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Microscopic origins and stability of ferromagnetism in Co3Sn2S2
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Based on the density functional theory, we examine the origin of ferromagnetism in the Weyl semimetal
Co3Sn2S2 using different types of response theories. We argue that the magnetism of Co3Sn2S2 has a dual nature
and bears certain aspects of both itineracy and localization. On the one hand, the magnetism is soft, where the
local magnetic moments strongly depend on temperature and the angles formed by these moments at different
Co sites of the kagome lattice, as expected for itinerant magnets. On the other hand, the picture of localized spins
still remains adequate for the description of the local stability of the ferromagnetic (FM) order with respect to the
transversal spin fluctuations. For the latter purposes, we employ two approaches, which provide quite different
pictures for interatomic exchange interactions: the regular magnetic force theorem and a formally exact theory
based on the calculation of the inverse response function. The exact theory predicts Co3Sn2S2 to be a three-
dimensional ferromagnet with the strongest interaction operating between next-nearest neighbors in the adjacent
kagome planes. The ligand states are found to play a very important role by additionally stabilizing the FM
order. When the local moments decrease, the interplane interactions sharply decrease, first causing the FM order
to become quasi-two-dimensional, and then making it unstable with respect to the spin-spiral order propagating
perpendicular to the kagome plane. The latter instability is partly contributed by the states at the Fermi surface
and may be relevant to the magnetic behavior of Co3Sn2S2 near the Curie temperature. Peculiarities of the
half-metallic ferromagnetism in Co3Sn2S2 are also discussed.
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I. INTRODUCTION

The shandite Co3Sn2S2, hosting the kagome lattice of Co
ions, is a fascinating magnetic material, in several respects.
It is a ferromagnet with small spontaneous magnetization
(about 0.3 μB per Co site) but a relatively high Curie tem-
perature TC = 177 K. It has attracted a lot of attention as a
magnetic Weyl semimetal whose nontrivial topology of the
electronic states gives rise to a large anomalous Hall effect
(AHE) [1–5]. The quantum AHE was also realized by fabri-
cating the two-dimensional devices on the basis of Co3Sn2S2

[6,7]. These intriguing magnetic properties are further am-
plified by the fact that Co3Sn2S2 is half-metallic [8], where
the conduction takes place only in one spin channel while
another spin channel is gapped. This half-metallicity remains
robust upon doping in Co3InxSn2−xS2, where the ground-state
magnetization depends linearly on x and persists up to x �
0.85, as was demonstrated in theoretical [4] and experimental
[9,10] studies. The coexistence of the easy-axis ferromagnetic
(FM) and planar 120◦ antiferromagnetic (AFM) orders was
proposed from the μSR measurements in the temperature
range TA < T < TC (where TA ∼ 90 K), and the intensity of
the AHE was proportional to the fraction of the FM phase
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[11]. The anomaly of the magnetic susceptibility, which may
be relevant to the two-phase state, was also observed but at
somewhat higher TA ∼ 130 K [12]. The phase coexistence is
likely to be responsible for the exchange bias that strongly
influences the AHE [13], where the importance of the domain
walls was also suggested [14]. On the other hand, no evidence
of the AFM component up to TC = 177 K was observed in
recent unpolarized neutron diffraction and spherical neutron
polarimetry measurements, while the discontinuity of several
properties at TA was attributed to sudden reduction in FM
domain size [15].

Very generally, the Weyl semimetals require either spatial
inversion or time reversal symmetry to be broken. While the
early realizations were initially all from the former category,
the latter direction attracts more and more attention recently.
For instance, the intrinsic AHE in Co3Sn2S2 is associated with
the spontaneous time-reversal symmetry breaking caused by
the FM order. In this sense, the origin of this FM order is one
of the key questions in the physics of Co3Sn2S2. Nevertheless,
it is not fully understood and remains largely controversial
[16].

The small magnetization is believed to be related to the
cluster effects, which also reduce the effective Coulomb inter-
actions [16], as expected for molecular type compounds [17].

The half-metallic state implies the absence of Stoner ex-
citations, so that the important role of spin fluctuations is
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generally expected in Co3Sn2S2 (e.g., in the temperature
dependence of magnetic moment). Indeed, experimental mag-
netization curves [10] for Co3InxSn2−xS2 demonstrate strong
fluctuations and are reminiscent of those for weak itinerant
ferromagnets, especially at large x, where the ground state
moment is strongly reduced. The electronic structure is also
expected to be unusual and featured by the appearance of non-
quasiparticle states in the gap owing to the electron-magnon
scattering [18]. On the other hand, with increasing T beyond
the spin-wave region, the spin fluctuations inherent to the
itinerant magnets should play a role. This is confirmed by
the parameters of Takahashi’s theory [19] obtained from the
Arrott plot and fitted to a generalized Rhodes-Wohlfarth plot,
peff/ps versus TC/T0 (ps being the spontaneous moment, peff

being the effective moment, and T0 being a measure of the
spin-fluctuation spectral distribution in the frequency space):
T0 = 1230 K and peff/ps = 2.14 at x = 0 (and considerably
increase with the increase of x) [10]. Such a situation is radi-
cally different from half-metallic localized-moment Heusler
compounds, where TC/T0 � 1 and peff � ps [20]. Besides
that, in the quasi-two-dimensional situation, specific fluctu-
ation behavior occurs even in the localized-spin model [21].

The problem of exchange interactions and stability of the
FM state was addressed recently on the basis of combined
experimental inelastic neutron scattering studies and theoreti-
cal calculations in the framework of density functional theory
(DFT) [12,22]. On the experimental side, it was concluded
that the FM order is primarily stabilized by the long-range
“across-hexagon” interaction in the kagome plane [12]. One
should note, however, that the available experimental spin-
wave dispersion data is limited only to the acoustic branch
close to the � point [12,22]. Moreover, the experimental
picture of interatomic exchange interaction was in sharp con-
trast with the results of theoretical calculations, predicting the
strongest nearest-neighbor interaction to be in the kagome
plane [12,22]. On the other hand, the theoretical analysis was
based on the magnetic force theorem (MFT) [23], the validity
of which is known to be questionable for the itinerant electron
systems as it relies on additional approximations. Therefore,
more rigorous theoretical methods may be necessary [24–26].

