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Bulk and edge dynamics of a two-dimensional Affleck-Kennedy-Lieb-Tasaki model
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We study the dynamical properties of both bulk and edge spins of a two-dimensional Affleck-Kennedy-Lieb-
Tasaki (AKLT) model mainly by using the stochastic series expansion quantum Monte Carlo method with
stochastic analytic continuation. In the deep AKLT phase, we obtain a spin spectrum with the flat band, which is
a strong evidence for a localized state. Through the spectrum analysis, we see a clear continuous phase transition
from the AKLT phase to the Néel phase in the model, and the energy gap becomes closed at the corresponding
momentum point. In comparison with linear spin-wave theory, we find that there are strong interactions among
magnons at high energies. With an open boundary condition, the gap of edge spins in the AKLT phase closes at
both the � point and the π point interestingly to emerge into a flat-band-like Luttinger liquid phase, which can be
explained by symmetry and perturbation approximation. This paper helps us to better understand the completely
different dynamical behaviors of bulk and edge spins in the symmetry protected topological phase.
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I. INTRODUCTION

The Haldane phase [1,2] is a famous symmetry protected
topological (SPT) phase which only has short-range quantum
entanglement and is first found in the S = 1 Heisenberg anti-
ferromagnetic chain. Generally, the SPT phase is proposed to
describe the system protected by symmetry in any dimension
that cannot be transformed into a trivial state unless closing
the bulk gap or breaking the symmetry [3]. Recently, some
numerical results have found that the nontrivial surface in
the SPT phase can cause unusual critical behaviors, whose
mechanism is still puzzling and under debate [4–7]. In a
previous work, the two-dimensional Affleck-Kennedy-Lieb-
Tasaki (AKLT) phase has been studied on the square-octagon
lattice, where three quantum critical points (QCPs) separate
four phases in the model [8]. By using a large-scale quantum
Monte Carlo (QMC), it was shown that all three bulk QCPs
belong to the same O(3) universality class [4]. However, the
surface critical behaviors are different at each QCP due to
the nontrivial surfaces. From the perspective of spectrum, the
gapless mode plays an important role on the surfaces. So far,
few works have focused on the spectrum. It is very helpful to
study the dynamical properties of edge spins.

Although the ground state of the model has been well
understood, the dynamical properties of the SPT phase have
rarely been studied. During the studies of spin excitations
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of the square lattice antiferromagnetic (AFM) Heisenberg
model, a question arises for its high-energy spectrum anomaly
at q = (π, 0) [9,10]. In this model, there is an obvious shift
and large continuum at q = (π, 0) which cannot be explained
well by the linear spin-wave (sw) theory [11,12]. Constructing
the spinon picture [13] can fit well with the numerical and
experiment results. Powalski et al. [14] proposed the strong
attractive interaction between the spin-wave modes to explain
this anomaly phenomenon. These explanations demonstrate
that strong correlation effects may exist in the high-energy
excitations of the Néel phase. Since the square-octagon lattice
is very similar to the square lattice, it is necessary to check
whether the anomaly can appear in its spectrum. In addition,
it is not clear how the unconventional surface critical behavior
influences the full spectra. In this paper, we focus on the
dynamical properties of the S = 1/2 Heisenberg model on a
square-octagon lattice. In a pure AKLT phase, it is well known
that the edge spins are almost free. But what interests us is the
dynamic behavior of bulk and edge spins when interaction and
entanglement become stronger. In terms of numerical calcula-
tions, stochastic analytic continuation (SAC) [15,16] with the
QMC method [17–21] can reveal the spectrum information
of spin models well. This QMC-SAC approach has gained
the dynamical information of quantum magnets successfully
from the square lattice checkerboard Heisenberg model [22]
to quantum spin liquid [23–27]. Mainly, via this method as-
sisted with linear spin-wave approximation, the many-body
perturbation method and symmetry analysis, we study the
Heisenberg model on the square-octagon lattice to reveal its
interesting dynamic properties.
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FIG. 1. (a) The square-octagon lattice. Within each unit cell (UC) there are four sites. The inter-UC Heisenberg coupling J1 is antiferro-
magnetic and is set to be unity. The intra-UC Heisenberg coupling J2 can be either ferromagnetic or antiferromagnetic. The orange solid line
denotes the unit cell containing four spins locating at a small square lattice. The green dotted line represents the doubled unit cell containing
eight spins, and the blue dotted line cuts out the boundary of the lattice. (b) The quantum phase diagram obtained by tuning g (gc1: PVBC-Néel
state QCP; gc2: AKLT-S = 1

