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Eigenstate analysis of the crystal electric field at low-symmetry sites: Application for an orthogonal
site in the tetragonal crystal Ce2Pd2Pb
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We have established an analyzing method to determine eigenstates of 4 f electrons under the crystal electric
field (CEF) at low-symmetry sites. This analysis requires macroscopic physical properties only, namely the satu-
ration moments along several symmetrical directions of the crystal in addition to the magnetic susceptibility and
specific heat, instead of the spectrum of the inelastic neutron scattering frequently used for such a complicated
circumstance. As a successful case, the eigenstates of a CEF Hamiltonian under an orthogonal point group C2v

are determined for the J = 5
2 state of the cerium ion in a tetragonal compound Ce2Pd2Pb. During the analysis, an

angular momentum operator along the arbitrary direction is deduced from the space rotation operator. A matrix
representation of the projection operator that transforms the basis of wave functions from |Jz〉 to |Jx〉 or |Jy〉 is
also shown for J = 5

2 . This analysis reveals the anisotropic moments within highly symmetrical structures, and
will contribute to understanding anisotropic field responses in rare-earth compounds.

DOI: 10.1103/PhysRevB.105.014419

I. INTRODUCTION

Quantum spin states in f -electron magnets have attracted
much attention in recent years [1–8]. These magnets are
characterized by strongly anisotropic moments and low de-
generated pseudospin states. They are results of the spin-orbit
coupling in the f electron and crystal electric field (CEF)
in crystals, which are counterparts of d-electron magnets.
That is, the orbital degree of the freedom remains as the
total angular momentum in f electrons, while it is quenched
by the strong CEF in d electrons. As a result, f -electron
magnets yield strongly anisotropic moments under the CEF.
The strong magnetic anisotropy in f -electron magnets has the
potential to induce not only quantitatively different responses
of the magnetic field but also qualitatively different phases
and/or quantum states depending on the direction of the
field [3,8,9].

The anisotropy of the local moment in f -electron mag-
nets is attributed to the property of the eigenstate under a
CEF Hamiltonian [10,11]. This Hamiltonian determines fun-
damental properties of the magnetic moment, not only the
magnetic anisotropy but also the degeneracy of the ground
state and the orbital anisotropy of the wave function that yield
the exchange interaction. Therefore, the determination of the
eigenstates is important to understand the peculiar properties
of f -electron magnets. In principle, the CEF Hamiltonian
can be determined from the charge distribution around the
f electrons; however, it is quite sensitive to the effec-
tive charge, position, and symmetry of surrounding ions.
For instance, a tetragonal compound Ce2Pd2Pb discussed
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in this paper has a strongly anisotropic moment while its
isostructural compound Ce2Pt2Pb has a mostly isotropic
moment in the tetragonal plane although Pt and Pd are
expected to have the same core charge [12]. There-
fore, experimental results should be used to accurately
determine the eigenstates. For this purpose, the mag-
netic susceptibility along several crystallographic directions
is conventionally used. The CEF eigenstates have been
experimentally determined not only for cubic structures
but also for low-symmetry structures such as hexagonal,
tetragonal, and trigonal ones [13–16].

The analysis of the CEF eigenstate using magnetic suscep-
tibility is known to have a limitation about the site symmetry
of rare-earth ions. This limitation restricts that the point-group
symmetry of the rare-earth site must be the same as that
of the crystal; in other words, the rare-earth element should
locate on the highest symmetrical site in the crystal. Other-
wise, the anisotropy of the local symmetry of the rare-earth
site is averaged by the crystal symmetry. Although several
macroscopic approaches can extract partial characters of the
eigenstates [3,17,18], microscopic measurements such as in-
elastic neutron scattering have been required to determine
the CEF eigenstates in such a complicated circumstance thus
far [19–22].

In this paper, we report an analyzing method to determine
CEF eigenstates under the complicated circumstance; namely,
the CEF Hamiltonian has a lower point-group symmetry than
that of the crystal. This analysis requires macroscopic physical
properties only, namely the susceptibility, specific heat, and
low-temperature magnetization along several crystallographic
directions. The key point of this analysis is the magnetization
analysis using the total angular momentum operator along
arbitrary directions. As a successful case, we present an an-
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FIG. 1. Crystal structure of Ce2Pd2Pb. (a) Perspective view
around the unit cell shown by the solid cuboid. (b) Cerium plane in
panel (a). Small arrows show several crystallographic directions in
the Miller indices. Large arrows indexed as x, y, and z axes represent
two different local coordinates on the cerium atom. The solid and
broken outlined atoms have different local coordinates, while both
the atoms belong to the same crystallographic site. Filled ellipse and
the symbol m indicate the twofold rotational axis and mirror plane,
respectively.

alyzed result of a cerium compound Ce2Pd2Pb, together with
its growth method and several physical properties of single-
crystalline samples.

Ce2Pd2Pb crystallizes in the Mo2FeB2-type structure
(space group No. 127, P4/mbm; see Fig. 1) [23,24]. In this
structure, cerium atoms form in a special arrangement, the so-
called Shastry-Sutherland lattice (SSL), known to be a typical
case of geometrical frustration. This structure is a tetragonal
one, but the cerium site (4h) belongs to an orthogonal local
point group C2v . Therefore, seemingly two types of cerium
sites, as shown by the solid and broken outlines in Fig. 1(b),
can be found in the structure; however, they locate on the same
crystallographic site but only have different local coordinates.
From several investigations using polycrystalline samples, it
is found that this compound has a rather localized 4 f electron
and undergoes an antiferromagnetic transition approximately
at 6 K [23,25].