In this work, we systematically study the problem of sta-
bility of the FM state in Co3Sn2S2 using different kinds of
response theories and argue that the magnetism of Co3Sn2S2

has a dual nature. First, we consider the criteria of emergence
of the FM state caused by longitudinal fluctuations of the
magnetic moments and show that the behavior of Co3Sn2S2

bears certain similarities to the Stoner picture of itinerant
magnetism in the sense that the local moments are pretty
soft and can easily evolve with temperature (on a reasonable
temperature scale) and depending on the angle between them.
Nevertheless, the transversal spin fluctuations, relevant to the
rotational spin degrees of freedom, are also important and
should be rigorously considered in the analysis of stability of
the FM state.

The paper is organized as follows. In Sec. II we briefly
discuss the details of DFT calculations and summarize the
key results, which are important for understanding the origin
of the ferromagnetism in Co3Sn2S2. Then, in Sec. III, we
deal with the realistic electronic model extracted from DFT
in the basis of Wannier functions and capturing the essential

ingredients of the electronic structure of Co3Sn2S2 relevant
to the magnetism. Particularly, in Sec. III A, we consider the
criteria of emergence of the magnetic state from the non-
magnetic one, which explains the main tendencies of DFT
calculations. The analysis is similar to the Stoner theory of
magnetism [27] but generalized to the case of several differ-
ent atoms in the primitive cell, including the ligand states.
Namely, we explicitly show that the magnetic solution exists
up to certain critical angles formed by three Co spins in the
kagome lattice and collapses to the nonmagnetic state when
the angles exceed these critical values. This is clearly different
from the Heisenberg picture of magnetism, which would be
expected for the localized spins. Nevertheless, the Heisenberg
model can be still introduced locally for the description of
local stability of the FM state with respect to the transver-
sal spin fluctuations caused by the infinitesimal rotations of
spins [23]. We consider such a model in Sec. III B. For these
purposes we employ a formally exact theory of interatomic
exchange interactions [26] and show how it revises the MFT
based results. Particularly, the exact theory predicts Co3Sn2S2

to be the three-dimensional ferromagnet with the strongest
interaction J5 operating between the kagome planes in the
fifth coordination sphere. Moreover, the ligand states play
a very important role in strengthening the FM interactions.
Then, in Sec. III C, we investigate the dependence of the
exchange interactions on the value of total magnetization M
in the FM state. By these means we simulate the temperature
effects, which according to the Stoner picture should decrease
the magnetization. We show that the interplane interactions
drastically decrease with the decrease of M, making the FM
state unstable with respect to the spin-spiral state propagating
perpendicular to the kagome planes, which may be relevant to
the AFM phase emerging below TC [11]. Finally, in Sec. IV,
we summarize our work.

II. GGA CALCULATIONS

A. Details

First-principles electronic structure calculations for
Co3Sn2S2 were performed in the generalized gradient
approximation (GGA) [28] for the experimental R3m
crystal structure [29] using Vienna ab initio simulation
package (VASP) [30] within the framework of projected
augmented waves [31]. The rhombohedral Brillouin zone
was sampled on a mesh of 10 × 10 × 10 Monkhorst-Pack
k points [32]. The partial occupancies were determined
using the Methfessel-Paxton scheme with the smearing of
0.1 eV [33]. The convergence criteria for the total energy
calculations was set to 10−8 eV. We have considered two
types of magnetic structures: (i) a collinear FM state with a
fixed value of the total magnetization defined as a difference
between the spin-up and spin-down states, (ii) a noncoplanar
umbrella-type spin texture (which can be viewed as a
continuous transformation of the FM state to the 120◦ spin
state in the xy plane), by constraining directions of the
magnetic moments at three Co sites (while allowing the size
of the moments to relax in the course of self-consistency).

The electronic structure of Co3Sn2S2 was interpolated in
the basis of Wannier functions constructed for the Co 3d , Sn
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FIG. 1. (a) Band structure for the collinear ferromagnetic state of Co3Sn2S2 with and without spin-orbit coupling (GGA + SOC and GGA,
respectively). Dashed green circles show the location of nodal lines, and dashed purple circles highlight the energy region where the Weyl
points are expected. (b) Band crossing (left) and nodal lines (middle and right) calculated for the pair of spin-up states at the Fermi level
without spin-orbit coupling. Blue and pink points correspond to the Weyl nodes with opposite chiralities, as calculated in the presence of
spin-orbit coupling. Gray planes denote the mirror planes in the reciprocal space. Band crossings derived from the gap function are only shown
in the first Brillouin zone.

5p, and S 4p orbitals using the maximal localization technique
[34]. The calculated band structures were disentangled in the
range from ∼ − 8 eV to ∼5 eV with respect to the Fermi level,
and the states up to ∼2 eV above the Fermi level were kept
frozen during the wannierization. Nodal lines and positions of
the Weyl points were identified based on the Wannier interpo-
lation by using the WannierTools package [35].

