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Effects of interlayer exchange on collapse mechanisms and stability of magnetic skyrmions
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Theoretical calculations of thermally activated decay of skyrmions in systems comprising several magnetic
monolayers are presented, with a special focus on bilayer systems. Mechanisms of skyrmion collapse are
identified and corresponding energy barriers and thermal collapse rates are evaluated as functions of the interlayer
exchange coupling and mutual stacking of the monolayers using transition state theory and an atomistic spin
Hamiltonian. In order to contrast the results to monolayer systems, the magnetic interactions within each layer
are chosen so as to mimic the well-established Pd/Fe/Ir(111) system. Even bilayer systems demonstrate a
rich diversity of skyrmion collapse mechanisms that sometimes coexist. For very weakly coupled layers, the
skyrmions in each layer decay successively via radially symmetric shrinking. Slightly larger coupling leads to
an asymmetric chimera collapse stabilized by the interlayer exchange. When the interlayer exchange coupling
reaches a certain critical value, the skyrmions collapse simultaneously. Interestingly, the overall energy barrier
for the skyrmion collapse does not always converge to a multiple of that for a monolayer system in the strongly
coupled regime. For a certain stacking of the magnetic layers, the energy barrier as a function of the interlayer
exchange coupling features a maximum and then decreases with the coupling strength in the strong coupling
regime. Calculated mechanisms of skyrmion collapse are used to ultimately predict the skyrmion lifetime. Our
results reveal a comprehensive picture of the thermal stability of skyrmions in magnetic multilayers and provide
a perspective for realizing skyrmions with controlled properties.
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I. INTRODUCTION

Over the past decade, topological spin textures such as
magnetic skyrmions have been in the focus of many ex-
perimental and theoretical studies due to their intriguing
properties [1–3]. After being predicted theoretically [4], the
first experimental evidence of a skyrmion lattice was obtained
in cubic B20 compounds [5,6]. The broken inversion sym-
metry in these crystals induces the Dzyaloshinskii-Moriya
interaction (DMI) [7,8] favoring noncollinear magnetic struc-
tures [9,10]. Interfaces or surfaces naturally break the
inversion symmetry, too, leading to interfacial DMI in ul-
trathin transition-metal films on substrates with significant
spin-orbit coupling [11,12]. This class of skyrmionic systems
was established by the discovery of a nanoscale skyrmion
lattice in monolayer Fe films on Ir(111) [13], and later en-
riched by experimental observation of isolated skyrmions
in ultrathin film systems such as Pd/Fe/Ir(111) [14,15],
Pd/Pd/Fe/Ir(111) [16], 3Fe/Ir(111) [17], Co/Ru(0001) [18],
and Rh/Co/Ir(111) [19].

In ultrathin films, the magnetic interactions such as
magnetic exchange, DMI and magnetocrystalline anisotropy
can be tuned over a wide range via various mechanisms
[19–27], making these systems a convenient platform for re-
alizing skyrmions with controlled properties [28]. Moreover,
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due to their pseudomorphic growth and the possibility of
direct observation of their magnetic structures by surface-
sensitive measurement techniques, ultrathin films became
well-established model systems for the understanding of
skyrmion properties [13–15,18,19,29].

One major issue for the technological application of mag-
netic skyrmions is the thermal stability, which is especially
limited in ultrathin-films. Previous theoretical calculations ap-
plied to magnetic monolayers have predicted that a skyrmion
state in the system coupled to the heat bath could decay into
the topologically trivial state via radially symmetric shrink-
ing [30–32] or asymmetric collapse involving local rotation
of magnetization at an excentric point of the skyrmion–so
called chimera mode [19,33]. Both collapse modes have
subsequently been discovered by means of spin-polarized
scanning tunneling microscopy in the Pd/Fe/Ir(111) system
subject to an oblique external magnetic field [34]. Addition-
ally, skyrmions are expected to be able to escape through the
system’s boundaries [35] or even duplicate [36]. The decay
processes ultimately define the skyrmion lifetime, a quan-
titative measure of the skyrmion stability, which is usually
described by an Arrhenius law [35,37,38]

