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Full orbital decomposition of Yu-Shiba-Rusinov states based on first principles
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We have implemented the Bogoliubov–de Gennes equation in a screened Korringa-Kohn-Rostoker method for
solving, self-consistently, the superconducting state for three-dimensional (3D) crystals including substitutional
impurities. In this paper we extend this theoretical framework to allow for collinear magnetism and apply it to fcc
Pb with 3D magnetic impurities. In the presence of magnetic impurities, there is a pair-breaking effect that results
in in-gap Yu-Shiba-Rusinov (YSR) states which we decompose into contributions from the individual orbital
character. We determine the spatial extent of these impurity states, showing how the different orbital character
affects the details of the YSR states within the superconducting gap. Our work highlights the importance of
a first-principles-based description which captures the quantitative details, making direct comparisons with
experimental findings possible.
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I. INTRODUCTION

Magnetism and conventional superconductivity are phe-
nomena related to competing types of order. Theoretically,
it was first shown by Abrikosov and Gor’kov [1] that at a
paramagnetic impurity concentration of ∼1% in a supercon-
ductor the spectral energy gap would no longer correspond
to the ordering parameter �. For higher concentrations of
impurities the spectral gap can even vanish totally, leading to
gapless superconductivity characterized by a finite TC and �

but with no spectral gap [2]. Local, real-space models were
subsequently constructed by Yu [3], Shiba [4], and Rusinov
[5] using local, one-band models around a classical impurity
spin. They predicted the existence of a pair of localized, in-gap
states [Yu-Shiba-Rusinov (YSR) states] on either side of the
Fermi energy associated with the exchange splitting J of the
spin.

Subsequently, experiments investigating YSR states have
predicted multiple pairs of in-gap states [6–10], where it
was argued that the origin of multiple resonances may arise
from magnetic anisotropy [7], the orbital character [8,9], or
modulations in the charge density [10,11]. Ruby et al. [8]
investigated the (001) surface of Pb with a Mn impurity ad-
sorbed onto the surface. They argue that the multiple YSR
resonances originate from the crystal field splitting of the Mn
d orbitals. Using energy considerations and real-space dI/dV
maps, they were able to assign the relevant orbitals to the YSR
resonances.

When investigating more complex superconductors such as
NbSe2 [10,11] or β-Bi2Pd [12], it becomes immediately obvi-
ous that disentangling hybridized YSR peaks, or YSR peaks
entangled with coherence peaks, will become increasing chal-
lenging. Symmetry arguments and energy consideration will
not be sufficient to uniquely assign the large number of in-gap
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resonances. In this paper we build upon previous work [13,14]
to address this problem from first principles, considering all
electrons and their magnetic orderings fully while captur-
ing superconductivity within a one-parameter model of local
BCS-type pairing.

We use this formalism to investigate the three-dimensional
(3D) series of elements as impurities in fcc Pb. After a brief
introduction of the methodological implementations we show
our results for all magnetic 3D impurities discussing the
distinct YSR resonance pairs arising from the anticipated t2g

and eg orbitals. However, beyond that we will highlight the
existence of l = 0 (s-electron) YSR resonances enforcing
the necessity of an all-electron description. Finally, we will
analyze the spatial decay of the magnetism as well as the
in-gap states within the superconducting Pb, presenting the
orbital-resolved local densities.

II. METHOD

The implementation of the Bogoliubov–de Gennes (BdG)
equation in the Korringa-Kohn-Rostoker Green’s function
method [13,15,16] has been described earlier as well as the ex-
tension to real-space impurity systems [14]. Here, we present
a further step, namely, the incorporation of collinear mag-
netism, and in the following we will restrict the technical
discussion to the equations relevant for this development.