B. Summary of main results

The band structures of Co3Sn2S2 in a collinear FM state
calculated without and with spin-orbit coupling are shown
in Fig. 1. Co3Sn2S2 is half-metallic where the spin-down
channel has a gap of ∼0.33 eV at the Fermi level, and the
total magnetic moment M is 1 μB per formula unit. Without
spin-orbit coupling, the spin-up states in the vicinity of the
Fermi level develop linear band crossings along the P-L and
L-� paths due to the band inversion. In fact, the proximity
of the spin-up states at the Fermi level and the corresponding
gap function (En+1 − En)2 has a complicated structure, where
the band crossings form closed intersecting lines, as shown in
Fig. 1(b). Six closed lines lie in the mirror planes of the D3d

point symmetry and turn out to be topologically protected in

the absence of spin-orbit coupling, forming the nodal lines.
In the presence of spin-orbit coupling, the FM state loses its
mirror symmetry. This causes the crossings to split and open
small gaps with band anticrossings along the former nodal
lines, except for a pair of points for each nodal line where the
linear crossing persists. These points known as the Weyl nodes
act as a monopole sink and source of the Berry curvature with
the opposite topological charges (or chiralities, χ = ±1).

Deviation of the spin magnetization from the ground state
value M = 1 μB destroys the half-metallic character of the
electronic structure, so that the Fermi level crosses the major-
ity spin (spin up) as well as minority spin (spin down) states
(Fig. 2). Then, let us consider the results of constrained GGA
calculations, where we fix the absolute values of magnetic
moments at the Co sites in the FM structure. The dependence
of total energy E on the magnetic moment is shown in Fig. 3.
The minimum is obtained at 1.035 μB (evaluated with Co
atomic spheres of the radii 1.3 Å), which corresponds to the
total moment M = 1 μB (also including the contributions of
the S and Sn sites as well as of the interstitial region). Then, E
increases with the decrease of M. However, the change is rela-
tively small (corresponding to only 143 K on the temperature
scale, which is comparable with the experimental TC). This
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FIG. 2. Electronic band structures of Co3Sn2S2 in the collinear ferromagnetic state as obtained in constraint calculations with the fixed
value of total magnetization: (a) M = 1 μB, (b) M = 0.99 μB, (c) M = 0.78 μB, and (d) M = 0.55 μB. The dashed lines denote the Fermi
level.

is the first indication of the itinerant character of magnetism
in Co3Sn2S2, where the modest elevation of T results in the
change of the absolute value of M. For instance, a simple

thermal averaging with e− E (M )
kBT will decrease M by about 25%

for temperatures close to TC. The derivative discontinuity of
the total energy E at M = 1 μB is related to the half-metallic
character of the electronic structure, where the constraining
field, h = − ∂E

∂M , required to produce the magnetization in the
vicinity of M = 1 μB undergoes a jump of the order of the
energy gap in the minority spin channel.

FIG. 3. Total energy versus magnetic moment of three Co sites
in the unit cell, as obtained in constrained GGA calculations. The
magnetic moment was evaluated within atomic spheres of radii 1.3
Å. The total energy is calculated relative to the nonmagnetic state.

This is quite contrary to the expectations based on the band
splitting between the majority- and minority-spin states near
the Fermi level, being about 0.5 eV in the ground state [16]
(see Fig. 2). On the temperature scale, this splitting would
correspond to 5800 K and definitely rule out the Stoner picture
of magnetism for Co3Sn2S2. However, for the half-metallic
state in DFT such splitting is not well defined (the shift of the
minority-spin states does not change the energy and magne-
tization, provided that the Fermi level continues to fall in the
gap) [36]. More generally (and according to the philosophy
of DFT), the Kohn-Sham (KS) single particle energies is an
auxiliary construction, which does not have a clear physical
meaning. Therefore, the thermodynamic properties in DFT
should be evaluated using the total energies (instead of the
KS single particle ones), which lead to a very different tem-
perature scale in the case of Co3Sn2S2.

Figure 4 shows the results of another constrained GGA
calculation, where the magnetic moments at the Co sites were
forced to form the “umbrella structure,” which is character-
ized by the rotation of spins away from the FM axis z by
the angle θ , such that the projections of spins onto the xy
plane would form the 120◦ structure. Meanwhile, the size
of the magnetic moment was allowed to relax during the
self-consistency. The total energy minimum is realized at
θ = 0, thus confirming that the ground state is ferromagnetic.
Then, the total energy gradually increases for θ � 60◦ and
becomes practically constant afterwards. For θ � 30◦, the size
of the local magnetic moments at each of the three Co sites,
mν =

√
(mx

ν )2 + (my
ν )2 + (mz

ν )2 (ν = 1, 2, and 3) is of the
order of 0.35 μB and only weakly depends on θ . However,
further increase of θ leads to the collapse of magnetization: mν
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(c)

FIG. 4. (a) Total energy (left axis y) and size of magnetic moment
at the Co site (right axis y) as obtained in the constrained GGA
calculations for the umbrella spin structure, depending on the angle
θ formed by the Co spin moments and the axis perpendicular to
the plane: θ = 0 corresponds to the ferromagnetic order, θ = 90◦

corresponds to the in-plane 120◦ spin order. (b) Top and (c) side-top
view of the umbrella structure with the notations of the Co sites.

decreases and becomes equal to zero around θ � 60◦ where
the total energy reaches the saturation and does not depend
on θ , i.e., contrary to what could be expected for localized
spins. This is another signature of itineracy of Co3Sn2S2:
Although the Heisenberg model, which is typically used for
the description of localized spins, can still be defined locally,
for small rotations of magnetic moments near the FM ground
state (as will become evident in Sec. III B), it breaks down
globally, for arbitrary rotations of the magnetic moments by
arbitrary angles. Such behavior is not new for the itinerant
electron systems: For instance, it is well known that finite
rotations of magnetic moments in fcc Ni away from the FM
ground state also lead to the collapse of magnetism [37,38]. A
similar behavior is observed in SrRu2O6 and AgRuO3 within
GGA, where the sublattice magnetization vanishes upon grad-
ual rotation of spins from the Néel AFM ground state to the
FM state [39,40]. Furthermore, these calculations rule out the
existence of 120◦ planar structure in Co3Sn2S2, which was
proposed to explain the magnetic behavior of Co3Sn2S2 in the
temperature range 90 K < T < 177 K [11], because this 120◦
structure does not seem to be compatible with the itinerant
character of Co3Sn2S2 as it evolves to the nonmagnetic state.

