) = −δ12U

′−
∑
σ1σ2

Gσ1
Gσ2

Wc
↓↑
↓↑(12)Wc

σ1σ1
σ2σ2

(12), (64)

U′ = U
∑
σ1σ2

Gσ1
Gσ2

[
σ x

σ1σ2
Wc

↓↑
↓↑(1)−Wc

σ1σ1
σ2σ2

(1)
] + Wc, (65)

where we have abandoned Einstein’s summation convention.
U′ is a correction to the local interaction, and 1 in Eq. (65) is
short for 11. The two-point structure in Eq. (64) allows for an
efficient calculation of the spin susceptibility since Eq. (46),
which has four-point structure, can be replaced by the two-
point equations

R
↓↑
↓↑(12) = r↓↑

↓↑(12) +
∫

d (34)r↓↑
↓↑ (13)�↓↑

↓↑ (34)R↓↑
↓↑(42), (66)

r↓↑
↓↑(12) = P

↓↑
↓↑(12) − U

∫
d3P↓↑

↓↑(13)r↓↑
↓↑(32), (67)

where the two-point R is defined like in Eq. (44) and r is the
unperturbed spin susceptibility obtained from only the Fock
exchange—the Fock magnon propagator. Since � is the inter-
action between Fock magnons in Eq. (66), it can be identified
with the magnon-magnon interaction. In momentum and Mat-
subara space, the renormalized magnon propagator of Eq. (66)
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reads

R
↓↑
↓↑(k, iωm) = r↓↑

↓↑(k, iωm)

1 − r↓↑
↓↑(k, iωm)�↓↑

↓↑(k, iωm)
, (68)

where ωm = 2πm/β. From Eq. (64) it follows that

�
↓↑
↓↑(k, iωm)

=−U′− 1

Nβ

∑
qωn
σ1σ2

Gσ1
Gσ2

Wc
↓↑
↓↑(k−q, iωm−iωn)Wc

σ1σ1
σ2σ2

(q, iωn),

(69)

where N is the number of k points in the Brillouin zone.

D. Phonon-assisted magnon-magnon interaction

We now deform the σ1σ1
σ2σ2

component of Wc in Eq. (69) to
include phonons, as anticipated throughout this paper. Follow-
ing the works of Hedin and Lundqvist [71] and Giustino [70],
where the nuclear spin is neglected, it can be split into a term
of electronic charge fluctuations (plasmons) and one which
contains the phonons. Assuming a single phonon mode ν = P
(P for phonon), we get

Wc
σ1σ1
σ2σ2

(q, iωn) := Wc
σ1σ1
σ2σ2

(q, iωn) + gσ1
q gσ2∗

q D(q, iωn), (70)

where

gσ
q = 1

N

∑
k

gσ
nn,ν=P(k, q) (71)

is the one-momentum electron-phonon interaction between
the electrons in the band of our one-band model n (which we
drop) and the phonons in branch ν = P and

D(q, iωn) = 2ωP
q

(iωn)2 − (ωP
q )2

(72)

is the phonon propagator in the adiabatic approximation,
determined from the phonon dispersion ωP

q � 0, neglecting
lifetime broadening. Nothing in our formalism requires this
simplification, but it allows for analytic Matsubara summa-
tion. Extending to several electron bands and phonon modes
is straightforward, but the momentum average and band diag-
onality in Eq. (71) follow from the two-point contraction in
Sec. III C. From Ref. [70], we find

gσ
q = −Z√

2MωP
q

(
eP

q · Fσ
q

)
(73)

if we assume a single (light) atom in each unit cell, with
atomic number Z , mass M, and equilibrium position τ (0) in
the central cell. eP

q is the phonon polarization, and

Fσ
q =

∑
T

eiq·T
∫

drw∗
0 (r)Fσ(r, T )w0(r) (74)

are Fourier components of the diagonal Wannier matrix ele-
ments in the central unit cell of the “screened force” from the
nuclei (or ions) in the T -shifted unit cells,