τ = τ0 exp

(
�E

kBT

)
, (1)

where τ is the mean skyrmion lifetime, τ0 the pre-exponential
factor, �E the energy barrier and kBT the thermal energy.
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Recent atomistic spin simulations, either parameterized by
first-principles density functional theory (DFT) calculations
or as systematic parameter studies, revealed, that a large DMI,
strong exchange frustration [31], the occurrence of higher
order exchange interaction [13,39] or tuning of the skyrmion
shape [40] can enhance skyrmion stability drastically. Further-
more, a decisive entropic stabilization effect has been found,
increasing the prefactor of the Arrhenius law and thus, the
skyrmion lifetime [33,37,40–42].

Another theoretically predicted [43] design strategy for
improved skyrmion stability is the repeated stacking of ad-
ditional magnetic layers, increasing the amount of magnetic
material in the system. By sandwiching the magnetic layers
between two different heavy metals, an additional enhance-
ment of the effective DMI can be achieved as a result of
additive interfacial chiral interactions, which additionally fa-
vors the stability of magnetic skyrmions [44]. Indeed, by
following the idea of multilayer systems, room-temperature
stability of skyrmion has been achieved in different materials
[44–47]. In contrast to skyrmions in ultrathin film systems,
however, skyrmions in multilayers have been found to be
larger in size, ranging from 30 nm to several 100 nm [44–47].
More recently, room-temperature skyrmions with sizes down
to 20 nm have been accomplished by using a compensated
ferrimagnetic material [48]. An additional advantage of mul-
tilayers compared to monolayer systems is the suppressed
skyrmion Hall effect [49] in antiferromagnetically coupled
layers, as it has been demonstrated by Legrand et al. at
room-temperature conditions and without external magnetic
fields [50]. Recently Rana et al. also succeeded in stabiliz-
ing skyrmions at zero field at room temperature using the
exchange-bias effect [51].

In contrast to the great success of its experimental real-
ization, very little is understood about the thermal stability of
skyrmions in multilayer systems. In 2017, Stosic et al. [52] in-
vestigated the stability and collapse mechanisms of skyrmions
in trilayers, focusing on the variation of DMI in the different
layers. They showed that magnetic interactions differ signifi-
cantly in a multilayer structure with varying thickness of the
magnetic material due to the different interfaces the individual
magnetic layers experience. The layer resolved and thus re-
duced DMI led to more realistic but less stable skyrmions than
previously considered. More recently, Hoffmann et al. found
an increasing skyrmion stability for an increasing number of
magnetic layers. They assumed similar magnetic properties
in each layer, a strong interlayer exchange coupling and a
simultaneous radial symmetric collapse of skyrmions in all
layers [53]. Consistent with these general assumptions, Heil
et al. suggested in 2019 that the energy barrier for skyrmions
in such systems is a multiple of the energy barrier of skyrmion
collapse in the corresponding monolayer system [54], which
reads

�E = L �Emono, (2)

where L is the number of stacked layers and �Emono the
energy barrier of the skyrmion in the monolayer system.

In this work, we systematically study the role of the in-
terlayer exchange for skyrmion stability and the different
regimes and effects it induces. For this purpose, we investi-
gate bilayer and multilayer systems consisting of an artificial

FIG. 1. (a) Magnetic bilayer systems built from two units of
the system Pd/Fe/Ir(111). Two different stackings (αα and αβ)
are considered which correspond to atoms of the two hexagonal Fe
layers being on top of each other or shifted with respect to each
other. [(b) and (c)] Schematic representation of the nearest-neighbor
intralayer (J‖

1 ) and interlayer (J⊥
1 ) exchange bounds for the αα-

stacked and αβ-stacked magnetic bilayers, respectively. The bonds
are indicated through the connections of the red magnetic moments.