Finally, we would like to emphasize that these calcula-
tions were performed without spin-orbit coupling, where the
θ dependence of E stems solely from isotropic interactions in
the system. It should not be confused with the easy-axis FM
anisotropy considered, for instance, in Ref. [41].

III. REALISTIC MODELLING

In order to estimate the exchange parameters and investi-
gate the stability of the FM state, the electronic states close
to the Fermi level were reexpanded in the basis of Wannier
functions constructed for the Co 3d , Sn 5p, and S 4p orbitals
using the maximally localized Wannier functions technique
[34], as described above.

A. Emergence and stability of the magnetic order

First, let us discuss the emergence of the FM state. For
these purposes we start with the nonmagnetic solution and
evaluate analytically the second derivative of the total en-
ergy with respect to the small induced magnetization �m. Very
generally, the nonmagnetic state is expected to be unstable
because of the kagome flat bands located near the Fermi level
[4].

In our notations, mν = (mx
ν, my

ν, mz
ν ) is the spin magnetic

moment at the unit cell site ν, �m is the column vector assem-
bled from all such mν within the unit cell, and �mT is the row
vector corresponding to �m. Then, we formulate the problem in
the spirit of constrained spin-density functional theory, where
the size and direction of �m is controlled by the external field
�h. The corresponding total energy (per one unit cell) is given
by [26]

E = Esp(�h + �b) − 1
2 �mT · (�h + �b) + Exc( �m), (1)

where the first term is the sum of occupied KS single particle
energies (Esp), the second term is minus interaction energy of

�m with �h and the exchange-correlation (xc) field �b = 2 δExc
δ �m ,

and the third term is the xc energy (Exc), which is taken in the
form [42]

Exc = − 1
4 �mT · Î �m, (2)

so that �b = −Î �m for the site-diagonal matrix Î =
[ . . . , Iν, . . . ], where Iν is the Stoner parameter for an
ion of the sort ν. Then, it is straightforward to show that

E = − 1
4 �mT · �h. (3)

Furthermore, �m can be related to �h via the response tensor

Rσσ ′
q (ab, cd ) =

∑
mlk

f σ
mk − f σ ′

lk+q

εσ
mk − εσ ′

lk+q

(
Caσ

mk

)∗
Cbσ ′

lk+q

(
Ccσ ′

lk+q

)∗
Cdσ

mk ,

(4)

where εσ
mk are the KS eigenvalues and Caσ

lk are the eigenvectors
in the Wannier basis, the pairs of the orbital indices ab and
cd belong to the atomic sites μ and ν, respectively, and f σ

mk
is the Fermi distribution function. In the nonmagnetic states,
the elements of the response tensor Rσσ ′

μν do not depend on

the spin indices. Then, it holds that �h = (R̂−1
0 + Î ) �m, where

R̂q ≡ [Rq,μν] and

Rσσ ′
q,μν =

∑
a∈μ

∑
c∈ν

Rσσ ′
q (aa, cc). (5)

By substituting it in Eq. (3), one obtains

E = 1
2 �mT · D̂ �m, (6)

where

D̂ = − 1
2

(
R̂−1

0 + Î
)
. (7)

The atomic indices μ and ν run over the transition-metal (T =
Co) and ligand (L = Sn or S) sites. Then, the contributions of
the L variables can be eliminated by assuming that for each
instantaneous configuration of the T spin moments, the ones
at the ligand sites have sufficient time to reach the equilibrium
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and, therefore, can be found from the adiabaticity condition
∂E
∂ �mL

= 0. In this case, E can be written as [26]

E = 1
2 �mT

T · ˆ̃DTT �mT , (8)

where

ˆ̃DTT = D̂TT − D̂TL D̂−1
LL D̂LT . (9)

Taking into account the symmetry properties for the matrix

elements of
ˆ̃DTT connecting three Co sites in the primitive

cell, D̃11 = D̃22 = D̃33 and D̃12 = D̃23 = D̃31, one obtains:

E = 1
2 D̃11

(
m2

1 + m2
2 + m2

3

)
+ D̃12(m1 · m2 + m2 · m3 + m3 · m1).

Considering the directions of the magnetic moments in the
umbrella structure (see Fig. 4 for the geometry and notations
of the Co sites),

m1 = (0, sin θ, cos θ ) m,

m2 =
(

−
√

3

2
sin θ, −1

2
sin θ, cos θ

)
m,

m3 =
(√

3

2
sin θ, −1

2
sin θ, cos θ

)
m,

one can finally obtain the following expression:

E = 3
2 {D̃11 + (3 cos2 θ − 1)D̃12}m2. (10)

Therefore, if ∂2E
∂m2 = 3{D̃11 + (3 cos2 θ − 1)D̃12} > 0, the

nonmagnetic state is stable. Otherwise, the system will con-
verge to a magnetic solution with finite m. In the simplest
case of one site in the unit cell, R̂0 = −N (εF) (the density
of states at the Fermi level per one spin) and we recover the
conventional criterium of Stoner ferromagnetism: IN (εF) >

1, which can be readily obtained from the condition D < 0
in Eq. (6) and using Eq. (7) for D. As expected, the re-
sult depends on temperature T , which enters this Stoner-type
model via the Fermi distribution functions f σ

mk in Eq. (4). The
magnetic structure is stable when θ is smaller than a certain
critical value

θm = cos−1

√
1

3

(
1 − D̃11

D̃12

)
(11)

for which ∂2E
∂m2 = 0.