In order to incorporate magnetism and superconductivity
[17] into density functional theory [18], three effective poten-
tials are required, the electron potential Veff (r), the magnetic
field Beff (r), and the effective pairing potential �eff (r),

Veff (r) = Vext (r) +
∫

d3r
ρ(r)

|r − r′| + δExc[ρ, m]

δρ(r)
, (1)

Beff (r) = Bext (r) + δExc[ρ, m]

δm(r)
, (2)

�eff (r) = �χ (r). (3)
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Here, Exc[ρ, m] is the exchange correlation functional for the
normal state, which throughout this paper is used within the
local density approximation in the parametrization of Vosko,
Wilk, and Nusair [19]; ρ(r) and m(r) are the usual charge
and spin densities; and χ (r) is the anomalous density. Fi-
nally, � is the interaction parameter [13], which is the one
free parameter in our description typically fixed to recover
experimentally observed gap sizes. This framework, using
a simplified phenomenological parameter, was introduced in
Ref. [20], and subsequently, implementations were presented
in Refs. [15,16]. It has already been shown to effectively de-
scribe gap anisotropy [13] and impurity scattering [14], along
with complex superconducting order parameters in LaNiC2
[21] and LaNiGa2 [22]. Within the nonrelativistic theory the
densities are given by

ρ(r) =ρ↑(r) + ρ↓(r), (4)

m(r) =ρ↑(r) − ρ↓(r), (5)

χS (r) = 1
2 (χ↑↓(r) − χ↓↑(r)). (6)

Hence the resulting spin BdG Hamiltonian is defined as

ĤBdG(r)=

⎛
⎜⎜⎝

Ĥ↑↑(r) 0 0 �
↑↓
S (r)

0 Ĥ↓↓(r) �
↓↑
S (r) 0

0 �
↓↑
S (r)∗ −Ĥ↑↑(r)∗ 0

�
↑↓
S (r)∗ 0 0 −Ĥ↓↓(r)∗

⎞
⎟⎟⎠,

(7)
where

Ĥσσ (r) =Ĥ0(r) + V σσ
eff (r), (8)

V ↑↑
eff (r) =Veff (r) + Beff (r), (9)

V ↓↓
eff (r) =Veff (r) − Beff (r), (10)

�
↑↓
S (r) = + �χS (r), (11)

�
↓↑
S (r) = − �χS (r). (12)

Equation (7) can be brought into a block-diagonal form such
that

Ĥσσ ∗
BdG (r) =

(
Ĥσσ (r) �σσ ∗

S (r)
�σ ∗σ

S (r)∗ −Ĥσ ∗σ ∗
(r)∗

)
, (13)

where σ = {↑,↓} and σ ∗ represents the opposing spin to σ .
The corresponding Green’s function is defined as

ĜBdG(z) = (zÎ − ĤBdG)−1, (14)

where ĤBdG(r) = 〈r|ĤBdG|r〉 and can be simplified into a
block-diagonal form accordingly,

GBdG,σ (z, r, r′) =
(

Gee
σσ (z, r, r′) Geh

σσ ∗ (z, r, r′)
Ghe

σ ∗σ (z, r, r′) Ghh
σ ∗σ ∗ (z, r, r′)

)
. (15)

The relevant densities are expressed by the Green’s function

ρσ (r) = − 1

π

∫ ∞

−∞
dε f (ε)Im TrGee

σσ (ε, r, r)

− 1

π

∫ ∞

−∞
dε[1 − f (ε)]Im TrGhh

σσ (ε, r, r), (16)

FIG. 1. (a) shows the atomic sites around the impurity atom in
units of the atomic spacing, a0 = 4.95 Å. Black dots represent atomic
sites within the cluster, gray dots represent the unperturbed atomic
sites outside the cluster, and the red dot represents the impurity site.
(b) shows the z = 0 crystal plane and the orientation of the dx2−y2

(green) and dxy (blue) orbitals.

χσσ ∗ (r) = − 1

4π

∫ ∞

−∞
dε[1 − 2 f (ε)]Im TrGeh

σσ ∗ (ε, r, r)

− 1

4π

∫ ∞

−∞
dε[1 − 2 f (ε)]Im TrGhe

σσ ∗ (ε, r, r).