Fσ(r, T ) =
∑
σ ′

∫
dr′[S−1]σσ

σ ′σ ′ (rr′)
(r′−T −τ (0) )

|r′−T −τ (0)|3 . (75)

S−1 is here the spin-dependent finite-temperature analog of the
static ε−1 in Ref. [70]. Equation (70) and (σ̄ = −σ )

Wc
↓↑
↓↑(q, iωn) = U2r↓↑

↓↑ (q, iωn), (76)

Wc
σ1σ1
σ2σ2

(q, iωn) = U2rσ̄1σ̄1
σ̄2σ̄2

(q, iωn), (77)

which hold since Wc = W·
c, turn Eq. (69) into

�
↓↑
↓↑(k, iωm) = − U′

D− U2

Nβ

∑
qωn
σ1σ2

Gσ1
Gσ2

r↓↑
↓↑ (k−q, iωm−iωn)

× [
U2rσ̄1σ̄1

σ̄2σ̄2
(q, iωn)+gσ1

q D(q, iωn)gσ2∗
q

]
, (78)

where U′
D is the modified U′ due to the phonons. The first term

of the magnon-magnon interaction in Eq. (78) is quadratic
in the magnon-number-conserving interaction between Fock
magnons and longitudinal spin fluctuations as well as elec-
tronic charge fluctuations (plasmons), and the second term is
quadratic in the magnon-number-conserving magnon-phonon
interaction—it is the sought-after PAMM interaction �PA.
Since, typically, only the magnon and phonon energies are
comparable, we keep only the last term in the following.
Furthermore, the term U′

D will be considered fixed by the
Goldstone criterion, which requires that the magnon disper-
sion contained in the imaginary part of R

↓↑
↓↑ in Eq. (68)

approach zero in the long-wavelength limit, k → 0. It re-
mains to find r↓↑

↓↑ , but since it is generated by the local and
instantaneous interaction U, it lacks lifetime broadening and
is accurately parametrized as

r↓↑
↓↑ (k, iωm) = 1

iωm − ωM
k

(79)

in terms of the Fock magnon dispersion ωM
k � 0, treated as

temperature independent for simplicity. The positivity holds
since ↑ is the majority spin channel. In practice, Eq. (79)
can be matched to first-principles calculations of r↓↑

↓↑ based
on Eq. (67). The PAMM interaction term in Eq. (78) can be
written in a physically transparent form by making use of
Eqs. (72) and (79) and performing Matsubara summation and
analytic continuation (iωm → ω + iη). The result is

�r
PA

↓↑
↓↑(k, ω)

= U2
∫

dq
�BZ

∣∣∣G↑g↑
q + G↓g↓

q

∣∣∣2

×
( nP

q − nM
k−q

ω + ωP
q − ωM

k−q + iη
+ 1 + nP

q + nM
k−q

ω − ωP
q − ωM

k−q + iη

)
,

(80)

where nM/P
q = nβ

B(ωM/P
q ) and nβ

B(ω) = (eβω − 1)−1 is the
magnon/phonon Bose occupation. The superscript r empha-
sizes that it is the retarded interaction. Likewise, the retarded
Fock magnon propagator rr↓↑

↓↑ and renormalized magnon prop-

agator Rr↓↑
↓↑ are obtained by analytically continuing Eqs. (79)

and (68), respectively, where the latter is determined from
the former and the retarded PAMM interaction in Eq. (80),
up to the Goldstone shift. In Eq. (80), the continuous limit
1
N

∑
k →∫ dq

�BZ
has been taken, where �BZ is the Brillouin

zone volume. The two terms describe phonon absorption and
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emission, respectively, and only the emission term survives
in the limit T → 0. Except for the fact that Eq. (80) is not
restricted to acoustic phonons, it has the same form as the
nonrelativistic contribution to Eq. (4.4) in Ref. [63], where
the interaction was derived using a phenomenological magne-
toelastic model. This suggests that the present work provides
a path beyond such models by avoiding one or several of
the assumptions made to arrive at Eq. (80). The inclusion
of spin-orbit interaction and, consequently, anisotropy will be
discussed in a future paper.