We evaluate these dependencies using the model param-
eters derived within GGA. In order to obtain the Stoner
parameters, Iν = −mz

ν

bz
ν

, one should know the xc field �bz for
the given magnetization �mz. It can be obtained from the
sum rule �mz = R̂↑↓

0
�bz [26]. Since Eq. (2) is an approxima-

tion, these Stoner parameters depend on the magnetization.
Then, for the perturbation theory near the nonmagnetic state,
which we consider here, it is logical to derive Î from the
constraint FM calculations with small M. More specifically,
we use M = 0.55 μB, which yields the following parameters:
ICo = 0.97, ISn1 = −3.52, ISn2 = −4.65, and IS = 1.40 eV.
The value of ICo is quite consistent with previous estimates
for the transition metals [42]. IS is expected to be even larger,

FIG. 5. Parameters of the Stoner-type model and temperature
dependence of the critical angle of the umbrella structure.

as is also known for the oxygen atoms [43]. It may look
unphysical that ISn1 and ISn2 are largely negative. However,
the small magnetic moments at Sn sites are solely induced
by the hybridization with other sites and do not play a pri-
mary role in the magnetism of Co3Sn2S2. The response tensor
in the nonmagnetic state R̂0 was evaluated on the mesh of
56 × 56 × 56 k points in the rhombohedral Brillouin zone,
which provides a sufficient accuracy at least for T � 150 K.
The results are summarized in Fig. 5.

In the FM state for θ = 0, ∂2E
∂m2 = 3{D̃11 + 2D̃12} changes

the sign around TC = 410 K, which can be regarded as the
Curie temperature of the Stoner model, provided that the
transition is not metamagnetic [44], where TC should be
evaluated differently. At the phenomenological level, the
conventional practice for the thermodynamic properties of
itinerant magnets is to use the Landau-type theory by express-
ing the free energy in terms of even powers of M: E (M ) =∑nmax

n=1
1

2n a2n−1M2n and incorporating the temperature depen-
dence to a1 as a1 → a1

TC−T
TC

[45,46]. For instance, for nmax =
3, the metamagnetism occurs if a5 > 0 but a3 < 0. At T = 0,
E (M ) can be derived from constrained spin density-functional
calculations. However, for the half-metallic systems, the de-
pendence E (M ) is not smooth (see Fig. 3) and such expansion
does not apply. Thus, at the moment it is not clear how to
proceed in this direction. In any case, TC = 410 K can be
probably regarded as a rough (an order of magnitude) estimate
for the Curie temperature, which exceeds the experimental
value by factor 3, as expected for the Stoner-type picture
[42,47].

The umbrella structure can be realized for not too large θ

near the FM state. We confirm that there is a critical θm, which
decreases with T , and the rotation of magnetic moments be-
yond this angle makes the umbrella structure unstable relative
to the nonmagnetic states, in semiquantitative agreement with
the results of constrained GGA calculations considered in
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Sec. II B. Particularly, the critical angle θm ∼ 26◦ obtained
in this model analysis at T ∼ 150 K is quite consistent with
θm ∼ 30◦ derived from GGA at T = 0.

Another important point is that TC is expected to decrease
with the increase of θ in the umbrella structure, which im-
mediately follows from Eq. (10) for D̃12 < 0 (see Fig. 5).
The corresponding dependence TC(θ ) is obtained by inverting
the graph θm(T ), which is also displayed in Fig. 5. Thus, the
realization of such umbrella structure instead of the collinear
FM state could probably rationalize the discrepancy with the
experimental data regarding the value of TC. Even within the
simple Stoner-type picture, considered above, the canting of
magnetic moment by θ ∼ 26◦ would be sufficient to produce
the experimental TC ∼ 170 K. Since the nearest Co sites in
the Co3Sn2S2 structure are not connected by the inversion
symmetry, such canting could be caused by Dzyaloshinskii-
Moriya interactions [48,49]. This is clearly seen in GGA
calculations with the spin-orbit coupling at T = 0. However,
the obtained θ is too small (only about 2◦). It is an interesting
question whether θ will increase with the increase of T .

B. Interatomic exchange interactions in the ferromagnetic state

As we have seen above, finite rotations of spins in
Co3Sn2S2 result in the collapse of the magnetic state and in
the breakdown of the Heisenberg model of magnetism. Nev-
ertheless, one can define the model for infinitesimal rotations
of spin magnetic moments near the FM ground state. In this
section, we construct such model,

E = − 1

2N

∑
i j

Ji jei · e j, (12)

where ei is the direction of spin at the ith Co site and N is the
number of such sites.

For these purposes we consider two techniques. The first
one is the standard MFT, which assumes that infinitesimal
rotations of spin magnetic moments induce the rotations of the
xc fields by the same angles, and this change of the xc fields is
treated as a perturbation [23]. The corresponding parameters
of exchange interactions between the sublattices μ and ν can
be found in the reciprocal (q) space as

Jμν
q = − 1

2

(
bz

μ[R↑↓
q ]μν bz

ν − bz
μmz

νδμν

)
. (13)

In the conventional implementation of MFT, bz and mz are
the matrices in the subspace of orbital indices and Eq. (13)
implies the summation over orbital indices of bz, mz, and
R↑↓

q ≡ [R↑↓
q (ab, cd )]. The details can be found in Ref. [26].

MFT is an approximation, which becomes exact only in
the long wavelength and strong-coupling limits. However, for
the analysis of the exchange interactions, it is essential to go
beyond the long wavelength limit and consider the contribu-
tions of all q points in the first Brillouin zone. Furthermore, the
strong-coupling limit is far from being realized in Co3Sn2S2,
as is clearly seen from small values of magnetic moments
at the Co sites. Therefore, we consider another technique,
which is formally exact as it goes beyond the long wavelength
and strong-coupling limits [24]. The corresponding exchange
parameters can be found as [26]

Jμν
q = 1

2

(
mz

μ[R↑↓
q ]−1

μν mz
ν − bz

μmz
νδμν

)
, (14)

FIG. 6. (a),(b) Parameters of interatomic exchange interactions
operating in the plane. (c),(d) Parameters operating between the
planes (top view). The Co atoms located in adjacent planes are de-
noted by different colors. The coordination spheres of atoms around
the origin are denoted by dotted circles. (a),(c) Parameters, which
have the same value in all bonds for the given coordination sphere.
(b),(d) Parameters, which are characterized by two distinct values for
two types of inequivalent bonds for the given coordination sphere.
The distribution of parameters around two other Co sites in the
primitive cell are obtained by the symmetry operation of the space
group R3m.

where mz
μ (bz

μ) is the value of magnetization (exchange field)
at site μ. Similar to MFT, one can also introduce the matrix
analog of this expression with mz

μ and bz
μ being the matrices

in the subspace of orbital indices. However, the microscopic
processes underlying such extension (and describing the rigid
rotations of the full magnetization matrix by the same angle)
would correspond to much larger energy change and do not
properly capture the low-energy excitations in the system of
spins [26].