(17)

Implementing this extension in the corresponding bulk [13]
and real-space impurity code [14] will enable us to address the
coupling between the superconducting state and magnetism.
Here, we will focus on the effect of magnetic impurities with
the corresponding in-gap YSR states. As a test scenario we
consider superconducting bulk fcc Pb [13] with the interaction
parameter � tuned so as to reproduce the experimental gap
size from Ruby et al. [23]. This implies that we run a series of
self-consistent density functional theory (DFT) calculations
with different interaction parameters for the clean system.
Each time, after convergence is reached, we calculate the
superconducting gap in the density of states until we identify
the interaction parameter which, after a full self-consistency,
correctly reproduces the experimental gap. The resulting inter-
action parameter is � = 0.351 Ry. The numerical parameters
for the standard self-consistency have been discussed pre-
viously [13,14], and 50 energy points on a semicircle in
the complex energy plane are distributed exponentially. The
maximal k mesh for the energy points close to the Fermi
energy and close to the real axis is 200 × 200 × 200 in the full
Brillouin zone but is reduced significantly for energy points
further away from the real axis. For the real-space impurity
cluster embedded in the infinite periodic crystals we used 87
atoms as shown in Fig. 1(a). In the case of calculations of
the superconducting properties the clean system used as the
boundary condition for the real-space cluster is in itself the
clean superconductor with the full gap. Further details of this
implementation can be found in previous work [14].

III. NORMAL STATE ANALYSIS

Starting with self-consistent scalar relativistic approxi-
mation (SRA) solutions for the normal state, the resulting
magnetic moments of the localized 3D impurity atoms are
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FIG. 2. The local magnetic moment for the 3D impurity embed-
ded in a cluster of 87 Pb atoms.

summarized in Fig. 2. For the Pb host we identify only V,
Cr, Mn, and Fe to be magnetic. For all other 3D elements only
the nonmagnetic solutions were established self-consistently.
The resulting local density of states (LDOS) for all magnetic
impurities is shown in Fig. 3. Notably, while for V it is the
majority spin channel which is close to the Fermi energy, this
impurity level shifts further away from the Fermi energy as we
go through the 3D series. For the Fe impurity it is the minority
spin channel which is situated right at the Fermi energy. For
the elements in between we see a gradual transition between
the two cases.

In the cubic fcc lattice the crystal field lifts the degeneracy
of the d orbitals, and the impurity levels are split into the eg

and t2g orbitals [24]. As an example this is shown for the Fe
minority level in the inset of Fig. 3.

Within simplified models [3–5,25] it has been shown that
it is the energy splitting between the minority and majority
levels which will determine the energy positioning of the
in-gap states. For these models the impurity spin is considered
as classical magnetic moment S coupled to the electrons of the
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FIG. 3. The spin-resolved LDOS of all magnetic impurities em-
bedded in normal state Pb. The inset shows the splitting between the
eg and t2g orbitals for Fe.
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FIG. 4. The exchange energy, JS, for each magnetic impurity
resolved for the total (red), the eg (green), and the t2g (blue) states.

crystal via the exchange interaction J . The resulting energies
are then expressed in terms of a T-matrix scattering approach.
As the eg and t2g experience slightly different splitting this
will result in a clear lifting of the degeneracy between those
orbitals for the in-gap states. We have summarized the corre-
sponding exchange energies

JS = p↑ − p↓

2
(18)

in Fig. 4. In the above definition, p↑ and p↓ are the spin-up
and spin-down peak positions, respectively. As expected, the
trend follows the total magnetic moment being largest for Cr
and Mn. Importantly, for V we find the strongest difference
between the splitting in the eg and t2g states which would sug-
gest that the corresponding in-gap states will be well separated
in energy. In contrast, this is weakest for Fe as indicated by the
smallest separation of the in-gap states.