II. EXPERIMENTAL METHOD

Single-crystalline samples of Ce2Pd2Pb and La2Pd2Pb
were grown using the Bridgman technique. The starting
materials of Ce2Pd2Pb are stoichiometric amounts of pure
metals, Ce (3N), Pd (4N), and Pb (6N). They are sealed
into a crucible made of tungsten metal using electric-beam
welding. The crucible is once heated up to 1600 ◦C and then
rapidly cooled down to 1000 ◦C at 20 ◦C/minute. This process
intends to prevent the formation of other compounds. Then, it
is slowly cooled down to 800 ◦C at 0.7 ◦C/hour. The resultant
ingot has a single phase of Ce2Pd2Pb, but some domains are
there. We picked up small samples from the ingot and checked
domains using a Laue diffraction measurement. To obtain
single-crystalline samples, a polisher was used to remove
minor domains and to prepare oriented surfaces. La2Pd2Pb
was grown by a similar method. The samples of Ce2Pd2Pb
have a metallic conductivity and their residual resistivity at
1.5 K is approximately 12 μ� cm. The electrical resistivity
was measured using a conventional dc four-wire method. The
specific heat was measured using a commercial calorimeter

FIG. 2. Temperature dependence of the magnetic susceptibility.
(a) M/H along three symmetrical directions of the tetragonal crystal.
The arrow indicates the antiferromagnetic transition temperature TN.
The legend for the markers is represented in panel (b). (b) The
reciprocal susceptibility of the same data in panel (a). Solid curves
are calculated reciprocal susceptibility from the CEF wave functions.

(PPMS; Quantum Design, Inc.) and a handmade calorimeter
for temperature ranges from 1.8 K to 300 K and from 0.1 K
to 10 K, respectively. For the magnetization and the magnetic
susceptibility measurements, we used a commercial magne-
tometer (MPMS; Quantum Design, Inc.) in the field range
<7 T. For the higher field range >7 T, the magnetization was
obtained from a handmade magnetometer calibrated against
the magnetization obtained from the MPMS.

III. RESULTS

Figure 2 shows the magnetic susceptibility M/H along
three symmetrical directions of tetragonal crystals, the 〈100〉,
〈110〉, and 〈001〉 directions. A clear kink at approximately 6 K
in Fig. 2(a) is attributed to an antiferromagnetic transition.
The effective moment is estimated from a linear fit for the
reciprocal susceptibility as shown in Fig. 2(b) above 200 K.
We obtained 2.57(3) μB/Ce [2.60(3) μB/Ce] for the 〈100〉
and 〈110〉 (〈001〉) directions. These values are close to the
2.54 μB/Ce expected for a free Ce3+ ion. The susceptibility
along 〈100〉 is identical to that along 〈110〉 within the experi-
mental uncertainty. On the other hand, the susceptibility along
the 〈001〉 direction is different from that perpendicular to the
direction. It is a general consequence of the tetragonal sym-
metry that the susceptibility is isotropic within the tetragonal
plane. In Ce2Pd2Pb, the point-group symmetry of the cerium
site is C2v . The orthogonal local symmetry C2v of the CEF
splits the sixfold eigenstates of the total angular momentum
J = 5

2 of Ce3+ ion into three doublets. This symmetry yields
an orthogonal local anisotropy in the susceptibility; however,
it becomes a tetragonal one in the whole crystal because
the susceptibilities of the two orthorhombic cerium sites are
averaged in the unit cell. Therefore, the tetragonal anisotropy
in the susceptibility is attributed to the sum of the two types
of orthogonal cerium sites.

To obtain the eigenenergy of the CEF Hamiltonian, we
measured the specific heat of Ce2Pd2Pb (CCe) and that of
nonmagnetic analog La2Pd2Pb (CLa). Here, CLa exhibits a
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FIG. 3. (a) Temperature dependence of the specific heat of
Ce2Pd2Pb and La2Pd2Pb. Inset shows the specific heat (left axis) and
the electrical resistivity (right axis) of La2Pd2Pb at low temperatures.
(b) Magnetic contribution of the specific heat Cmag of Ce2Pd2Pb in
the logarithmic temperature scale. The solid curve shows the mag-
netic entropy indexed on the right axis. Calculated specific heat CCEF

for the CEF energies also shown as a dotted curve.

peak anomaly accompanying zero electrical resistivity at ap-
proximately 0.3 K as shown in the inset of Fig. 3(a). These
anomalies indicate a superconducting transition in La2Pd2Pb.
As shown in the main panel of Fig. 3(a), Ce2Pd2Pb has a
larger specific heat than that of La2Pd2Pb within the whole
measured temperatures because of the contribution of the 4 f
electron. Assuming that the other contribution than that of the
4 f electron is the same within both compounds, we obtain the
contribution of the 4 f electron as Cmag = CCe − CLa as shown
in Fig. 3(b). Below 10 K, two sharp peaks are found in Cmag.
The peak at TN = 5.6 K is attributed to an antiferromagnetic
transition as seen in the susceptibility [see Fig. 2(a)]. Another
small peak at 3.5 K is probably due to a change in the mag-
netic structure. The magnetic entropy Smag is obtained from an
integration of Cmag/T as shown in the right axis of Fig. 3(b).
Smag saturates to R ln 2 up to 30 K, where R is the gas constant.
The value R ln 2 indicates the degree of freedom of the ground
state doublet, the so-called Kramers doublet, and excited

FIG. 4. Magnetization along 〈100〉, 〈110〉, and 〈001〉 directions
at (a) 1.8 K and (b) 7 K. Broken lines are linear fits above 7 T.
Solid curves are the numerically calculated magnetization using the
parameters listed in Table II.

states are negligibly occupied <30 K. Since the Kramers
doublet has the time-reversal symmetry, the long-range orders
arise from the magnetic degree of freedom. Note that the
Kondo effect seems to contribute very weakly in Ce2Pd2Pb
because the Kondo coherence peak is not found on Cmag.