Then, one can start with the bare interactions between the
Co sites, which are given by Jμν

q , and take into account the
contributions of the ligand states [26], similar to what we did
in Sec. III A in order to understand the emergence of the FM
state. The corresponding exchange parameters are given by

J̃TT
q = JTT

q − JTL
q [JLL

q ]−1JLT
q . (15)

Finally, Jμν
q and J̃μν

q can be Fourier transformed to the real
space. In these calculations we used the meshes of 40 × 40 ×
40 k points and 12 × 12 × 12 k points in the rhombohedral
Brillouin zone. Quite expectedly for itinerant systems, the
obtained exchange parameters appear to be very long ranged
so that sizable interactions can be found even beyond the
ninth coordination sphere (Figs. 6 and 7). Furthermore, the
exchange interactions depend on the method, which is used
for their calculations, and additional approximations [26].
In MFT, the nearest-neighbor interactions in the plane are
clearly the strongest (see Fig. 7 and Table I), in agreement
with previous studies [12,22]. Besides Eq. (13), we have also
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FIG. 7. Distance dependence of interatomic exchange interac-
tions as obtained using the magnetic force theorem (MFT) and exact
approach: bare parameters of Co-Co interactions and the ones taking
into account the contributions of the ligand states. The notations of
parameters are explained in Fig. 6.

considered a more conventional real-space implementation of
MFT based on Green’s function technique [23] and confirmed
that it provides essentially the same parameters of interatomic
exchange interactions. The contributions of the ligand states
in this case are relatively unimportant and the main tendencies
of Ji j are captured already by the bare interactions between Co
sites.

This picture changes significantly in the exact approach,
where the strongest interaction is J5 in the fifth coordination
sphere (see Fig. 6). Since J5 operates between the planes,
Co3Sn2S2 in our picture is essentially a three-dimensional
material. Furthermore, the ligand states appear to be very
important in this case, as they strengthen the FM character of
interactions and are primarily responsible for the FM origin
of these interactions in the first three coordination spheres.
Nevertheless, TC evaluated in the Heisenberg model appears to

TABLE I. Parameters of interatomic exchange interactions (in
meV) as obtained in the framework of magnetic force theorem
(MFT) and exact formalism: bare Co-Co interactions and the ones
taking into account the contributions of the ligand states. The nota-
tions of parameters are explained in Fig. 6.

MFT Exact

bare +ligands bare +ligands

J1 1.59 1.65 −0.44 0.48
J2 0.05 0.08 −0.23 0.03
J3 0.10 0.15 −0.20 0.45
J4 0.19 0.23 0.20 0.35
J ′

4 0.53 0.55 0.56 0.72
J5 0.43 0.45 0.72 1.33
J ′

5 0.64 0.69 0.91 1.08
J6 0.29 0.33 0.43 0.53
J7 0.10 0.11 0.11 0.14
J8 0.04 0.06 0.09 0.18
J9 −0.13 −0.13 −0.26 −0.23
J ′

9 0.07 0.08 0.03 0.02

FIG. 8. Spin-wave dispersion corresponding to the exchange pa-
rameters derived in the framework of magnetic force theorem (MFT)
and exact approach. All notations are taken from Ref. [12] for the
hexagonal lattice.

be smaller than the experimental one. Particularly, the molec-
ular field approximation, where TC = 1

3kB

∑
j J0 j , is known to

overestimate TC. However, if we applied this approximation
to Co3Sn2S2, we would get only TC = 77 and 95 K in the
framework of MFT and the exact approach, respectively.

The results of recent inelastic neutron scattering data were
interpreted in terms of three parameters [12]: J2 = −0.08,
Jc1 = 0.44, and Jd = 0.81 meV (corresponding to J2, J3, and
J4 in our notations) [50]. Thus, the strongest interaction is
expected to be J4 (the so-called “cross-hexagon” interaction),
while the nearest-neighbor coupling J1 is negligibly small.
This interpretation is clearly inconsistent with theoretical
calculations based on MFT, where J1 is the strongest. Never-
theless, there is also a considerable difference from the results
of the exact method, where the strongest interaction is J5 (Jc3

in the notations of Ref. [12]), while the “cross-hexagon” inter-
action J4 is substantially smaller. Furthermore, even within the
fourth coordination sphere, J4 is not the strongest interaction
and J ′

4 is considerably stronger than J4. It is also interesting to
note that J4 and J5 operate practically at the same distances: J4

is within the plane, while J5 is between the planes (see Fig. 7).
We hope that the results of our theoretical calculations of

interatomic exchange interactions could be used as the guide-
line for the interpretation of experimental inelastic neutron
scattering data. In Fig. 8, we plot the theoretical spin-wave
dispersion, which was defined as eigenvalues ωnq of the 3 × 3
matrix �̂q = [�μν

q ] (for three magnetic Co sublattices in the
rhombohedral unit cell or the 9 × 9 matrix for the hexagonal
cell including nine Co atoms), where