2 Néel state QCP; gc3: AKLT-S = 2 Néel state QCP) [4]. Two phases with three QCPs are only shown discussed
here. The ellipses in the AKLT phase denote the spin singlets formed on the bonds. (c) The Brillouin zone of the square-octagon lattice and
the high-symmetry points �, M1, M2, and K .

II. MODEL AND METHODS

The AFM Heisenberg model on the square-octagon lattice
[Fig. 1(a)] can be written as

H = J1

∑

〈i j〉
Si · S j + J2

∑

〈i j〉′
Si · S j, (1)

where 〈i j〉 and 〈i j〉′ indicate the corresponding inter-UC
bonds. Here, this unit cell only contains four spins on the
small square as Fig. 1(a) shows. The inter-UC coupling J1 is
antiferromagnetic and takes a fixed value of 1. We define the
tuning parameter g = J2/J1 which can drive the model into
four different phases [4]. Three QCPs denoted by gci, i = 1–3
[Fig. 1(b)] have been confirmed to be the O(3) universal class
analytically and numerically. As Fig. 1(b) shows, the model is
in the AKLT phase when gc3 < g < gc2 [8] and the S = 1/2
Néel phase appears if gc2 < g < gc1. In this paper, we mainly
focus on the dynamical properties of the AKLT phase and
the Néel phase separated by gc2 which has different surface
behaviors [4,7].

Via QMC simulations, we calculate the imaginary-time
correlation functions under different parameter gs from the
AKLT phase to the Néel phase in the model. The lattice size
L is chosen to be 24 with the periodic boundary condition
(PBC) and 32 with the open boundary condition (OBC). In-
verse temperature β = 2L is used for the QMC calculation.
With the fully periodic boundary condition, two kinds of bulk
spin-spin imaginary-time correlation functions are measured
in the QMC simulations. One is the bulk spin- 1

2 spin- 1
2 corre-

lation function Gb(1/2)(q, τ ) = 1
L2

∑
i, j e−iq·(ri−r j )〈sz

i (τ )sz
j (0)〉,

another is the bulk effective spin-2 spin-2 correlation function
Gb2(q, τ ) = 1

L2

∑
i, j e−iq·(ri−r j )〈Sz

i (τ )Sz
j (0)〉. Here, sz

i is a real

spin- 1
2 located at the lattice point. Sz

i is a spin-2 made up of

four spin- 1
2 s satisfying Sz

i = ∑4
n=1 sz

in on a small square lattice
i as shown in the left bottom of Fig. 1(a). Although it is not an
exact spin 2, it can be considered physically qualitative in this
way.

Furthermore, we measure two kinds of spin-spin corre-
lation functions on the boundary as the blue dashed line

of Fig. 1(a) shown, including spin- 1
2 spin- 1

2 correlation
Ge(1/2)(q, τ ) and spin-2 spin-2 correlation Ge2(q, τ ) to inves-
tigate dynamical information of spin on the edge. They can be
expressed as Ge(1/2)(q, τ ) = 1

L

∑
i, j e−iqx ·(xi−x j )〈sz

i (τ )sz
j (0)〉

and Ge2(q, τ ) = 1
L

∑
i, j e−iqx ·(xi−x j )〈Sz

i (τ )Sz
j (0)〉. After ob-

taining the imaginary-time correlation functions, the SAC
algorithm will be employed to find the suitable spectrum
functions Sb(1/2)(q, ω), Sb2(q, ω), Se(1/2)(q, ω), and Se2(q, ω)
to fit the above imaginary-time correlation functions within
the stochastic errors via the Monte Carlo sampling meth-
ods [13,16].