repetition of the famous Pd/Fe/Ir(111) [14,15,24,31,37,55–
60] monolayer system. Since Dupé et al. [43] showed based
on DFT calculations that the magnetic interactions are primar-
ily affected by the interfaces of the magnetic material, one
can expect the properties of the magnetic layers in such a
stacking to be comparable to the monolayer system. In order
to obtain a broader view of the emerging effects, we vary
the strength of the interlayer exchange coupling per unit cell,
J⊥ systematically from zero to 20 meV, covering indirectly
and weakly coupled to directly and strongly coupled systems.
Further, we explore two different crystal structures of the mul-
tilayer stackings, revealing effects in systems with magnetic
layers horizontally offset from each other, strongly affecting
skyrmion stability.

The paper is structured as follows. Section II describes the
model and Sec. III the method and computational details of
our calculations. The presentation of our results in Sec. IV
starts with a brief discussion of the phase diagram (Sec. IV A)
for magnetic bilayer systems under the influence of interlayer
exchange. In Sec. IV B, we discuss collapse mechanisms of
skyrmions in magnetic bilayers into the field-polarized state,
increasing the interlayer exchange stepwise and analyzing
the occurring changes of the collapse mechanism. These re-
sults are subsequently condensed in Sec. IV C by studying
the corresponding energy barriers. In Sec. IV D, we explain
a crossover between two collapse mechanisms for critical
interlayer exchange couplings. To understand these critical
parameters in more detail, we then vary the DMI and hence
the energy barrier of skyrmions in the underlying monolayer
system in Sec. IV E. Afterwards we demonstrate that our
results transfer to systems with more than two magnetic layers
in Sec. IV F. Finally, in Sec. IV G, we discuss calculations
of the lifetime of bilayer skyrmions for a generic example.
Conclusions and discussion are presented in Sec. V.

II. MODEL

The model for our spin simulations is shown in Fig. 1.
We treat different stacking possibilities of the magnetic mono-
layer system Pd/Fe/Ir. Note that only the hexagonal Fe layers
of the system are included in our atomistic spin model. The
effect of the nonmagnetic Pd and Ir layers is included within
the framework of the first-principles parametrization of the
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magnetic interactions given in Ref. [31] for the magnetic
monolayer system (cf. Sec. II A). Two different bilayers were
studied. The system in which the magnetic moments in both
Fe layers occupy the same lattice sites is called αα system in
the following [Fig. 1(b)]. In contrast, the magnetic moments
of the different layers in the αβ system are horizontally offset
from each other in such a way that each atomic site of the
bottom layer is located right below the interstitial site of the
top layer [Fig. 1(c)].

We systematically vary the strength of the interlayer ex-
change between the Fe layers in our simulations. Therefore
the obtained results can be applied to systems in the strong
interlayer exchange coupling regime such as directly adjacent
Fe layers, e.g., in the system Rh/Pd/2Fe/2Ir [43], as well as
in the weak or intermediate regime such as magnetic layers
in which the interlayer exchange is mediated by a number of
spacer layers.

A. Extended Heisenberg model

The magnetic bilayer systems are built based on the mag-
netic interactions of the monolayer system Pd/Fe/Ir(111) and
described through normalized magnetic moments mi local-
ized in each Fe layer at the sites of a hexagonal lattice. The
energy of the N-spin system is derived within the extended
Heisenberg model and the Hamiltonian can be written as

H = Eex + EDMI + EAni + EZee

= −
N∑

i, j=1
i �= j

Ji j (mi · m j ) −
N∑

i, j=1
i �= j

Di j · (mi × m j )

−
N∑

i=1

K
(
mz

i

)2 −
N∑

i=1

μi(mi · Bext ), (3)

which are in the order of appearance the Heisenberg exchange,
the DMI, the uniaxial magnetocrystalline anisotropy and the
Zeeman interaction. The interaction constants Ji j and Di j and
the anisotropy constant K are defined per atom. Therefore
each pair of magnetic moments appears twice in the calcu-
lation of the exchange and DMI energy. Note that we consider
intralayer DMI here, but not interlayer DMI [61,62].