IV. SUPERCONDUCTING STATE ANALYSIS

Extending the analysis including superconductivity gives
access to the YSR in-gap states. For each step we perform
the corresponding normal state calculations first and extend
them to the superconducting case in the following. In all
cases we perform fully self-consistent SRA calculations based
on the BdG Hamiltonian equation (7) to finally generate the
electronic and magnetic structure for the magnetic atoms
embedded in superconducting Pb. In all cases we set the
interaction parameter � at the impurity site to zero and keep
it at the bulk value for all other sites [13,14]. As the real-space
cluster is embedded in the clean superconductor using the
correct boundary conditions, there is no resulting restriction
on the superconducting coherence length. The effects of a
finite-size superconducting cluster embedded in a normal state
material have been discussed elsewhere [14]. For each self-
consistency the calculations are converged to rms errors below
10−7 for the electron potential and 10−9 for the effective pair-
ing potential. The results for the YSR states are summarized
in Fig. 5 for all magnetic impurities. In all four cases we
find pronounced in-gap states, well separated into eg and t2g

states. As expected from the previous analysis the splitting
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FIG. 5. The spin-resolved electronic LDOS (red curves) for the magnetic impurities (V, Fe, Mn, and Cr), with the t2g (green dashed curves)
and eg (blue dashed curves) densities and the bulk Pb DOS (black dashed curves) shown within the energy resolution of the superconducting
gap.

between the eg and t2g is largest for V and hard to resolve for
Fe. Table I summarizes the associated energies of the bound
states. A clear correlation between Table I and the normal state
exchange energies, summarized in Fig. 4, is evident.

Furthermore, the superconducting symmetry implies that
for each in-gap state there is a minority and a majority state
symmetrically placed relative to the Fermi energy, which we
indicated via the ± in Table I. While the energetic positions
are forced to be symmetric, the height of the corresponding
states is determined by the normal state LDOS at the Fermi
energy. As the minority state of the Fe impurity is perfectly
placed at the Fermi energy (see Fig. 3), this leads to the largest
in-gap peak for the minority in-gap state (see Fig. 6). Simi-
larly, for V the majority level is closest to the Fermi energy

TABLE I. Energetic positions of the in-gap bound states for the
magnetic impurities in superconducting Pb. Values are in meV.

Impurity atom V Cr Mn Fe

t2g state ±0.36 ±1.13 ±1.12 ±0.40
eg state ±0.95 ±1.26 ±1.24 ±0.48

leading to the corresponding in-gap state being significantly
larger than the minority peak. In contrast, for Cr both levels
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FIG. 6. Comparison of the energetic positions of the gap states
as derived from the fully self-consistent calculations (Fig. 5) with
the simplified model [Eq. (22)] of Refs. [3–5,25].
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have similar distance to the Fermi energy in the normal state
resulting in a very similar height for the Cr in-gap states.

In order to make the connection between the normal state
impurity levels and the superconducting in-gap states more
quantitative, we follow previous models established for the
YSR states [3–5,25]. For isotropic (l = 0) scattering the en-
ergy can be approximated to

ε = ±�0
1 − α2 + β2√

(1 − α2 + β2)2 + 4α2
, (19)

where

α = πN0JS, (20)

β = πN0V . (21)

Here, �0 is the bulk quasiparticle gap, N0 is the density of
states of Pb at the Fermi level in the normal state, and V is
the nonmagnetic scattering potential. Ignoring the correction
from the scalar potential, β = 0, but generalizing to the case
where N0 is different for eg and t2g states, the equation reduces
to

εb
a = ±�0

1 − (
αb

a

)2

1 + (
αb

a

)2 , (22)

where a stands for either eg or t2g states and b is the index for
the impurity V, Cr, Mn, or Fe. Correspondingly, αb

a generalizes
to

αb
a = πNa

0 (JS)b
a. (23)