IV. MODEL CALCULATIONS

A. Introducing the model

A minimal three-dimensional model is considered in which
the retarded PAMM interaction in Eq. (80) is momentum
independent while retaining energy dependence. To this aim,
we assume an isotropic magnon dispersion ωM

q , where q =
|q|, and a dispersionless optical phonon ωP; replace the
spin-dependent electron-phonon interaction gσ

q with its spin
average gq; replace |gq|2 with its Brillouin zone average g2

[80]; and, finally, approximate the Brillouin zone integral of
any isotropic function with an integral over a sphere with
matching volume, i.e., with radius K = (3�BZ/4π )1/3. Equa-
tion (80) then takes the simple form

�r
PA

↓↑
↓↑(ω)

= A2
∫ K

0

4πq2dq

�BZ

×
(

nP− nM
q

ω + ωP− ωM
q + iη

+ 1 + nP+ nM
q

ω − ωP− ωM
q + iη

)
, (81)

where we have introduced the (positive) magnon-phonon in-
teraction strength

A = U|G↑ + G↓|
√

g2. (82)

This has the dimension of energy, for which we, in the follow-
ing, will use units of eV rather than Hartrees. In the results
that follow, we tune A independently of temperature. We also
use a typical optical phonon energy of ωP = 0.05 eV, chosen
to be in the middle of the isotropic magnon band, which we
parametrize as ωM

q = 0.1 sin2( qπ

2K ) eV, with the typical value
K = π/a, with a = 7 in atomic units, assumed to be tempera-
ture independent. The retarded PAMM interaction in Eq. (81)
will be complemented by a shift to guarantee that the Gold-
stone criterion is satisfied.

B. Results

The real and imaginary parts of the retarded PAMM inter-
action �r

PA in Eq. (81) are presented in Fig. 2 at temperatures
of 0 and 300 K (room temperature) for an interaction strength
of A = 32 meV. The convergence parameter η is chosen to
be 0.3 meV. The results for different values of A are the
same up to the overall scaling. The main dispersion feature
present both at absolute zero and at room temperature de-
scribes phonon emission and occurs around 0.15 eV. This
therefore originates partly from the “zero-temperature term”

FIG. 2. Real and imaginary parts of the PAMM interaction
�r

PA
↓↑
↓↑(ω) at T = 0 K and T = 300 K, with A = 32 meV.

in Eq. (81) that lacks both phonon and Fock magnon (FM)
Bose occupation factors. The energy is understood by adding
a phonon energy of 0.05 to 0.1 eV, for which the FM spec-
tral density is the largest. Temperature enhances this feature
but also induces dispersion features corresponding to phonon
absorption at energies ±0.05 eV, caused by the first term in
Eq. (81). This gets large either for FM energies close to zero,
where the Bose occupation is large, or for FM energies close
to 0.01 eV, with large spectral weight, explaining the two fea-
tures. In our particular model, the phonon energy of 0.05 eV
coincides with the difference between the predominant energy
of 0.1 eV of the FM and that of the phonons.

The magnitude of the renormalized magnon (RM) spectral
function, AM(k, ω) = − 1

π
Im Rr↑↓

↑↓(k, ω), is shown in Fig. 3
for different values of A at T = 0 K and T = 300 K. With
increased A, the zero-temperature RM spectrum acquires an
increasingly significant background continuum in the range
between 0.05 and 0.15 eV, where the imaginary part of �r

PA

dominates, as well as a sharp spectral peak above this range in
the form of a satellite feature, where the real part dominates
(see Fig. 2). This feature can be understood by combining the
analytically continued Eqs. (68) and (79), which in our model
and the limit η → 0 imply that

AM(k, ω) = − 1
π

Im �r
PA

↓↑
↓↑(ω)[

ω − ωM
k − Re �r

PA

↓↑
↓↑(ω)

]2 + [
Im �r

PA

↓↑
↓↑(ω)

]2 .