Above 30 K, Smag increases again and seems to approach
R ln 6 at higher temperatures, which is associated with the
broad hump of Cmag at approximately 80 K. This behavior is
attributed to the thermal excitation between the CEF eigen-
states. To estimate the excitation energies, we fit Cmag(T )
above 30 K using a Schottky-type formula for the specific heat
under the CEF energy splitting (CCEF):

CCEF = NAkBβ2

Z2

∑
i, j

(Ei − Ej )2

2
e−β(Ei+Ej ), (1)

where β = (kBT )−1 and Z = ∑
i e−βEi are the inverse tem-

perature and a partition function, respectively. We use i and
j (i, j = 0, 1, 2) for the indication of the eigenenergy here-
after. The resultant curve almost reproduces the experiment
as shown in Fig. 3(b). Obtained energy gaps are �E1/kB =
133 K and �E2/kB = 426 K for the first- and the second-
excited states from the ground state, respectively. Here, �Ei =
Ei − E0. The energy Ei corresponds to the ith eigenenergy of
the CEF Hamiltonian, Eq. (2).

Figure 4 shows the magnetization curve along the 〈100〉,
〈110〉, and 〈001〉 directions. The magnetization curves along
the 〈100〉 and 〈110〉 directions show successive steps. These
steps indicate phase transitions between the long-range or-
dered states. Since we focus on the CEF eigenstates in the
Ce2Pd2Pb in the present paper, these phase transitions will be
discussed elsewhere. The magnetization curves along both the
〈100〉 and 〈110〉 directions saturate above 7 T. The saturation
moment is anisotropic even in the tetragonal plane, indicat-
ing that the orthogonal symmetry of the cerium site remains
within the tetragonal crystal. This anisotropy is an important
difference between the magnetization and susceptibility. The
saturation moment and paramagnetic contribution are evalu-
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ated from a linear fit >7 T as 1.32(2) μB [0.93(2) μB] and
2.5 × 10−3 μB/T (3.4 × 10−3 μB/T ) per Ce atom along the
〈100〉 (〈110〉) direction, respectively. The magnetization along
the 〈001〉 direction shows no saturation up to 18 T.

IV. DISCUSSION

In Ce2Pd2Pb, the Ce site (4h) belongs to an orthogonal
point group C2v that has the twofold rotational axis and two
orthogonalized mirror planes. As shown in Fig. 1(b), four Ce
atoms exist in the primitive cell of Ce2Pd2Pb. The twofold
rotational axes of two of the four Ce atoms, outlined by the
red solid circle, are oriented in the [110] direction, and those
of the others, outlined by the blue broken circle, are oriented
in the [1̄10] direction. The two mirror planes lie within and
perpendicular to the ab plane, respectively, and both the planes
contain the twofold rotational axis. These orthogonal Ce sites
are connected with the b-glide operation and therefore they
maintain the tetragonal space group P4/mbm of the crystal
structure. In the case of C2v , it is convenient to select a
quantized axis from a twofold axis or a direction perpen-
dicular to each mirror plane. This is because the direction
perpendicular to mirror planes is identical to the twofold
axis for the axial vector, or pseudovector, such as angular
momentum. In this paper, we define the twofold rotational
axis as the x axis and the [001] direction as the z axis. As
a result, the direction perpendicular to the remaining mirror
plane is defined as the y axis. These local axes are depicted
in Fig. 1(b). Hereafter, we choose the quantized direction of
the angular momentum as the z axis (crystallographic [001]
direction) unless otherwise noted.

For the point group C2v , the CEF Hamiltonian for J = 5
2 is

described as follows:

ĤCEF = B0
2Ô0

2 + B2
2Ô2

2 + B0
4Ô0

4 + B2
4Ô2

4 + B4
4Ô4

4. (2)

Here, Ôm
n and Bm

n are the Stevens operators and their co-
efficients [10,11]. Note that all of the coefficients Bm

n are
the real numbers in C2v . Five arbitrary coefficients in the
Hamiltonian Eq. (2) reflect degrees of freedom for eigenen-
ergies and coefficients in the eigenstates, respectively. The
CEF wave function of the ith eigenenergy is obtained as an
eigenstate of ĤCEF as follows:

|ψ±z
i 〉 = αi

∣∣∣∣±5

2

〉
+ βi

∣∣∣∣±1

2

〉
+ γi

∣∣∣∣∓3

2

〉
. (3)

Here, αi, βi, and γi are real numbers. The upper index ±z
means a pseudospin doublet quantized along the z axis. Each
eigenstate is doubly degenerated because of the time-reversal
symmetry. Therefore, the plus (minus) sign can be mapped
to the up (down) state of a pseudospin sp = 1

2 . Nine coeffi-
cients in ψi have only three degrees of freedom because of
the orthonormal and normalization conditions. The remain-
ing two degrees of freedom in Eq. (2) are attributed to the
eigenenergies.

When the magnetic field is applied, the single-ion
Hamiltonian is obtained as the sum of the CEF and Zeeman
energy:

Ĥ = ĤCEF + (gJ Ĵ) · (μBH )

= ĤCEF + μBHgJ Ĵd . (4)

Here, gJ = 6/7 is the Landé g factor, Ĵ is the total angular
momentum operator, and Ĵd is a component of Ĵ along the
magnetic field H . If the energy scale of the field is sufficiently
smaller than the excitation energy of CEF, we can treat the
Zeeman energy μBHgJ Ĵd as a perturbation for CEF. Neglect-
ing the thermal population, we can calculate the magnitude of
the local moment along arbitrary directions using α0, β0, and
γ0. Along the symmetrical axis, namely, local x, y, or z axes,
the local moment of the ground state is described as follows:

Mx
0 = gJ

∣∣∣∣
√

5α0γ0 + 2
√

2β0γ0 + 3

2
β2

0

∣∣∣∣, (5)

My
0 = gJ

∣∣∣∣
√

5α0γ0 − 2
√

2β0γ0 + 3

2
β2

0

∣∣∣∣, (6)

Mz
0 = gJ

∣∣∣∣5

2
α2

0 + 1

2
β2

0 − 3

2
γ 2

0

∣∣∣∣. (7)

These local moments correspond to the saturation moment
at sufficiently low temperatures. Since the direction of the lo-
cal coordinate depends on the local site, we must take account
of the contributions from two types of orthogonalized Ce sites
in the unit cell to obtain the macroscopic magnetization and
susceptibility. As a result, the saturation moment per cerium
atom along crystallographic axes is described as follows:

M〈100〉 =
√

(Mx )2 + (My)2

2
, (8)

M〈110〉 = Mx + My

2
, (9)

M〈001〉 = Mz. (10)

Note that an total angular momentum operator along an arbi-
trary direction is used to obtain M〈100〉. In this crystal structure,
M〈100〉 and M〈110〉 are anisotropic even in the tetragonal plane.
They become the same value in the most isotropic case,
Mx = My.