�μν
q = 2

m

(
Jμδμν − Jμν

q

)
, (16)
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Jμν
q is the Fourier image of Ji j between sublattices μ and ν,

and Jμ = ∑
ν Jμν

0 . We consider the results based on the MFT
and exact technique, taking into account the contributions of
the ligand states, and use the notations of Ref. [12] for the
hexagonal lattice. In fact, the experimental spin-wave disper-
sion was measured only for not too large values of q around
the � point, which is denoted as (−1, 1, 1) in Fig. 8, and
limited only to the acoustic (A) branch. The key feature of
this experimental data is that the magnon dispersion along the
[HH0] direction is considerably steeper than the one along
[−HH0]. This anisotropy of the magnon spectrum was sug-
gested to be the main signature of the strong “cross-hexagon”
interaction J4, as other theoretical models used for the fitting
of the experimental data led to very similar dispersion along
the [HH0] and [−HH0] directions [12]. Nevertheless, this
explanation looks disputable in the light of the following
arguments: The behavior of the A branch near the � point is
described by the spin-stiffness tensor D̂ = [Dαβ]:

ωLq =
∑
α,β

Dαβqαqβ, (17)

where α, β = x, y, or z. For the R3m symmetry, D̂ is diagonal
and Dxx = Dyy. Thus, the spin-wave dispersion near the �

point caused by isotropic exchange interactions, including the
“cross-hexagon” J4, must be isotropic in the xy plane, and this
is exactly what is seen in our calculations in Fig. 8.

In the long wavelength limit q → 0, the MFT and exact
technique provide very similar description [24,26,51,52], as
is clearly seen in Fig. 8, while the main difference occurs in
the high-energy region of optical branches. The experimen-
tal anisotropy of the spin-wave dispersion in the xy plane
is an interesting point [12]. However, it is probably caused
by other mechanisms and not related to isotropic exchange
interactions.

C. Magnetic moments dependence of the exchange interactions

The picture of collinear FM spins, whose size changes with
temperature, is at the heart of the Stoner model of magnetism
[27]. Nevertheless, it is reasonable to expect that besides
these changes (longitudinal fluctuations), the spins can expe-
rience the infinitesimal rotations near the equilibrium state (or
transversal fluctuations), which can be regarded as the step
towards a more general spin fluctuation theory [19,47,53,54].
In this section, we explore the effect of the size of the magnetic
moments on the stability of the FM state with respect to the
spin rotational degrees of freedom employing a somewhat
phenomenological strategy for these purposes. Namely, we
perform constrained GGA calculations, where we additionally
fix the value of the total magnetic moment and, then, using
the so-obtained constrained electronic structure we evaluate
parameters of interatomic exchange interactions. A similar
strategy was used for the analysis of photoemission [55] and
optical [56] data. As for the exchange interactions, we con-
sider here only the exact approach, Eq. (14), and take into
account the contributions of the ligand states using Eq. (15).
In our constraint calculations, we fix the total moment of three
Co sites in the unit cell (evaluated within atomic spheres of
radii 1.3 Å) to 0.32, 0.53, and 0.83 μB. This corresponds to
the following values of total magnetic moments in the unit

FIG. 9. (Top) Distance dependence of interatomic exchange in-
teractions in the exact approach including the contributions of the
ligand states as obtained for the constrained electronic structure with
fixed values of total magnetic moments M. (Bottom) Dependence of
interplane interactions J5 and J ′

5 on M. The notations of parameters
are explained in Fig. 6.

cell (and including the contributions of the Sn and S sites):
M = 0.55, 0.78, and 0.99 μB, which are considered together
with the results of unconstrained calculations with M = 1 μB

(1.035 μB within atomic Co spheres). Particularly, we will
show that with the decrease of M, the FM state becomes
unstable and this instability may be related to the emergence
of some AFM phase at elevated T , which was observed ex-
perimentally in Ref. [11]. Using the experimental dependence
M(T ) reported in Ref. [10], the values of M = 0.55, 0.78, and
0.99 μB can be roughly related to the temperatures T/TC ∼
0.95, 0.75, and 0.2, respectively.

Distance dependence of the exchange interactions for dif-
ferent values of M is shown in Fig. 9. Particularly, we note
that the decrease of M strengthens the nearest-neighbor in-
teraction J1, which gradually starts to dominate over other
exchange interactions. On the other hand, the interplane inter-
actions J5 and J ′

5 decrease with the decrease of M. Moreover,
some long-range interplane interactions beyond the ninth co-
ordination sphere become more antiferromagnetic. Thus, one
can expect the weakening of the FM coupling between the
planes with the decrease of M.

Using the obtained exchange parameters, we evaluate the
stability of the FM state. For this purpose we calculate the
magnon energies, which are given by the eigenvalues of
Eq. (16) for the rhombohedral lattice. If some of the ωnq’s
are negative, the state is unstable for those q’s. The results are
shown in Fig. 10. Furthermore, we evaluate the spin-stiffness
tensor D̂ = [Dαβ] for the A branch. The nonvanishing matrix
elements Dxx = Dyy and Dzz of D̂ are listed in Table II. In
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FIG. 10. Spin-wave dispersion in the ferromagnetic state for dif-
ferent values of total magnetic moment. The coordinates of the
high symmetry points of the rhombohedral Brillouin zone are L :
( π√

3a
, π

3a , π

3c ), � : (0, 0, 0), and Z : (0, 0, π

c ).

the ground state (M = 1 μB) the tensor D̂ is nearly isotropic
(Dxx ≈ Dzz). However, even small deviation from the ground
state for M = 0.99 μB leads to the sharp drop of Dzz and
moderate decrease of Dxx. Such a drop is caused by the dis-
continuity of the electronic structure related to the deviation
from the half-metallic state, which also leads to the derivative
discontinuity of E (M ) as shown in Fig. 3. The obtained val-
ues are still larger than the experimental Dxx = 803 ± 46 and
Dzz = 237 ± 13 meV/Å2 measured at T = 8 K [22]. Never-
theless, these parameters are very sensitive to the value of M
(and the ordered moment at the Co site, reported in Ref. [22],
was smaller than 0.3 μB, meaning that the measured sample
was probably not in the half-metallic state). Indeed, further
decrease of M makes Dzz < 0 and the FM state becomes un-
stable. Dxx also decreases with the decrease of M but remains
positive for all considered values of M. Such instability is re-
solved in the formation of an incommensurate spin-spiral state
with q = (0, 0, qz) as confirmed by the spin-wave calculations
in Fig. 10.