III. NUMERICAL RESULTS

Bulk spin spectra

First, we consider the bulk spin spectra with the PBC.
In order to compare the bulk spectra with linear spin-
wave results, eight spins in each unit cell are chosen
as green dashed lines that Fig. 1(a) shows. The results
of S(q, ω) are shown in Figs. 2 and 3, and the path
we choose is �(0, 0) → M1(π, 0) → K (π, π ) → �(0, 0) →
M2(0, π ) → X1(π, 0) as Fig. 1(c) shows. At g = 0.3, the
ground state is the AKLT phase, and its spin excitation is
gapped at the � point. Obviously, a flat band arises in the
AKLT phase as Fig. 2(a) shows (g = 0.3); it means the spins
couple into singlets and become localized. When g increases,
the spin gap at � gradually closes which supports a contin-
uous phase transition. The spin excitation keeps gapless in
the whole Néel phase due to the Goldstone theorem [28,29].
Indeed, we observe the gapless Goldstone mode at the � point
as Figs. 2(c)–2(f) show.

For the spectra of the spin-2 case, the distribution of spectra
weight is different from the spin- 1

2 case. In the Néel phase, the
upper band has main weight, and the Goldstone mode looks
much weaker than the spin- 1

2 case. The low-energy excitation
is the Goldstone mode caused via the spin-wave mechanism,
that is similar for both small and large spin excitations. The
excitation of large spin Sz

i = ∑4
n=1 sz

in contains not only the
information of the same index n of spin 1

2 , but also the infor-
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FIG. 2. Bulk spin- 1
2 spectra Sb(1/2)(q, ω) with PBC obtained from QMC-SAC in different gs, where g is (a) 0.3, (b) 0.5, (c) gc(0.6035),

(d) 0.7, (e) 0.8, and (f) 0.9. The yellow lines in the Néel phase (also including the QCP) are the results of linear spin-wave theory. In the color
bar, the black line denotes the boundary between the linear and the logarithmic color mappings of the spectrum function. Below the boundary,
the spectrum weight U = S(q.ω), whereas above the boundary U = U0 + log10[S(q, ω)/U0] and U0 = 8.

mation of different index n of spin 1
2 . Whereas the spectrum of

small spin 1
2 only reveals the dynamical property of the same

index of spin, so its higher band is weaker than the spin-2 case.
To better understand the bulk spin spectra in the Néel

phase, we use linear spin-wave theory to calculate the low-
energy branches of the model as shown in Fig. 2. Assuming
the ground state is the Néel order, a Holstein-Primakoff trans-
formation transforms the spin operators at the linear-wave
level [30], which are expressed in terms of boson creation

and annihilation operators Sz
i = S − a+

i ai, S+
i ≈ √

2Sai, S−
i ≈√

2Sa+
i , and Sz

j = b+
j b j − S, S+

j ≈ √
2Sb+

j , S−
j ≈ √

2Sb j ,
where a+

i and ai are for up spin and b+
j and b j are for down

spin. The linear spin-wave Hamiltonian Hsw can be obtained
by using the Holstein-Primakoff transformation. And then
Hsw will be transformed into the momentum space by Fourier
transformation and numerically diagonalized to get the spin-
wave dispersions. There are four spin-wave branches in the
Néel phase, each of which is actually twofold degenerate
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FIG. 3. Bulk spin-2 spectra Sb2(q, ω) with the PBC obtained from QMC-SAC in different gs, where g is (a) 0.3, (b) 0.5, (c) gc(0.6035),
(d) 0.7, (e) 0.8, and (f) 0.9. The boundary between the linear and the logarithmic color mappings is U0 = 10.
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FIG. 4. Edge spin- 1
2 spectra obtained from QMC-SAC in different gs, where g is (a) and (d) 0.3, (b) and (e) gc(0.6035), and (c) and (f) 0.8.