As seen here, the orthogonal anisotropy of the CEF eigen-
state remains in the magnetization even in the tetragonal
plane. Therefore, we can determine the eigenstate of the
ground state |ψ±z

0 〉 from the saturation moment obtained
from the low-temperature magnetization. Substituting the ex-
perimental results, M〈100〉 = 1.32(2) μB/Ce and M〈110〉 =
0.93(2) μB/Ce, into Eqs. (8) and (9), we can obtain the local
moments as Mx = 0.00(3) μB and My = 1.87(3) μB, or their
swap. These values indicate that the local moment has a strong
anisotropy in the tetragonal plane. Then, regarding Mx and
My as Mx

0 and My
0, we can obtain candidates of the ground

state as the parameter sets (α0, β0, γ0) satisfying Eqs. (5)
and (6) from scanning the parameters within the normaliza-
tion condition, (α0)2 + (β0)2 + (γ0)2 = 1. This scan can be
performed as sampling on the unit sphere in the parameter
space. As a result, we can find only four possible candidates
for the ground state. The two of the four candidates can be
represented as one expression:

|ψ±z
0 〉 = 0.41

∣∣∣∣±5

2

〉
− 0.50p

∣∣∣∣±1

2

〉
+ 0.76

∣∣∣∣∓3

2

〉
, (11)

where the parameter p = ±1 represents a degree of freedom
that swaps x and y axes. Detailed coefficients are listed in
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TABLE I. The eigenstates and eigenenergies of the CEF; p = ±1
is the sign parameter that swaps the local x and y axes.

|ψ±z
i 〉 αi βi/p γi �Ei (K)

|ψ±z
0 〉 +0.411(27) −0.501(16) +0.762(15) 0

|ψ±z
1 〉 +0.781(20) −0.238(35) −0.578(12) 133(3)

|ψ±z
2 〉 +0.471(32) +0.832(10) +0.293(24) 426(12)

Table I. The sign of p cannot be determined from macro-
scopic measurements because of the b-glide operation in
P4/mbm. The other two candidates, |φ±z

0 〉 = 0.13| ± 5
2 〉 −

0.90p| ± 1
2 〉 − 0.42| ∓ 3

2 〉, are also found from the same re-
striction; however, they are not appropriate because these
ground states and their excited states cannot reproduce χ (T )
and M〈001〉(H ).

Once the ground state is determined, the coefficients
of excited states |ψ±z

i 〉 can be determined from only one
coefficient because of the orthonormal and normalization con-
ditions. Since the eigenenergies of |ψ±z

i 〉 have been estimated
from the specific heat measurement as �E1/kB = 133 K and
�E2/kB = 426 K, we can determine the excited eigenstates
from a curve fit for the magnetic susceptibility with one ar-
bitrary coefficient only. The temperature dependence of the
susceptibility along each local direction is calculated using the
following formula:

χd (T ) = βμ2
Bg2

J

∑
i

e−βEi

Z
〈ψ±d

i | Ĵd |ψ±d
i 〉2

+ 2μ2
Bg2

J

∑
i

e−βEi

Z

∑
j( �=i)

〈ψ±d
j | Ĵd |ψ±d

i 〉2

Ej − Ei
. (12)

Here, β = (kBT )−1 and |ψ±d
j 〉 is a wave function diagonalized

for Ĵd in degenerated eigenstates of Eq. (2). The susceptibility
along a crystallographic direction 〈hkl〉 is obtained from that
of the local coordinate as follows:

χ 〈100〉 = χ 〈110〉 = χ x + χ y

2
, (13)

χ 〈001〉 = χ z. (14)

Based on the susceptibility of 4 f electrons, the following
formula is used to fit the experimental susceptibility along the
crystallographic 〈hkl〉 direction:(

M〈hkl〉(T )

H

)
= χ 〈hkl〉(T )

1 − λ〈hkl〉χ 〈hkl〉(T )
+ χ0. (15)

The molecular field λ〈hkl〉 is obtained as λ〈100〉 = λ〈110〉 =
−3.9(5) Ce-mol/emu and λ〈001〉 = −1.6(5) Ce-mol/emu.
Magnetic contributions from other than 4 f electrons, e.g., the
closed-shell diamagnetism and Pauli paramagnetism, are ob-
tained as χ0 = −1.1(6) × 10−5 emu/Ce-mol. The calculated
susceptibility is shown in Fig. 2(b) as solid curves. The curves
show good agreement with experimental results. The resultant
wave functions of the first- and second-excited states are listed
in Table I.

Magnetization curves of the isolated moments that have
no exchange interaction between them can be obtained from

TABLE II. The coefficients of the CEF Hamiltonian Eq. (2). p =
±1 is the sign parameter that swaps the local x and y axes.