As the energies depend crucially on Na
0 , we decided to deter-

mine this parameter by fitting Eq. (22) to the full ab initio
calculations in the case of Mn. Here, we fixed (JS)Mn

a to
the results shown in Fig. 4. The resulting values are N

eg

0 =
0.966 (eV)−1 and N

t2g

0 = 0.593 (eV)−1. In the following we
used this effective Na

0 , which is a property of the clean normal
state Pb host, and calculated the in-gap states using (JS)b

a, as
summarized in Fig. 4, for all the other impurities. The results
in comparison to the directly extracted energies are shown in
Fig. 6. While the agreement is far from perfect, the trends are
correctly reproduced. However, especially for V and Fe, the
elements with the largest and smallest splitting between
the t2g and eg states, respectively, the model fails to reproduce
the quantitative results of the full calculations. This highlights
the importance of the full ab initio description as the model
fails to capture the quantitative details, making direct compar-
isons to experimental findings difficult.

A further conventionally made approximation is the restric-
tion to d orbitals only [8,26]. Given that the magnetism is
dominated by the d electrons and it is the magnetism which
induces the in-gap states, it appears natural to follow this
approximation. However, in any real material all orbitals will
hybridize, and magnetism arising in the l = 2 orbitals will
ultimately induce spin polarization in all other orbitals as well.
Within our calculations this is particularly visible for Cr and
Mn, for which additional YSR peaks are visible near the Pb
coherence peak (see Fig. 5) at energies just above (ε − εF ) ∼
1.3 meV. In this particular case it turns out that they are
l = 0 orbital contributions. This finding highlights the fact
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FIG. 7. Radial decay of the magnetic moment induced by a V
impurity in the normal (Norm., green) and superconducting (Sup.,
red) state. The inset shows the decay beyond the nearest-neighbor
shell on a smaller scale.

that while in a first approximation it appears natural to reduce
the discussion to the d orbitals, in details, especially near the
edge of the superconducting gap, other orbitals might play a
dominant role. Furthermore, determining which impurity has
a large response from other orbitals will not be easy to predict
without all-electron calculations.

Finally, we would like to analyze the spatial dependence
of the in-gap states. In Fig. 7 the radial decay of the magnetic
moment is shown for the case of a V impurity. It drops quickly
to almost zero in the first shell already and oscillates weakly
up to the sixth shell. For the total magnetic moment, there is no
visible difference between the normal and the superconduct-
ing state in the spatial decay. In order to visualize the behavior
of the in-gap states, we present the atom-resolved charge den-
sities at the energy associated with the in-gap state in Fig. 8. In
the case of the V impurities these energies are for the eg states
ε = 0.95 meV and for the t2g states ε = 0.35 meV. As dis-
cussed earlier, the cubic lattice leads to a splitting into eg and
t2g states but does not lift the degeneracy either of the dz2 and
dx2−y2 orbitals within the eg level or of the dyz, dxz, and dxy or-
bitals within the t2g level. For this reason, any visualization for
the two levels would preserve the cubic symmetry. Resolving
all orbitals separately (see Fig. 8) highlights the power of full
ab initio calculations. While the spatial resolution is limited
to atomic sites, the orbital characters are nevertheless clearly
visible. The dyz and dxz reduce to a twofold rotational symme-
try around the z axis rotated by 90◦ relative to each other. The
other three orbitals show the corresponding fourfold rotational
symmetry around the z axis. Furthermore, the larger spatial
extension of the dz2 orbital in the z direction is clearly visible.
Finally, as the dxy and dx2−y2 orbitals are rotated by 45◦ relative
to each other, this results in the dx2−y2 orbital pointing along
the nearest-neighbor bonds in the z plane of the impurity atom.
In contrast, the dxy orbitals show the largest contribution out
of plane as there the nearest neighbors are in the direction of
the orbital lobes. At a surface the degeneracy of these orbitals
would be lifted, and the orbital-induced angular dependence
of the density can be resolved with scanning tunneling mi-
croscopy (STM) experiments [8,9,27,28]. Furthermore, we
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FIG. 8. Atom-resolved charge densities at an energy corresponding to the minority in-gap state for the V impurity with the energy of ε =
0.36 meV (dyz, dxz, and dxy), ε = 0.95 meV (dz2 and dx2−y2 ), and ε = 1.36 meV (s). We show the z = {−1.5, −1.0, −0.5, 0.0, 0.5, 1.0, 1.5}a0

planes around the impurity with a maximum in-plane radius of 0.78 nm. The color scale is constrained so that the low values are amplified and
the higher peak values are saturated.