(a)–(c) are spectra Se(1/2)(q, ω) with the PBC whereas (d)–(f) are spectra Se(1/2)(q, ω) with the OBC. The boundary between the linear and the
logarithmic color mappings is U0 = 8.

due to the double UCs. When g > gc, the spin-wave results
match well with the numerical results in the low-energy part.
Even though g = gc, the spin-wave results also capture the
low-energy branches. Besides, the high-energy excitations of
spectra obtained from QMC-SAC can be partially explained
by two high-energy spin-wave branches qualitatively. It shows
that the interaction between these two spin-wave modes can-
not be ignored which makes the high-energy bands wide
and undulating. In addition, the low-energy part of spin-
wave dispersions of the spin- 1

2 case (Fig. 2) can fit well
with the low-energy part of the spin-2 case (Fig. 3) in the
numerical results, denoting that the dynamical properties of
the spin- 1

2 case can also describe the spin-2 case. At the
K point, spin-wave dispersion has a shift which is similar
to the QMC-SAC results, but the deviations are different
from each other. Two magnon dispersions overlap from M1

to K so that their strong interaction may lead to a disper-
sion shift. Unlike the spin- 1

2 Heisenberg model on the square
lattice [13], we have not seen the obvious spinon contin-
uum in the Néel phase on the square-octagon lattice. In this
model, the phase-transition point between the Néel phase
and the AKLT phase belongs to the O(3) universal class
instead of being a deconfined quantum critical point, so it
may make spinons confined with continuum disappearing.
Around the � point, there is a higher and weaker gapped
mode beyond the Goldstone mode as shown in Fig. 2. It is
obviously different from the two-magnon excitation according
to the scale and value. This is probably the famous Higgs
amplitude mode which happens on the module of the order
parameter [31]. The similar phenomenon was also found in
the Néel phase of similar Heisenberg systems with phase tran-
sition between the valence bond phase and the Néel phase in
experiment [32].

Edge spin spectra

Under the PBC, the properties of phases and phase tran-
sitions can be picked up from dynamical properties of spin
on the boundary (although with the PBC, this lattice has no
real edge, we compare the same one-dimensional (1D) spin
chain in this system with the edge under the OBC. By using
the 1D Fourier transform of the spin 1

2 or spin 2 along the
boundary, we get the spectra of the edge spin. For g = 0.3,
the spin excitation is gapped in the spin- 1

2 spectra. If g → 0,
the gap becomes larger, and it becomes a flatter band at ω = 1
with g = 0. When g keeps increasing, the gap gradually closes
at q = π [Fig. 4(c)], which is similar to what we observe
in the bulk spin spectra. This is the characteristic of the
second-order phase transition that can also be detected by
the spectra of edge spins. For g = gc and g = 0.8, the spin
excitation becomes linear and gapless at q = π as Figs. 4(b)
and 4(c) show. According to the Goldstone theorem, a gapless
mode with linear dispersion can be observed at q = π in the
AFM phase which is consistent with our calculation. The
two magnon modes attribute to the linear spin excitations
at q = π [33] . The change in spectra agrees well with the
theoretical predictions.