B0
2 (K) B2

2/p (K) B0
4 (K) B2

4/p (K) B4
4 (K)

−4.91(15) 34.6(2.7) 0.64(13) 1.15(12) −0.041(16)

numerically diagonalizing Eq. (4). Note that although we have
not directly diagonalized the CEF Hamiltonian Eq. (2), the
coefficients of the Stevens operators can be obtained from
the eigenenergy and eigenstates as described in the Appendix.
The determined coefficients are listed in Table II. Since two
types of orthogonalized Ce sites exist in the unit cell, the
operator Ĵd depends on the local sites. To calculate the mag-
netization curve along the 〈110〉 direction, we adopt Ĵπ/4 and
Ĵ−π/4 for the half of the Ce ions and others, respectively. The
total magnetization is obtained as a sum of them. Similarly,
Ĵx and Ĵy are adopted for the magnetization curve along the
〈100〉 direction. Calculated magnetizations are shown in Fig. 4
as solid curves. At 1.8 K, the calculated curves reproduce
only the saturated region, μ0H > 7 T, along the 〈100〉 and
〈110〉 directions. This is because Ce2Pd2Pb is an antiferro-
magnetically ordered state at the temperature. Therefore, the
calculated curves that ignore an exchange interaction between
moments cannot reproduce the actual magnetization. On the
other hand, the calculated curves for T = 7 K (> TN) almost
reproduce experimental results along the 〈100〉, 〈110〉, and
〈001〉 directions. A small deviation between the calculated and
experimental magnetizations can be attributed to the exchange
interaction between Ce moments. These results indicate that
the determined parameters are significantly close to the actual
values.

Our analysis reveals a strong magnetic anisotropy of the
CEF ground state in Ce2Pd2Pb. This anisotropy can be re-
garded as an anisotropic g factor for the pseudospin sp = 1/2
defined as gd

i = 2Md
i . From the coefficients in Table I, the g

factor along the x, y, and z axes are calculated as gx
0 = 0.00(5),

gy
0 = 3.69(5), and gz

0 = 0.55(14), respectively, when p = +1
is chosen in Eq. (11). Reparably, the sign change of p swaps
the value of gx

0 and gy
0. This anisotropy suggests a rather

axial-type moment along the local y axis, and is similar to
that of Yb2Pt2Pb. In Yb2Pt2Pb, gx

0 = 0.00, gy
0 = 7.09, and

gz
0 = 0.18 are obtained from a calculation by a point charge

model [26]. This compound exhibits fascinating partial or-
der and spinon dispersion under the field along the 〈110〉
direction [3,5]. In this situation, one of two orthogonalized
Yb moments and the other are influenced by a large Zeeman
splitting gy

0μBH and a nearly zero splitting gx
0μBH , respec-

tively. Therefore, the characteristic anisotropy of the g factor
is expected to be a key component of the fascinating proper-
ties. The similarities of the crystal structure and the magnetic
anisotropy between Ce2Pd2Pb and Yb2Pt2Pb motivate us to
investigate the magnetic ground state in Ce2Pd2Pb.

One might wonder how such a strong anisotropy can be
derived from rather moderate coefficients in Eq. (11). It can
be understood by the following basis transformation. Until
here, we have chosen the local z axis as the quantized di-
rection. It determines the implicitly defined basis set of the
wave function as |Jz〉; e.g., |± 5

2 〉 means the eigenstate of
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Jz = ± 5
2 . As is well known, the basis set can be transformed

using projection operators. In this case, the quantized direc-
tion can be changed using a projection operator �Jd |Jd〉〈Jd |
(d = x, y, z). The projection operator can be represented as a
tensor or a matrix, but its representation depends on the basis
set. An explicit representation of the matrix is written in the
Appendix. If p = +1 is chosen, the ground state quantized
along the y axis, namely the direction of the largest g factor,
|ψ±y

0 〉 = (|ψ+z
0 〉 ± i |ψ−z

0 〉)/
√

2, is written using the basis set
|Jy〉 as follows:

∣∣ψ±y
0

〉 = 0.925

∣∣∣∣±5

2

〉
y

+ 0.343

∣∣∣∣±1

2

〉
y

− 0.165

∣∣∣∣∓3

2

〉
y

. (16)

On the other hand, if p = −1 is chosen, the ground state
quantized along the x axis |ψ±x

0 〉 = (|ψ+z
0 〉 ± |ψ−z

0 〉)/
√

2 can
be written using the basis |Jx〉 as follows:

|ψ±x
0 〉 = 0.925

∣∣∣∣±5

2

〉
x

− 0.343

∣∣∣∣±1

2

〉
x

− 0.165

∣∣∣∣∓3

2

〉
x

. (17)

Here, |Jy〉y (|Jx〉x) is the eigenstate of the total angular momen-
tum along the y axis (x axis). These representations indicate
that the large g factor along the y axis (x axis) of the ground
state with p = +1 (−1) is dominantly attributed to the Jy (Jx)
= 5

2 component.
Finally, we summarize the analyzing method proposed in

this paper. This method allows us to analyze the CEF eigen-
state under a lower point-group symmetry than that of the
whole crystal, e.g., an orthogonal site within a tetragonal crys-
tal. The sequence of the analysis is summarized as follows:

(1) First, the saturation moments of the CEF ground state
along several symmetrical directions of the crystal are ob-
tained from the magnetization at sufficiently low temperature
and high magnetic field.

(2) Then, the candidates of the ground state are estimated
so that they satisfy the obtained saturation moments within the
experimental uncertainty.

(3) If possible or necessary, the CEF eigenenergies are
obtained from the specific heat. Independent estimation of
eigenenergies reduces the uncertainty of the curve fit at the
next step.

(4) Finally, the candidates of the ground state are narrowed
down from the curve fit for the magnetic susceptibility using
the restriction obtained above.

Resultant eigenstates have some degree of freedom that
reflects the multiplicity of the local site, but probably it is
removed by an analysis based on the point charge model.