(83)

A quasiparticle peak is expected if ω − ωM
k = Re �r

PA

↓↑
↓↑(ω),

which can be solved graphically in Fig. 2 for the case A =
32 meV. For example, at k = K we can plug in ωM

k = 0.1 eV
and find three intersection energies, ω1, ω2, and ω3. In the
zero-temperature case, as a consequence of the phonon emis-
sion feature in Re �r

PA

↓↑
↓↑(ω), ω1 is slightly reduced compared

to the original magnon energy 0.1 eV, whereas ω2 ≈ 0.15 eV

014433-9
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FIG. 3. Magnitude of the renormalized magnon spectral function
AM(k, ω) at T = 0 K and T = 300 K for various A.

and ω3 ≈ 0.16 eV are increased. For each of these intersection
energies, it holds that

AM(K, ωi ) = − 1

π

1

Im �r
PA

↓↑
↓↑(ωi )

, i = 1, 2, 3. (84)

This means that the relative weights of the three expected
peaks are dictated by the inverse of Im �r

PA

↓↑
↓↑(ωi), which is

also deducible from Fig. 2. There, we see that the imaginary
part is weakly negative at ω1 and ω3 but strongly negative
at ω2. This explains why we, in the zero-temperature plot at
A = 32 meV in Fig. 3, see only two peaks in AM at k = K ,
one slightly below 0.1 eV and one around 0.16 eV. Indeed, the
suppression of a peak at ω2 is a consequence of the fact that
the corresponding intersection point in Fig. 2 is unphysical
since Re �r

PA

↓↑
↓↑(ω) in the limit η → 0 would jump immedi-

ately from −∞ up to ∞ at 0.15 eV.
At room temperature, we see from Fig. 3 that the back-

ground continuum in AM stretches from −0.05 to 0.15 eV and
that the satellite feature associated with phonon emission gets
accompanied by a splitting of the RM band associated with
phonon absorption around 0.05 eV—the energy difference be-
tween the FM band maximum and the phonon. Like the sharp
satellite feature, the splitting occurring at k = K/2 can also be
understood by the method of intersections used above. How-
ever, since Im �r

PA

↓↑
↓↑(ω) does not decay rapidly either below or

above 0.05 eV, no sharp quasiparticle splitting is generally ob-
served. For this same reason, the broad Hubbard-like splitting,
which notably is observed also at k = K when A = 32 meV,
cannot be deduced by the method of intersections since it does
not correspond to any quasiparticle solutions.

FIG. 4. Magnitude of the total spectral function AM(ω) for Fock
magnons rr↓↑

↓↑ and renormalized magnons Rr↓↑
↓↑ at T = 0 K and T =

300 K for various A.

The magnitude of the total RM spectral function, AM(ω) =∫ K
0

4πk2dk
�BZ

AM(k, ω), is presented in Fig. 4 for different A at
absolute zero and room temperature and is compared with
the results of the FM. The temperature-induced splitting at
0.05 eV is shown to increase the low-energy spectral weight.
The product of the Bose occupation and the total spectrum
nβ

B(ω)AM(ω), which is strictly positive and proportional to
the temperature-dependent probability of finding a magnon
with energy ω, is presented in Fig. 5 at different tempera-
tures for the FM and the RM, using A = 64 meV. Since each

FIG. 5. Product of Bose occupation nβ

B (ω) and magnon spectrum
AM(ω) for Fock magnons rr↓↑

↓↑ and renormalized magnons Rr↓↑
↓↑ at

various temperatures. A = 64 meV.
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FIG. 6. Spin magnetization m as a function of T for different
values of A, together with the associated Curie temperatures Tc for
which m = 0.

magnon carries an angular momentum of 1, the energy inte-
gral of this product precisely yields the temperature-induced
reduction of the spin magnetization after we divide by the
unit cell volume Vc and gμB = 1, where g = 2 is the g fac-
tor and μB = 1

2 is the Bohr magneton. Assuming that the
spin magnetization per unit volume at T = 0 is 0.5gμB, the
temperature-dependent magnetization is shown in Fig. 6 for
different A. The A-dependent Curie temperature at which
the magnetization vanishes is also presented. For A = 0 and
low temperatures the thermally accessible magnons can be
approximated as parabolic so that the famous T 3/2 law for
the magnetization is reproduced. When increasing A from
zero, the Curie temperature decreases due to an increase in
the low-energy RM spectral weight, originating from the band
narrowing below 0.05 eV due to the splitting. However, when
continuing to increase A the Curie temperature starts to in-

crease again as a consequence of a washing out of the RM
spectral weight.