Edge spin-2 spectra show that a nearly flat band appears
at g = 0.3 which is similar to spin- 1

2 excitation. But weak
gapless modes appear at q = 0 and q = 2π together with the
obvious high-energy excitation in the Néel phase (for spin 2,
the Néel phase actually becomes a ferromagnetic phase). Now,
let us focus on the real edge spin spectra with the open bound-
ary condition. At g = 0.8, where the model is in the deep Néel
phase, the spin- 1

2 excitation is almost similar to the case with
the PBC, which keeps linear dispersion and has no gap at
q = π [Fig. 4(f)]. However, when g keeps decreasing, we do
not observe that the gap opens at the π point. Instead, the gap
closes not only at the π point, but also at the � point, which is
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FIG. 5. Edge spin-2 spectra obtained from QMC-SAC in different gs, where g is (a) and (d) 0.3, (b) and (e) gc(0.6035), and (c) and (f)
0.8. (a)–(c) are spectra Se2(q, ω) with the PBC whereas (d)–(f) are spectra Se2(q, ω) with the OBC. The boundary between the linear and the
logarithmic color mappings is U0 = 6.

different from the free spin chain and edge spins with the PBC.
Clearly, the spin excitation becomes an arched continuum in
the lower-energy part [Fig. 4(d)]. This suggests these edge
spins enter an effective Luttinger liquid phase, causing the gap
closing at the π and � points. Due to the SU (2) symmetry
of the edge chain, we suppose that it is an effective S = 1/2
Heisenberg chain on edges instead of a XX spin chain. From
Fig. 4(e), we find that there are no well-defined magnon
modes at q = π . The arched two-spinon continuum gradually
emerges and separates from the weak high-energy excitations.
Around q = π/2 and q = 3π/2, the spin- 1

2 excitation splits
into two parts at ω ∼ 0.7 with g = gc, which is caused by
edge spins with the OBC. The lower-energy branch can be
described by the effective S = 1/2 Heisenberg chain, and the
boundary of spinon continuum depends on the amplitude of
J2. If J2 approaches zero, this low-energy branch becomes
nearly flat at ω = 0.

In the spectra of the spin-2 case, the low-energy gap-
less mode as shown in Fig. 5(e) is similar to the spin- 1

2
case which emerges an effective Luttinger liquid phase in
the low-energy part at g = 0.3. And as Figs. 5(e) and 5(f)
show, the low-energy part of the spectrum weight is weak at
q = π which still carries features of the spin- 1

2 Néel phase.
With the OBC, the spin- 1

2 on the edge is more free and
not equivalent to other spin 1

2 s, so the weak gapless mode
of the spin 1

2 appears at q = π in the spectrum. The ap-
pearance of the high-energy branch also deserves theoretical
analysis. According to Fig. 4(d), there is another high-energy
branch at ω = 1 above the two-spinon continuum. It can
be related to the triplet excitation since it locates at ω =
1, and we will argue this analytically during the following
discussion.

IV. DISCUSSION

In the SPT phase, the Lieb-Schultz-Mattis (LSM) theo-
rem [34–36] applies here and defines the feature of the spectra.
When the LSM theorem generalizes to the SPT phase, it
shows that the ground state of the (d + 1)-dimension bulk
state of the SPT phase must be gapped and nondegenerate,
whereas the d-boundary state must be either gapless or de-
generate [37]. For g = 0.3, the symmetry is preserved on the
boundary, so the spectrum is gapless according to the LSM
theorem [Figs. 4(f) and 5(f)].

The spins on the boundary can be approximately treated
as a S = 1/2 spin chain in order to understand its Luttinger-
liquid-like spectrum on the boundary better. Assuming the
interaction between the edge spin 1

2 and the bulk spin 1
2 is

weak enough in the deep AKLT phase, the edge spin 1
2 s form

a trimerized Heisenberg chain as Fig. 6 shows. In order to
explain the lower excitation of edge spins better, we will use
the many-body perturbation method [38,39] to get the effec-
tive Hamiltonian (for details, see Ref. [39]). The trimerized
Heisenberg chain is given by the following Hamiltonian:

H =
N∑

i

[J1S1,i · S2,i + J2(S2,i · S3,i + S3,i · S1,i+1)], (2)

where J1 and J2 are the same as the square-octagon lattice. The
effective Hamiltonian would describe the effective interaction

(2,i-1)

(3,i-1)

(1,i+1)

J1
J2J2J1

(3,i)

(2,i)

J2 J2 J1
(1,i)

FIG. 6. A spin- 1
2 trimerized Hesienberg chain cut from the

boundary of the decorated square lattice.