V. CONCLUSION

We have explained an analyzing method to determine
CEF eigenstates at a complicated circumstance that the mag-
netic site has a lower point-group symmetry than that of the
whole crystal. This method has the advantage of relying on
macroscopic data only, namely the magnetic susceptibility,
specific heat, and the saturation moment along several sym-
metrical directions, while the other analyses thus far for this
circumstance require inelastic neutron scattering. Using this
analysis, we have revealed an axial-type magnetic anisotropy
in the CEF ground state in Ce2Pd2Pb. We also present

an angular momentum along arbitrary directions and the
matrix representation of the projection operator that trans-
forms the quantized direction of the total angular momentum.
The presented method utilizes the anisotropy of the saturation
moment that reflects the local site symmetry. Since the satu-
ration moment is generally anisotropic even in the directions
along which the susceptibility is isotropic, this method has
the potential to become a general one for the complicated
circumstance.
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APPENDIX

1. Commutation between the total angular momentum
and space rotation operators

We note some of the relations similar to the commuta-
tion relation frequently used with the space rotation operator.
Note that we assume that the spin and orbital momen-
tums are strongly coupled by the spin-orbital coupling and
therefore the total angular momentum is the conserved quan-
tity. Here, we use a normalized total angular momentum;
namely, their operators commute as follows:

[Ĵi, Ĵ j] = iεi jk Ĵk, (A1)

where εi jk is the Levi-Civita symbol. The following are de-
duced for the rotation along the x axis:

Ĵxeiθ Ĵx = eiθ Ĵx Ĵx, (A2)

Ĵyeiθ Ĵx = eiθ Ĵx (Ĵy cos θ + Ĵz sin θ ), (A3)

Ĵze
iθ Ĵx = eiθ Ĵx (−Ĵy sin θ + Ĵz cos θ ), (A4)

Ĵ+eiθ Ĵx = eiθ Ĵx

(
Ĵ+ cos2 θ

2
+ Ĵ− sin2 θ

2
+ iĴz sin θ

)
, (A5)

Ĵ−eiθ Ĵx = eiθ Ĵx

(
Ĵ+ sin2 θ

2
+ Ĵ− cos2 θ

2
− iĴz sin θ

)
. (A6)

For the rotation along the y axis,

Ĵxeiθ Ĵy = eiθ Ĵy (−Ĵz sin θ + Ĵx cos θ ), (A7)

Ĵyeiθ Ĵy = eiθ Ĵy Ĵy, (A8)

Ĵze
iθ Ĵy = eiθ Ĵy (Ĵz cos θ + Ĵx sin θ ), (A9)

Ĵ+eiθ Ĵy = eiθ Ĵy

(
Ĵ+ cos2 θ

2
− Ĵ− sin2 θ

2
− Ĵz sin θ

)
, (A10)

Ĵ−eiθ Ĵy = eiθ Ĵy

(
−Ĵ+ sin2 θ

2
+ Ĵ− cos2 θ

2
− Ĵz sin θ

)
. (A11)

For the rotation along the z axis,

Ĵxeiθ Ĵz = eiθ Ĵz (Ĵx cos θ + Ĵy sin θ )
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= eiθ Ĵz

(
e−iθ Ĵ+ + eiθ Ĵ−

2

)
, (A12)

Ĵyeiθ Ĵz = eiθ Ĵz
(−Ĵx sin θ + Ĵy cos θ

)

= eiθ Ĵz

(
e−iθ Ĵ+ − eiθ Ĵ−

2i

)
, (A13)

Ĵze
iθ Ĵz = eiθ Ĵz Ĵz, (A14)

Ĵ+eiθ Ĵz = eiθ Ĵz e−iθ Ĵ+, (A15)

Ĵ−eiθ Ĵz = eiθ Ĵz e+iθ Ĵ−. (A16)

2. Total angular momentum operator along arbitrary directions

Operators along an arbitrary direction can be deduced us-
ing the space rotational operator R̂(θ) = e−iθ·Ĵ , where θ and Ĵ
are a rotation vector and the total angular momentum operator,
respectively. The component of Ĵ along an arbitrary direction
Ĵθ,φ can be deduced as follows:

Ĵθ,φ = R̂†
z (−φ)R̂†

y

(
π
2 − θ

)
ĴxR̂y

(
π
2 − θ

)
R̂z(−φ)

= Ĵx sin θ cos φ + Ĵy sin θ cos φ + Ĵz cos θ,

where R̂z(φ) = e−iφĴz and R̂y( π
2 − θ ) = e−i( π

2 −θ )Ĵy are defined
as the space rotation operator along the z and y axes, respec-
tively. Here, θ (φ) is defined as the angles from the z axis to
xy plane (from the x axis to y axis). In the Kramers doublet,
the saturation moment Mθ,φ along the direction is obtained
from the first perturbation of Ĵθ,φ as follows:

Mθ,φ=
√

(Mx )2sin2 θcos2 φ+(My)2sin2 θsin2 φ+(Mz )2cos2 θ,

(A17)

where Mx, My, and Mz are the saturation moment along the x,
y, and z directions, respectively.

On the other hand, a local zero-field susceptibility χ =
limH→0

M
H along the (θ, φ) direction can be calculated using

the first- and second-perturbation terms as follows:

χθ,φ = χ x sin2 θ cos2 φ + χ y sin2 θ sin2 φ + χ z cos2 θ,

(A18)

where χ x, χ y, and χ z are the local susceptibilities along the
x, y, and z axes, respectively. Note that Eq. (A18) is valid not
only for the CEF ground states but also in high temperatures
influenced by the excitations between the CEF eigenstates.