In order to study the effect of the Fermi surface con-
tributions to the exchange parameters, we eliminate these

contributions by enforcing
f σ
mk− f σ ′

lk+q

εσ
mk−εσ ′

lk+q
= 0 in Eq. (4) for εσ

mk →
εσ ′

lk+q. Although the effect of the Fermi surface states on the
individual exchange interactions does not look strong, there
is an appreciable contribution of these states to the spin stiff-
ness, mainly associated with the long-range interactions. The
results are given in parentheses in Table II. As expected, there
is no Fermi surface contribution to R↑↓

q in the half-metallic
ground state with M = 1 μB. In the metallic state with M <

1 μB, the contribution of the Fermi surface states to Dxx is
negligibly small. Nevertheless, there is an appreciable AFM
contribution of the surface states to Dzz, which additionally
destabilizes the FM state.

TABLE II. Matrix elements of the spin-stiffness tensor (in
meV/Å2) for different values of total magnetic moment M (in μB).
The values obtained after excluding the Fermi surface contributions
are given in parentheses.

M Dxx Dzz

1.00 1019 (1019) 1107 (1107)
0.99 957 (961) 527 (545)
0.78 639 (644) −421 (−387)
0.55 469 (467) −565 (−498)

Thus, we expect that with the increase of T , when the
magnetic moments become sufficiently small, Co3Sn2S2 can
undergo the transition to the incommensurate AFM state. At
present, we cannot elaborate details of this transition (for in-
stance, whether it goes via the region of coexistence of the FM
and AFM phases). Nevertheless, we believe that such behavior
may be relevant to the anomalous properties of Co3Sn2S2 for
T > 90 K [11].

IV. SUMMARY AND CONCLUSIONS

Using results of density functional theory in the general-
ized gradient approximation, we investigated the origin and
stability of the FM order in the Weyl semimetal Co3Sn2S2.
For these purposes, we constructed the realistic model in
the basis of localized Wannier functions, which included the
contributions of the Co 3d as well as the ligand Sn 5p, and S
4p states, and studied this model using different types of the
response theories.

One of the interesting aspects of Co3Sn2S2 is that the local
magnetic moments are rather soft and strongly depend on the
angle formed by the Co spins in the kagome lattice. This is
one of the key results of magnetic GGA calculations, which
is nicely reproduced by the response theory, by considering
the emergence of the magnetic solutions starting from the
nonmagnetic state. This finding strongly supports the itiner-
ant character of magnetism in Co3Sn2S2, which should be
considered in the analysis of properties of this compound.
For instance, the size of the local magnetic moments should
depend on temperature, which should be one of the genuine
physical properties of Co3Sn2S2.

On the other hand, the Heisenberg model of localized
magnetism also makes sense in the case of Co3Sn2S2 for
the analysis of local stability of the FM state with respect to
the transversal spin fluctuations, inherent to rotational spin
degrees of freedom. For the construction of such a model,
we employed the exact theory of interatomic exchange in-
teractions based on the calculation of the inverse response
function. We argued that the interatomic exchange interac-
tions in Co3Sn2S2 are very long ranged and the strongest one,
stabilizing the FM state, is operating in the fifth coordinate
spheres between the kagome planes.

Furthermore, we expect the FM magnetization to decrease
with temperature via the longitudinal fluctuations, affecting
the size of magnetic moments. This will destroy the half-
metallic character of Co3Sn2S2 and gradually makes the
FM state unstable with respect to the transversal fluctua-
tions. The change of the electronic structure mainly affects
the interactions between the kagome planes, partly owing to
the contributions stemming from the Fermi surface states.
Thus, with the increase of T , we expect Co3Sn2S2 to change
gradually from a three-dimensional to quasi-two-dimensional
ferromagnet, which should be followed by emergence of the
spin-spiral phase propagating perpendicular to the kagome
planes. This finding could probably rationalize the experimen-
tal behavior of Co3Sn2S2 near TC [11].

Another important question is the validity of GGA, which
is typically employed for the analysis of Weyl semimetal
properties of Co3Sn2S2. From the viewpoint of interatomic
exchange interactions, the experimental information available
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on hand is not sufficient to make a definite conclusion. The
anisotropy of the spin stiffness, which is measured experimen-
tally [12,22], can be understood by a small deviation from the
half-metallic state. We hope that the comprehensive analysis
presented in our work can be used as the guideline for fu-
ture experimental studies. Particularly, it would be interesting
to check our finding that the strongest exchange interaction
stabilizing the FM state in Co3Sn2S2 operates in the fifth co-
ordination sphere, between the kagome plane. The theory for
TC in Co3Sn2S2 should involve the aspects of both Stoner and
Heisenberg theories of magnetism [19,47,53,54]. Separately,
none of these models would provide a reasonable description
for Co3Sn2S2.

In the present work, we had to deal with the extended
model in the basis of Co 3d , Sn 5p, and S 4p states, similar
to the previous studies [4,5]. A very interesting direction is
the formulation of effective toy theories for magnetic Weyl
semimetals, which would capture the behavior of a small
number of states near the Fermi level [41]. Although this
can be done rigorously by employing the Wannier function

technique [34], such a construction for Co3Sn2S2 and similar
materials is not always straightforward because of the clus-
tering effects and the formation of molecular groups of states
[16].
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