The exchange term can be split into intralayer exchange
J‖

i j and interlayer exchange J⊥
i j for pairs of magnetic moments

from the same layer and from different layers, respectively.

Eex = E‖
ex + E⊥

ex

= −
2∑

l=1

Nl∑
i, j=1
i �= j

J‖
i j

(
ml

i · ml
j

) −
2∑

k,l=1
k �=l

Nl ,Nk∑
i, j=1

J⊥
i j

(
ml

i · mk
j

)
(4)

Here Nl denotes the number of spins in the layer l .
Motivated by the finding of Dupé et al. [43] that the mag-

netic interactions in multilayers built from Pd/Fe/Ir stacks
are very similar to those of the film system Pd/Fe/Ir(111) all
intralayer interaction constants, i.e. within a single Fe layer,
and the magnetic moments μi were taken from Pd/Fe/Ir(111)
[31] as obtained via DFT calculations using the FLEUR code
[24,63–65]. In Ref. [31], two different models were used to
illustrate the influence of intralayer exchange frustration. On

one hand, exchange constants were determined from DFT up
to the interaction of ninth neighbors (J‖

1 , . . . , J‖
9 ). We will re-

fer to this set of parameters as the neighbor resolved exchange
(NRE) model. On the other hand, the magnetic interactions of
the system were parameterized with only the nearest-neighbor
exchange interaction, which resembles a micromagnetic de-
scription of the interactions. The resulting parameter set is
referred to as the effective model. The values of all parameters
used in this work are listed in Table I.

We treat the interlayer exchange coupling in our magnetic
Fe bilayers in nearest-neighbor approximation and systemati-
cally vary its strength, J⊥

1 . As visible in Fig. 1, the magnetic
unit cell of the αβ system contains three interlayer bonds
while in the unit cell of the αα system only one bond appears.
We define the interlayer exchange per unit cell J⊥ for better
comparability of the different systems as the following:

J⊥ =
{

J⊥
1 , αα system

3 · J⊥
1 , αβ system

. (5)

III. COMPUTATIONAL DETAILS

We use atomistic spin dynamics simulations to solve the
Landau-Lifshitz-equations for the spin model introduced in
the previous section numerically and to relax spin structures
such as bilayer skyrmions into local energy minima. The
knowledge of the separating energy barrier �E between meta-
stable spin structures on the energy surface is crucial for the
description of the thermal stability of these states follow-
ing an Arrhenius law for the skyrmion lifetime τ [Eq. (1)].
The geodesic nudged elastic band method [32] (GNEB) pro-
vides a possibility to calculate the energy barrier and the
first-order saddle point of skyrmions regarding a transition
to the topologically trivial ferromagnetic state. We use the
harmonic approximation of the transition-state theory (HTST)
for determining the Arrhenius pre-exponential factors and the
lifetimes of magnetic states [66]. While the phase diagrams
presented in Sec. IV A are calculated with simulation boxes
of 100 × 100 magnetic atoms per layer, all other results
of this work are obtained with boxes of 50 × 50 magnetic
atoms per layer. We applied periodic boundary conditions
in in-plane direction, while open boundaries are assumed in
out-of-plane direction. Consistency tests for 70 × 70 and
100 × 100 magnetic moments per layer demonstrated that
the shown results are not dependent on the system size.