3. Relation between the eigenstate, eigenenergy, and coefficients
of the Stevens operators in the configuration of J = 5

2 and C2v ,
D2, or D2h

The coefficients of the Stevens operator are obtained from
the following procedures. Here, we define a matrix represen-
tation of ĤCEF for the basis set |Jz〉 as H|Jz〉

CEF, while that for the

basis set |ψ±z
i 〉 as H|ψ±z

i 〉
CEF . These matrices satisfy the following

eigendecomposition:

H|Jz〉
CEF = QJz, ψ

±
i
H|ψ±z

i 〉
CEF Q†

Jz, ψ
±
i
. (A19)

Here, Q†
Jz,ψ

±z
i

= Qψ±
i , Jz

is a unitary matrix that transforms the

basis set from |Jz〉 to |ψ±
i 〉. We can define H|ψ±

i 〉
CEF and QJz, ψ

±z
i

as the following matrices:

H|ψ±z
i 〉

CEF =

⎛
⎜⎜⎜⎜⎜⎝

E2 0 0 0 0 0
0 E2 0 0 0 0
0 0 E1 0 0 0
0 0 0 E1 0 0
0 0 0 0 E0 0
0 0 0 0 0 E0

⎞
⎟⎟⎟⎟⎟⎠

, (A20)

QJz, ψ
±z
i

=

⎛
⎜⎜⎜⎜⎜⎝

α2 0 α1 0 α0 0
0 γ2 0 γ1 0 γ0

β2 0 β1 0 β0 0
0 β2 0 β1 0 β0

γ2 0 γ1 0 γ0 0
0 α2 0 α1 0 α0

⎞
⎟⎟⎟⎟⎟⎠

. (A21)

Here, the basis set |ψ±
i 〉 is defined as the basis vector

(|ψ+
2 〉 , |ψ−

2 〉 , |ψ+
1 〉 , . . . , |ψ−

0 〉), and the basis set |Jz〉 is de-
fined as the basis vector (|Jz = + 5

2 〉 , |+ 3
2 〉 , . . . , |− 5

2 〉). Using
the above matrices, we can obtain a matrix representation of
ĤCEF for the basis set |Jz〉 as follows:

H|Jz〉
CEF =

⎛
⎜⎜⎜⎜⎜⎝

Eα,α 0 Eα,β 0 Eα,γ 0
0 Eγ ,γ 0 Eγ ,β 0 Eγ ,α

Eβ,α 0 Eβ,β 0 Eβ,γ 0
0 Eβ,γ 0 Eβ,β 0 Eβ,α

Eγ ,α 0 Eγ ,β 0 Eγ ,γ 0
0 Eα,γ 0 Eα,β 0 Eα,α

⎞
⎟⎟⎟⎟⎟⎠

.

(A22)

The explicit representation of the matrix elements is listed as
follows:

Eα,α = E0α
2
0 + E1α

2
1 + E2α

2
2, (A23)

Eβ,β = E0β
2
0 + E1β

2
1 + E2β

2
2 , (A24)

Eγ ,γ = E0γ
2
0 + E1γ

2
1 + E2γ

2
2 , (A25)

Eα,β = Eβ,α = E0α0β0 + E1α1β1 + E2α2β2, (A26)

Eβ,γ = Eγ ,β = E0β0γ0 + E1β1γ1 + E2β2γ2, (A27)

Eγ ,α = Eα,γ = E0γ0α0 + E1γ1α1 + E2γ2α2. (A28)

Comparing the matrix H|Jz〉
CEF with a matrix representation of

Eq. (2), one obtains the following relations:

B0
2 = 2Eα,α − Eβ,β

28
, (A29)

B0
4 = 4Eα,α + 5Eβ,β

840
, (A30)

B2
2 = 5Eα,β + 3

√
5Eβ,γ

14
√

10
, (A31)

B2
4 = 3Eα,β − √

5Eβ,γ

42
√

10
, (A32)

B4
4 = Eγ ,α

12
√

5
. (A33)
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Using these relations, we can obtain the coefficient of the
Stevens operator from the eigenstates and eigenenergy.

4. Matrix representation of the projection operator
∑

Jd
|Jd〉〈Jd |

(d = x, y, z) for J = 5
2

In quantum mechanics, an expectation value is obtained
from a operator and wave function. For instance, an expec-
tation value 〈Jx〉 is obtained from an operator Ĵx and a bra-ket
notation:

〈Jx〉 = 〈ψ |Ĵx|ψ〉 . (A34)

The bra and ket are usually regarded as a row and column
vector on an implicitly defined basis set. Defining the basis
set makes it possible to write an operator as a matrix. If we do
not use the implicitly defined basis set, the basis set should
be defined using a projection operator. Since a projection
operator is the identity operator, we can insert it anywhere in
the bracket representation. To obtain a matrix representation
for the basis set |Jz〉, namely (|Jz = + 5

2 〉 , |+ 3
2 〉 , . . . , |− 5

2 〉),
the projection operator

∑
Jz

|Jz〉 〈Jz| is inserted as follows:

〈Jx〉 = 〈ψ |
∑

J ′
z

|J ′
z〉 〈J ′

z| Ĵx

∑
Jz

|Jz〉 〈Jz|ψ〉

=
∑
Jz, J ′

z

〈ψ |J ′
z〉 〈J ′

z|Ĵx|Jz〉 〈Jz|ψ〉 . (A35)

This representation offers a matrix J|Jz〉
x that has elements

〈J ′
z|Ĵx|Jz〉 as follows:

J|Jz〉
x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

5
2 0 0 0 0√

5
2 0

√
2 0 0 0

0
√

2 0 3
2 0 0

0 0 3
2 0

√
2 0

0 0 0
√

2 0
√

5
2

0 0 0 0
√

5
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A36)

Other components in Eq. (A35), 〈ψ |J ′
z〉 and 〈Jz|ψ〉, represent

the bra- and ket-vector for the basis set |Jz〉, respectively.
Therefore, a matrix representation of Ĵx for the basis set |Jz〉 is
obtained:

Ĵx = J|Jz〉
x . (A37)

On the other hand, if we insert the projection operator∑
Jx

|Jx〉 〈Jx|, the following representation is obtained:

〈Jx〉 = 〈ψ |
∑

J ′
x

|J ′
x〉 〈J ′

x| Ĵx

∑
Jx

|Jx〉 〈Jx|ψ〉

=
∑
Jx, J ′

x

〈ψ |J ′
x〉 〈J ′

x|Ĵx|Jx〉 〈Jx|ψ〉 . (A38)