V. SUMMARY AND OUTLOOK

In this work, we have provided a formalism for phonon-
assisted magnon-magnon interaction, which is quadratic
in the magnon-number-conserving magnon-phonon inter-
action. By assuming quenched orbital magnetic moments
and neglecting spin-orbit interaction, the poorly understood
exchange-mediated contribution was isolated.

By writing the electron-electron interaction in a crossing-
symmetric way and using Schwinger’s functional derivative
method, we identified the screened collective four-point in-
teraction W as the natural many-body expansion parameter.
After resorting to a Hubbard-like model, we showed by itera-
tion after a two-point contraction how the magnon-magnon
interaction acquires terms quadratic in W that describe si-
multaneous propagation of spin and charge fluctuations. By
relaxing the clamped-nuclei approximation, we arrived at a
phonon-assisted magnon-magnon interaction [Eq. (80)] of the
same form as derived from phenomenological magnetoelastic
models but with first-principles access to the magnon-phonon
coupling strength from the underlying electronic structure.
We tested the formula on a model with isotropic magnons
and dispersion-free phonons and found a temperature-induced
low-energy magnon splitting due to phonon absorption which
reduced the Curie temperature.

The developed formalism will be extended to account for
spin-orbit interaction and other semirelativistic effects in a
future publication. Another line of inquiry is to investigate
how the PAMM interaction of Eq. (80) affects the ab initio
critical temperature in high-temperature superconductors by
studying the gap equation. The PAMM interaction can also be
readily extended to nonequilibrium to study magnetoelastic
effects on magnonics in the presence of thermal gradients.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with S. Biermann
and financial support from the Swedish Research Council
(Vetenskapsrådet, VR) and the Knut and Alice Wallenberg
(KAW) Foundation.

[1] B. Liao, A. A. Maznev, K. A. Nelson, and G. Chen, Nat.
Commun. 7, 13174 (2016).

[2] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O.
Painter, Nature (London) 462, 78 (2009).

[3] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014).

[4] A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D 43,
264002 (2010).

[5] L. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef, and B. J.
van Wees, Nat. Phys. 11, 1022 (2015).

[6] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Nat. Phys. 11, 453 (2015).

[7] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov,
A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature (London)
443, 430 (2006).

[8] A. Rückriegel and P. Kopietz, Phys. Rev. Lett. 115, 157203
(2015).

[9] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
[10] F. Essenberger, A. Sanna, A. Linscheid, F. Tandetzky, G.

Profeta, P. Cudazzo, and E. K. U. Gross, Phys. Rev. B 90,
214504 (2014).

[11] P. Dai, H. Y. Hwang, J. Zhang, J. A. Fernandez-Baca, S.-W.
Cheong, C. Kloc, Y. Tomioka, and Y. Tokura, Phys. Rev. B 61,
9553 (2000).

014433-11

https://doi.org/10.1038/ncomms13174
https://doi.org/10.1038/nature08524
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nature05117
https://doi.org/10.1103/PhysRevLett.115.157203
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/PhysRevB.90.214504
https://doi.org/10.1103/PhysRevB.61.9553


T. J. SJÖSTRAND AND F. ARYASETIAWAN PHYSICAL REVIEW B 105, 014433 (2022)

[12] C. Berk, M. Jaris, W. Yang, S. Dhuey, S. Cabrini, and H.
Schmidt, Nat. Commun. 10, 2652 (2019).