A. Minimum energy path calculations

The GNEB method is a valuable approach
[31,32,35,37,52,67] to calculate the minimum energy path
(MEP) between magnetic configurations corresponding to
local energy minima. As schematically illustrated in Fig. 2(a),
we consider the collapse of an initial magnetic state (A),
which is a bilayer skyrmion, to the final magnetic state (B),
which is the ferromagnetic or field polarized state. In Sec. IV,
we discuss the occurrence of different collapse mechanisms
and the associated MEPs caused by the variation of the
interlayer exchange. For weak interlayer exchange, paths with
additional local minima between the initial and final states
occur [cf. Fig. 2(a)]. These intermediate minima (M) are
associated with a successive collapse of the skyrmion in the
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TABLE I. Value of the ith nearest-neighbor intralayer exchange J ||
i (meV), the Dzyaloshinskii-Moriya interaction constants Di (meV) and

the magnetocrystalline anisotropy (MAE) K (meV/Fe-atom) for the magnetic monolayer system fcc-Pd/Fe/Ir(111). These values originate
from first-principles calculations from Ref. [31]. The positive K > 0 parameters represent an out-of-plane easy axis for the anisotropy.

model J‖
1 J‖

2 J‖
3 J‖

4 J‖
5 J‖

6 J‖
7 J‖

8 J‖
9 D1 K

NRE model 14.40 −2.48 −2.69 0.52 0.74 0.28 0.16 −0.57 −0.21 1.0 0.7
eff. model 3.68 - - - - - - - - 1.39 0.7

different layers. We split up the paths at the states M after short
GNEB calculations (500 iterations), as suggested in Ref. [32].
The energies of these partially relaxed paths are visualized
on the example of bilayer skyrmions in the αα system in
Fig. 2(b). After the splitting, the M configuration is relaxed
into its local energy minimum via spin dynamics. Afterwards,
we calculate the MEPs for A → M and M → B transitions
separately with the GNEB method and finally connect them
to create the complete paths A → B. Consequently, there are
paths with two first-order saddle points (Sp) (Sp1, Sp2) for low
values of the interlayer exchange couplings and paths with
one saddle point for strong interlayer exchange couplings.
These saddle points are determined with the climbing-image

FIG. 2. (a) Representation of a bilayer skyrmion (initial state,
A) collapsing into the field polarized state (final state, B). (b) Par-
tially relaxed energy paths for the collapse mechanism of a bilayer
skyrmion (A) for the αα system for various interlayer exchange
couplings J⊥ (visualized by the color code). The shown paths are
the results of 500 iterations of a GNEB calculation an do not display
the converged minimum energy path. They are the starting point for
treating paths with an intermediate energy minimum (M), which are
marked with the empty squares. The insets show spin configurations
for two interlayer exchange couplings. For J⊥ = 3.0 meV, the con-
figuration with the highest energy is shown while for J⊥ = 0.5 meV,
the spin configuration of the intermediate minimum is displayed.

GNEB method (CI-GNEB) [32]. A calculation is considered
converged when the force on each magnetic moment has
dropped below 10−8 eV/rad.

B. Harmonic transition-state theory

We determine the pre-exponential factor τ0 within the har-
monic approximation of the TST. This implies the description
of the curvature of the multidimensional energy surface of the
spin configuration room via the eigenvalues εA,i and εSp,i of
the Hessian matrices HA and HSp for the bilayer skyrmion
configuration (A) and the saddle point configuration (Sp),
respectively. In the general form, the pre-exponential factor
is given by [35,66,68]

τ−1
0 = λ

2π
(2πkBT )(PA−PSp )/2 VSp

VA

√
det HA

det′ HSp
. (6)