The elements 〈ψ |J ′
x〉 and 〈Jx|ψ〉 represent the

bra- and ket-vector for the basis set |Jx〉, namely
(|Jx = + 5

2 〉 , |+ 3
2 〉 , . . . , |− 5

2 〉), respectively. Therefore, this
representation should offer the following diagonal matrix J|Jx〉

x

that has elements 〈J ′
x|Ĵx|Jx〉:

J|Jx〉
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

+ 5
2 0 0 0 0 0

0 + 3
2 0 0 0 0

0 0 + 1
2 0 0 0

0 0 0 − 1
2 0 0

0 0 0 0 − 3
2 0

0 0 0 0 0 − 5
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A39)

Then if we insert projection operators
∑

Jx
|Jx〉 〈Jx| and∑

Jz
|Jz〉 〈Jz| sequentially, the following is obtained:

〈Jx〉 = 〈ψ |
∑

J ′
z

|J ′
z〉 〈J ′

z|
∑

J ′
x

|J ′
x〉

× 〈J ′
x| Ĵx

∑
Jx

|Jx〉 〈Jx|
∑

Jz

|Jz〉 〈Jz|ψ〉

=
∑

Jx,J ′
x,Jz,J ′

z

〈ψ |J ′
z〉 〈J ′

z|J ′
x〉 〈J ′

x|Ĵx|Jx〉 〈Jx|Jz〉 〈Jz|ψ〉 . (A40)

Here, 〈J ′
x|Ĵx|Jx〉 are the elements of the matrix in Eq. (A39),

while 〈ψ |J ′
z〉 and 〈Jz|ψ〉 represent the elements of the

bra- and ket-vector for the basis set |Jz〉, respectively. There-
fore, 〈J ′

z|J ′
x〉 and 〈Jx|Jz〉 represent elements of basis transform

matrices QJz,Jx and QJx,Jz , respectively. Note that QJx,Jz =
Q†

Jz,Jx
because they are a unitary matrix. Using these matrices,

the following matrix representation of Eq. (A40) for the basis
set |Jz〉 is obtained:

Ĵx = QJz,Jx J
|Jx〉
x Q†

Jz,Jx
. (A41)

Comparing Eqs. (A37) and (A41), we obtain the following:

J|Jz〉
x = QJz,Jx J

|Jx〉
x Q†

Jz,Jx
. (A42)

Since the matrix J|Jx〉
x is a diagonal matrix, this equation cor-

responds to the eigendecomposition of the matrix J|Jz〉
x .

Therefore, from the eigenvectors of J|Jz〉
x , QJz,Jx that transforms

the basis set from |Jx〉 to |Jz〉 is obtained as follows:

QJz,Jx

=e−iπ/4

4
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+1 −√
5i −√

10 +√
10i +√

5 −i
+√

5 −3i −√
2 −√

2i −3 +√
5i

+√
10 −√

2i +2 −2i +√
2 −√

10i
+√

10 +√
2i +2 +2i +√

2 +√
10i

+√
5 +3i −√

2 +√
2i −3 −√

5i
+1 +√

5i −√
10 −√

10i +√
5 +i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(A43)

Here, the phase factors of the eigenvectors are determined so
that following relations are satisfied:

QJx,Jy = QJy,Jz = QJz,Jx , (A44)

QJy,Jx = QJz,Jy = QJx,Jz . (A45)

The argument thus far holds in general for J = 5
2 . In the

remainder of this section, we will derive relations applica-
ble to the orthogonal symmetries, C2v , D2, and D2d . For the
eigenstates of the Hamiltonian Eq. (2), described in Eq. (3),
the Kramers doublet quantized along the x axis |ψ±x

i 〉 =
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(|ψ+z
i 〉 ± |ψ−z

i 〉)/
√

2 is written for the basis set |Jz〉 as
follows:

∣∣ψ±x
i

〉 = 1√
2

(
αi

∣∣∣∣+5

2

〉
± γi

∣∣∣∣+3

2

〉
+ βi

∣∣∣∣+1

2

〉

±βi

∣∣∣∣−1

2

〉
+ γi

∣∣∣∣−3

2

〉
± αi

∣∣∣∣−5

2

〉)
. (A46)

Using QJx,Jz , we can transform the basis set |Jz〉 of Eq. (A46)
into the basis set |Jx〉 as follows:

∣∣ψ±x
i

〉 = αx
i

∣∣∣∣±5

2

〉
x

+ βx
i

∣∣∣∣±1

2

〉
x

+ γ x
i

∣∣∣∣∓3

2

〉
x

. (A47)

Here, the ket-vector |Jx〉x represents the eigenstate of Ĵx that
has the eigenvalue Jx. The coefficients αx

i , βx
i , and γ x

i are
obtained from Eq. (3) and QJx,Jz as follows:

αx
i = αi + √

10βi + √
5γi

4
, (A48)

βx
i = −√

10αi + 2βi − √
2γi

4
, (A49)

γ x
i =

√
5αi + √

2βi − 3γi

4
. (A50)

Similarly, the eigenstates quantized along the y axis, |ψ±x〉 =
(|ψ+z〉 ± i |ψ−z〉)/

√
2, can be written by the basis set of |Jy〉

as follows:
∣∣ψ±y

i

〉 = α
y
i

∣∣∣∣±5

2

〉
y

+ β
y
i

∣∣∣∣±1

2

〉
y

+ γ
y
i

∣∣∣∣∓3

2

〉
y

. (A51)

Here, the ket-vector |Jy〉y represents the eigenstate of Ĵy that
has the eigenvalue Jy. The coefficients α

y
i , β

y
i , and γ

y
i are

obtained from Eq. (3) and QJy,Jz as follows:

α
y
i = αi − √

10βi + √
5γi

4
, (A52)

β
y
i =

√
10αi + 2βi + √

2γi

4
, (A53)

γ
y
i =

√
5αi − √

2βi − 3γi

4
. (A54)
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