show in Fig. 8 the spatially resolved charge density for the
l = 0 YSR state, which is much weaker, decays quickly, and
preserves the full symmetry of the lattice as expected from the
isotropic s orbital.

V. SUMMARY

We have extended previous work [13,14] of implementing
the BdG equations into the Korringa-Kohn-Rostoker (KKR)
method with substitutional impurities and collinear mag-
netism. As a model system we consider 3D impurities in a Pb
three-dimensional crystal inspired by experiments performed
by Ruby et al. [8] investigating magnetism-induced in-gap
states at a superconducting surface. As predicted by simple
models, the position and height of the induced in-gap states
are strongly related to the normal state exchange splitting
as observed for the magnetic impurities. However, while the
overall correlation is clearly visible, in the details the simpli-
fied model fails to make quantitatively correct predictions for
the varying 3D impurity atoms. The most significant limita-
tions of the model are the restriction to isotropic scattering and
ignoring any hybridization of the d electrons to other orbitals.
Naturally, these models can be extended to more complex
scenarios; however, they are rendered more intractable as
the parameter space increases. Within our real-space su-
perconducting DFT descriptions we are able to capture all
orbital-induced variations in their full complexity.

Beyond the consideration of the d orbitals we established
clear signatures of l = 0 in-gap states induced via s-d hy-
bridization. While these states are in close vicinity to the
superconducting coherence peaks and, as such, difficult to ob-
serve in experiment, their existence highlights the complexity
of any quantitative interpretation of experimental observation.
Within our calculations these l = 0 in-gap states were par-
ticularly pronounced for Cr and Mn but hardly visible for
V and Fe. This again points to the importance of a correct
all-electron description of the underlying band structure. This
is especially relevant as similar YSR resonances have already
been investigated [11].

Finally, we investigate the radial decay of the magnetism
and in-gap states inside the superconducting crystal. Interest-
ingly, the decay of the magnetic moment is largely unaffected
by the superconducting state. This is related to the fact that
even in the normal state the magnetic moment decays quickly
for the nearest-neighbor atoms already. Nevertheless, by in-
vestigating the decay of the in-gap states for each orbital
separately it was clearly possible to resolve the distinct orbital
symmetries. This final step will enable us to make direct
contact to STM experiments [8] where the breaking of further
spatial symmetries at the surface of the material will lift the
degeneracies among the eg and t2g states.

In summary, we have performed fully self-consistent cal-
culations for magnetic impurities within the superconducting
state using the BdG equations implemented within the KKR
formalism. We have discussed qualitatively and quantitatively
the formation of YSR resonances associated with the mag-
netic moment from the eg and t2g orbitals according to the
cubic symmetry. Furthermore, we have established the ex-
istence of l = 0 YSR resonances, highlighting the need for
an all-electron description for even a qualitatively correct de-
scription of real materials. This is further strengthened by the
fact that the position of the in-gap states is at best described
qualitatively with simple models even for the dominant eg

and t2g resonances. With the introduction of more impurities
we could investigate the hybridization of the YSR resonances
resulting in the formation of YSR bands [29,30]. Similarly,
the use of the KKR framework will enable us to extend the
method to concentrated alloys exploiting the coherent po-
tential approximation (CPA) as outlined previously [31–33].
Finally, the incorporation of the fully relativistic BdG equa-
tions [16] including spin-orbit coupling will, in a next step,
enable us to investigate the existence of Majorana zero modes
[34–37] at the surface of conventional superconductors.
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