014418-5



LIU, LI, HUANG, LI, YAN, AND YAO PHYSICAL REVIEW B 105, 014418 (2022)

0.0

0.4

0.8

1.2

(a)

ω

0.00

5.00

10.0

0.0

0.5

1.0

1.5

U0

(b)

q

ω

0 π 2π
0.00

4.00

8.00

U0

FIG. 7. Effective Hamiltonian results compared with spectra ob-
tained from QMC-SAC. (a) and (b) are the full spectra of spin 1
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spin 2 on the boundary with g = 0.3. The purple lines in (a) and
(b) are the results of the many-body perturbation approximation
based on spin 1

2 . The boundary between the linear and the logarithmic
color mappings is (a) U0 = 8 and (b) U0 = 6.

between S3,i and S3,i+1. Supposing J2 	 J1, the perturba-
tion theory starts from the noninteracting dimer S1,i-S2,i and
monomer S3,i. And the initial Hamiltonian can be divided
into two parts H = HIH + V . By means of the second-order
perturbation expansion, the initial Hamiltonian H = HIH + V
can be projected into a certain subspace. So the final effective
Hamiltonian [39] is shown in Eq. (3),

Heff = Jeff

N∑

i

S3,i · S3,i+1,

Jeff = J2
2

2J1 − J2
. (3)

According to the Bethe ansatz solution of the S = 1/2
Heisenberg chain [40], the upper and lower boundaries of
the spectrum for the effective Heisenberg Hamiltonian are
shown as purple lines in Figs. 7(a) and 7(b). They satisfy
the following functions ωlower = πJeff | sin(q)|/2 and ωupper =
πJeff | sin(q/2)|. Although edge spins interact weakly with
bulk spins, the boundaries of the spectrum for the effective

Hamiltonian could meet the results of QMC-SAC qualita-
tively. Although the effective Hamiltonian is derived in the
spin- 1

2 Hilbert space, it can explain successfully the low-
energy excitation of spin 2 as Fig. 7(b) shows. In addition, the
intradimer (J1 bond) excitation will appear in the high-energy
part because triplon excitation from the J1 bonds would move
along the chain with nonzero J2. If we calculate the spectra
of the effective spin 1

2 in the spin- 1
2 trimer chain, there will

be triplon excitation at ω ∼ 1. Therefore, the weak triplet
excitation can also be found in the edge spin- 1

2 spectra at
ω ∼ 1 as Fig. 7(a) shows, which is beyond the description of
the low-energy effective Hamiltonian. Because these dimers
of J1 attribute to the spin-2 spin-2 correlation and the edge
spin 2s are strongly coupled to the bulk spin 2s, the triplon
dispersion at ω = 1 is quite strong and obvious in Fig. 7(b).
And this high-energy band cannot be explained by the low-
energy effective Hamiltonian.

V. CONCLUSION

To summarize, we utilize QMC-SAC assisted with linear
spin-wave theory, the many-body perturbation method, and
symmetry analysis to study both bulk and edge dynamical
properties of the J1-J2 AFM Heisenberg model on the square-
octagon lattice. From the flat band of the AKLT phase to the
linear mode of the Néel phase, the gap at � gradually closes
in the bulk spin spectra. Comparing with spin-wave theory,
we find that the low-energy branch can be captured by the
spin-wave results but the strong correlation effect is observed
for the high-energy branches. Besides, we also see a possible
Higgs amplitude mode in the Néel phase which is similar to
experiment [32]. On the edges, an emergent Luttinger liquid
phase with a nearly flat band is observed in the AKLT phase.
Furthermore, we obtain an effective 1D AFM Heisenberg
Hamiltonian from many-body perturbation method to explain
this low-energy excitation qualitatively. The rich physics of
this model helps us to better understand the dynamical behav-
ior of the SPT phase and magnetic orders.
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