The determinants of the Hessian matrices at the bilayer
skyrmion and the saddle point state are computed as the
product of the corresponding nonzero eigenvalues, while
the prime indicates that the negative eigenvalue for the saddle
point is omitted. The information about the velocity of the sys-
tem at the transition state is contained by the dynamical factor
λ (see Ref. [40] for details). Not all eigenmodes are suited
for a description in harmonic approximation. Alternatively,
Goldstone modes can be defined and calculated as in Ref.
[35], yielding the Goldstone mode volumes VA, VSp, while
the corresponding eigenvalues are omitted in the determinants
of Eq. (6) as well. The number of Goldstone modes for the
initial state (saddle point) is given by PA (PSp). In the case
of skyrmion annihilation in bilayers, this applies to the two
skyrmion translation modes in in-plane direction as the move-
ment of skyrmions over the lattice does not change their
energy, similar to the translation of skyrmions in monolayer
systems [37,40]. Throughout this work, we investigate the
skyrmion lifetime only in cases, in which the simultaneous
radial symmetric collapse mechanism [31,35,36,53] is dom-
inant for the annihilation process. The corresponding saddle
point structures contain three neighboring magnetic moments
pointing almost towards each other, creating a Bloch-like
defect. For low temperatures, this Bloch-like point cannot be
moved without noticeable energy costs over the atomic lattice.
For elevated temperatures, the eigenmodes corresponding to
this movement are potential Goldstone modes in the spectrum
of the saddle point state, as discussed in Refs. [33,40]. For
the sake of clarity, however, here we treat all eigenmodes of
the saddle point structures in harmonic approximation and
thereby exclude the high temperature regime.

The unequal number of Goldstone modes found for the
skyrmion and saddle point states leads to a linear temperature
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dependence for the inverse of the pre-exponential factor [37]:

τ−1
0 = 2λkBT

VA

√
det HA

det′ HSp
. (7)

The factor of two arises from the two possible realizations of
the Bloch-like point per unit cell, as discussed in Ref. [37].

IV. RESULTS

A. Zero-temperature phase diagrams

To study the metastability of skyrmions in the field-
polarized phase, first we have to determine the critical
fields which correspond to the phase transition between the
skyrmion lattice and the field-polarized phase.

Therefore obtaining the zero temperature magnetic phase
diagrams [24,31,55] of the αα and αβ systems as a function
of interlayer exchange coupling is the starting point for our in-
vestigations. In the following, we present the phase diagrams
calculated within the NRE model of intralayer exchange inter-
action. In Figs. 3(a) and 3(b), the energies of relaxed bilayer
spin spirals (SS), bilayer skyrmion lattices (SkX) and the
field polarized phase (FM) are shown over varying magnetic
field strength. Figure 3(a) shows the phase diagram for the
αβ system with J⊥ = 15.0 meV and Fig. 3(b) visualizes the
corresponding phase diagram in the case without interlayer
exchange coupling (J⊥ = 0 meV).

Similar to Ref. [31] we chose the energy reference as
the minimum energy of the dispersion of homogeneous spin
spirals, Ehom, SS, calculated in a 100 × 100 simulation box.
Further, we consider the SkX state with the energetically most
favorable skyrmion density on the 100 × 100 lattice. The
critical magnetic field values BC1 and BC2 mark the phase
transitions from the SS state to the SkX state and from the
SkX state to the FM state, respectively. As the energy is de-
fined per unit cell and the interlayer exchange is switched off,
these critical fields exactly coincide with the fields reported in
Ref. [31] for the magnetic monolayer system Pd/Fe/Ir(111).

When we increase the interlayer exchange to J⊥ = 15 meV
for the αβ system [see Fig. 3(a)] the critical fields BC1 and BC2

shift to lower values and thereby introduce a shift of the SkX
phase. The origin of these energy shifts can be understood by
considering the horizontal displacements between the layers
[see Fig. 1(c)]. A parallel alignment of two magnetic moments
in different layers leads to a minimal exchange energy for
ferromagnetic interlayer exchange. Therefore, the FM state
gains more energy than the SS state, in which small angles
between the magnetic moments of adjacent Fe atoms in the
two layers occur that are unfavorable with respect to the
interlayer exchange. These angles arise due to the horizon-
tal displacement of the magnetic layers in the αβ system.
The SkX phase lies between those two extremes as there are
collinear aligned regions between the skyrmions in the two
layers and therefore its energy shift is smaller than for the FM
state but greater than for the SS state which leads to a decrease
of both BC1 and BC2 . Figure 3(c) underlines this behavior as
it displays the decrease of the critical fields with increasing
interlayer exchange J⊥. In addition, it is noteworthy that the
skyrmion density of the SkX phase is slightly reduced for high
interlayer exchange couplings. In contrast, for αα systems