[13] C. R. Berk and H. Schmidt, Physics 13, 167 (2020).
[14] H. Man, Z. Shi, G. Xu, Y. Xu, X. Chen, S. Sullivan, J. Zhou, K.

Xia, J. Shi, and P. Dai, Phys. Rev. B 96, 100406(R) (2017).
[15] B. Ramachandran, K. K. Wu, Y. K. Kuo, and M. S.

Ramachandra Rao, J. Phys. D 48, 115301 (2015).
[16] R. Valdés Aguilar, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S.-W.

Cheong, and H. D. Drew, Phys. Rev. B 76, 060404(R) (2007).
[17] F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger, B.

Fultz, and J. Neugebauer, Phys. Rev. Lett. 113, 165503 (2014).
[18] D. Perera, D. M. Nicholson, M. Eisenbach, G. M. Stocks, and

D. P. Landau, Phys. Rev. B 95, 014431 (2017).
[19] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C.

Myers, and J. P. Heremans, Phys. Rev. Lett. 106, 186601 (2011).
[20] T. Kikkawa, K. Shen, B. Flebus, R. A. Duine, K. I. Uchida,

Z. Qiu, G. E. W. Bauer, and E. Saitoh, Phys. Rev. Lett. 117,
207203 (2016).

[21] B. Flebus, K. Shen, T. Kikkawa, K. I. Uchida, Z. Qiu, E. Saitoh,
R. A. Duine, and G. E. W. Bauer, Phys. Rev. B 95, 144420
(2017).

[22] R. Yahiro, T. Kikkawa, R. Ramos, K. Oyanagi, T. Hioki, S.
Daimon, and E. Saitoh, Phys. Rev. B 101, 024407 (2020).

[23] K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands,
S. Maekawa, and E. Saitoh, Nat. Mater. 10, 737 (2011).

[24] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,
391 (2012).

[25] M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, and
S. T. B. Goennenwein, Phys. Rev. Lett. 108, 176601 (2012).

[26] H. Hayashi and K. Ando, Phys. Rev. Lett. 121, 237202 (2018).
[27] P. A. Sharma, J. S. Ahn, N. Hur, S. Park, S. B. Kim, S. Lee, J.-G.

Park, S. Guha, and S.-W. Cheong, Phys. Rev. Lett. 93, 177202
(2004).

[28] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104,
066403 (2010).

[29] L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014).
[30] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 92, 024421

(2015).
[31] J. Holanda, D. S. Maior, A. Azevedo, and S. M. Rezende, Nat.

Phys. 14, 500 (2018).
[32] N. Ogawa, W. Koshibae, A. J. Beekman, N. Nagaosa, M.

Kubota, M. Kawasaki, and Y. Tokura, Proc. Natl. Acad. Sci.
U.S.A. 112, 8977 (2015).

[33] X. Zhang, Y. Zhang, S. Okamoto, and D. Xiao, Phys. Rev. Lett.
123, 167202 (2019).

[34] K. An, K. S. Olsson, A. Weathers, S. Sullivan, X. Chen, X. Li,
L. G. Marshall, X. Ma, N. Klimovich, J. Zhou, L. Shi, and X.
Li, Phys. Rev. Lett. 117, 107202 (2016).

[35] V. V. Struzhkin, Low Temp. Phys. 42, 884 (2016).
[36] D. A. Bozhko, P. Clausen, G. A. Melkov, V. S. L’vov, A.

Pomyalov, V. I. Vasyuchka, A. V. Chumak, B. Hillebrands, and
A. A. Serga, Phys. Rev. Lett. 118, 237201 (2017).

[37] L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153
(1935).

[38] E. Abrahams and C. Kittel, Phys. Rev. 88, 1200 (1952).
[39] C. Kittel and E. Abrahams, Rev. Mod. Phys. 25, 233 (1953).
[40] C. Kittel, Phys. Rev. 110, 836 (1958).
[41] M. I. Kaganov and V. M. Tsukernik, Sov. Phys. JETP 9, 151

(1959).