FIG. 3. (a) Zero-temperature phase diagram for the αβ system
for J⊥ = 15.0 meV. The critical fields BC1 and BC2 define the phase
transitions between the spin spiral phase (SS, blue), the skyrmion
lattice phase (SkX, red) and the field polarized phase (FM, green),
respectively. The energy is defined per unit cell and displayed relative
to the energy of the minimum of the dispersion of homogeneous
spin spirals. The background color represents the phases in a certain
magnetic field range. (b) Analog visualization of the phase diagram
for the αβ system for J⊥ = 0 meV. (c) Critical magnetic fields BC1

or BC2 for different values of J⊥ for the αα and αβ system. The
reference of the magnetic monolayer system Pd/Fe/Ir(111) is plotted
as a dashed line.

for each magnetic moment, the next neighbor regarding the
interlayer exchange coupling is directly above or below the
corresponding moment. Therefore, the magnetic moment and
its neighbor are aligned parallel for each magnetic structure
considered in the phase diagram and the shifts in the energy
are equal when varying the interlayer exchange. Figure 3(c)
presents these results by visualizing the critical fields BC1 and
BC2 . The dashed lines indicate the corresponding fields as
determined for the magnetic monolayer system Pd/Fe/Ir(111)
[31]. Therefore, the phase diagram remains unchanged for αα

systems when varying the interlayer exchange and this will
also hold true for systems with more magnetic layers if the
atoms of each layer occupy the same lattice sites.

B. Skyrmion collapse mechanisms in magnetic bilayers

For a detailed understanding of the thermal stability of
magnetic bilayer skyrmions (A) in the field polarized phase
the MEP regarding a collapse to the ferromagnetic aligned
structure (B) is crucial (Fig. 2). To be consistent with the
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calculations of the underlying monolayer system [31] we
chose an out-of-plane magnetic field of B = 4.0 T. It has be
shown that the skyrmion sizes for the effective and the NRE
model are similar for B = 4.0 T [31], which allows a reason-
able comparison between the NRE and the effective model.
Our phase diagram calculations in the previous sections
demonstrated that BC (J⊥) < B holds true for all interlayer
exchange couplings for both stackings of the system [cf.
Fig. 3(c)]. Therefore, we expect isolated bilayer skyrmions
to be meta-stable in both systems at B = 4.0 T. Note that in
the case of the αβ system the distance B − BC (J⊥) increases
with increasing interlayer exchange. A decreased stability of
skyrmions in the αβ system with increasing interlayer ex-
change can be expected, as elucidated in Sec. IV C in more
detail. In that context, it is worth mentioning that the skyrmion
radius of the bilayer skyrmions in the αβ system is marginally
reduced when increasing J⊥, which follows the relation be-
tween skyrmion size and stability [69]. For the highest values
of J⊥ in our work the reduction in the skyrmion size is less
than one in-plane lattice constant. However, the radius of
the bilayer skyrmions in the αα system agrees for all values
of J⊥ with the radius reported for monolayer skyrmions in
Pd/Fe/Ir(111) [31].

This section demonstrates how the interlayer exchange
affects the collapse mechanisms of bilayer skyrmions in the
αα and αβ system. We use the NRE model throughout this
section. Figure 4 presents an overview over the variety of col-
lapse mechanisms of bilayer skyrmions in the αα system for
different interlayer exchange couplings. The MEPs are shown
in the top row with the spin configurations of the saddle point
below. In the high interlayer exchange regime [J⊥ = 15 meV,
Figs. 4(m)–4(p)], we predict a bilayer skyrmion collapse with
a single saddle point configuration which corresponds to twice
the energy barrier of a skyrmion in the magnetic monolayer
Pd/Fe/Ir(111) [31]. The spin configuration obeys a radial
collapse mechanism in both layers where three spins point
towards each other. This collapse mechanism is widely inves-
tigated for magnetic monolayer skyrmions [31,35,36,54] and
agrees with the assumption in Eq. (2).