[42] H. F. Tiersten, J. Math. Phys. 5, 1298 (1964).
[43] E. Schlömann and R. Joseph, J. Appl. Phys. 35, 2382 (1964).
[44] E. Pytte, Ann. Phys. (NY) 32, 377 (1965).
[45] R. Silberglitt, Phys. Rev. 188, 786 (1969).
[46] S. M. Rezende and F. R. Morgenthaler, J. Appl. Phys. 40, 524

(1969).
[47] S. C. Guerreiro and S. M. Rezende, Rev. Bras. Fis. 1, 207

(1971).
[48] J. Jensen and J. G. Houmann, Phys. Rev. B 12, 320 (1975).
[49] E. N. Economou, K. L. Ngai, T. L. Reinecke, J. Ruvalds, and

Richard Silberglitt, Phys. Rev. B 13, 3135 (1976).
[50] D. U. Sänger, Phys. Rev. B 49, 12176 (1994).
[51] L. M. Woods, Phys. Rev. B 65, 014409 (2001).
[52] T.-M. Cheng and L. Li, J. Magn. Magn. Mater. 320, 1 (2008).
[53] M. Berciu and G. A. Sawatzky, Phys. Rev. B 79, 195116

(2009).
[54] A. Rückriegel, P. Kopietz, D. A. Bozhko, A. A. Serga, and B.

Hillebrands, Phys. Rev. B 89, 184413 (2014).
[55] S. C. Guerreiro and S. M. Rezende, Phys. Rev. B 92, 214437

(2015).
[56] A. Kamra, H. Keshtgar, P. Yan, and G. E. W. Bauer, Phys. Rev.

B 91, 104409 (2015).
[57] A. L. Chernyshev and W. Brenig, Phys. Rev. B 92, 054409

(2015).
[58] R. Takahashi and N. Nagaosa, Phys. Rev. Lett. 117, 217205

(2016).
[59] S. F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M.

Gensch, A. M. Kalashnikova, R. V. Pisarev, M. Wolf, P. M.
Oppeneer, J. Barker, and T. Kampfrath, Sci. Adv. 4, eaar5164
(2018).

[60] R. Schmidt, F. Wilken, T. S. Nunner, and P. W. Brouwer, Phys.
Rev. B 98, 134421 (2018).

[61] S. L. Holm, A. Kreisel, T. K. Schäffer, A. Bakke, M. Bertelsen,
U. B. Hansen, M. Retuerto, J. Larsen, D. Prabhakaran, P. P.
Deen, Z. Yamani, J. O. Birk, U. Stuhr, Ch. Niedermayer, A. L.
Fennell, B. M. Andersen, and K. Lefmann, Phys. Rev. B 97,
134304 (2018).

[62] B. Zare Rameshti and R. A. Duine, Phys. Rev. B 99, 060402(R)
(2019).

[63] S. Streib, N. Vidal-Silva, K. Shen, and G. E. W. Bauer, Phys.
Rev. B 99, 184442 (2019).

[64] L. Chotorlishvili, X.-G. Wang, Z. Toklikishvili, and J. Berakdar,
Phys. Rev. B 97, 144409 (2018).

[65] S. M. Rezende, D. S. Maior, O. Alves Santos, and J. Holanda,
Phys. Rev. B 103, 144430 (2021).

[66] V. P. Antropov, M. I. Katsnelson, B. N. Harmon, M. van
Schilfgaarde, and D. Kusnezov, Phys. Rev. B 54, 1019 (1996).

[67] M.-C. Ciornei, J. M. Rubí, and J.-E. Wegrowe, Phys. Rev. B 83,
020410(R) (2011).

[68] S. Bhattacharjee, L. Nordström, and J. Fransson, Phys. Rev.
Lett. 108, 057204 (2012).

[69] J. Fransson, D. Thonig, P. F. Bessarab, S. Bhattacharjee, J.
Hellsvik, and L. Nordström, Phys. Rev. Materials 1, 074404
(2017).

[70] F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).
[71] L. Hedin and S. Lundqvist, Solid State Phys. 23, 1

(1970).
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