The other limit of the uncoupled system is displayed in
Figs. 4(a)–4(d). Here the collapse of the bilayer skyrmion
consists of two independent collapses of the skyrmions in the
different layers each of them resembling the radial collapse of
a skyrmion in the monolayer system. The energy barriers of
both decays coincide with the energy barrier reported for the
skyrmion in Pd/Fe/Ir(111) [31].

Collapse mechanisms for the intermediate coupling regime
as displayed in Figs. 4(e)–4(h) for J⊥ = 0.15 meV and in
Figs. 4(i)–4(l) for J⊥ = 2.5 meV already demonstrate the
increased complexity as opposed to monolayer skyrmions.
This regime yields saddle point configurations following the
chimera collapse mechanism predicted recently [19,33,54].
During this collapse process the radial symmetric magnetic
structure of the skyrmion changes through tilting the spins in
one part of the edge [Fig. 4(h)]. Meyer et al. found meta-stable
skyrmions at zero external magnetic field in the magnetic
monolayer system Rh/Co/Ir(111) and predicted them to col-
lapse via the chimera transition mechanism [19]. Very recently
the chimera collapse of a skyrmion in a ultrathin magnetic
film system was identified experimentally [34]. Here, we ob-

FIG. 4. Representation of collapse mechanisms for bilayer
skyrmions in the αα system for different interlayer exchange cou-
plings J⊥. The top row shows the total energy along the minimum
energy path, while the first occurring saddle point is marked in red.
The blue (red) dashed line represents the energy barrier (twice the
energy barrier) of a skyrmion in the magnetic monolayer system
Pd/Fe/Ir(111) [31]. Below the spin configuration of the corre-
sponding saddle point is visualized. [(a)–(d)] Successive radial-radial
collapses of the bilayer skyrmion for J⊥ = 0 meV. [(e)–(h)] Succes-
sive chimera-radial collapse for J⊥ = 0.15 meV. [(i)–(l)] Chimera
type collapse in one layer with shrunken skyrmion in the other layer
for J⊥ = 2.5 meV. This collapse is called semisuccessive chimera-
radial collapse. [(m)–(p)] Simultaneous radial collapse for J⊥ =
15 meV.

serve the chimera transition as part of a successive decay of
skyrmions in different layers for J⊥ = 0.15 meV where the
first transition presents a chimera saddle point configuration
while the second skyrmion follows the radial mechanism.

For slightly higher interlayer exchange J⊥ = 2.5 meV, the
MEP of the bilayer skyrmion collapse exhibits a single saddle
point. The corresponding spin configuration shows a chimera-
type configuration in one layer while a skyrmion of reduced
size compared to the initial state is obtained for the other layer
[Figs. 4(j)–4(l)].

In the following, we analyze the MEPs for the bilayer
skyrmions shown in Fig. 4 in detail to achieve understanding
of the origin of the variety of the collapses. Although we
discuss bilayer skyrmions in the αα system these are repre-
sentative for the corresponding skyrmions in the αβ system
as we find analog collapse mechanisms for the same interlayer
exchange parameters there. Furthermore, it is worth mention-
ing that we always find two MEPs for collapse mechanisms
which include changing first the magnetization in one layer
followed by a change in the other layer as the order of the
collapses is exchangeable. Starting with the uncoupled bilayer
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FIG. 5. Minimum energy path for a bilayer skyrmion in the αα

system without interlayer exchange coupling (J⊥ = 0 meV). The
total energy is plotted in black. The energy contributions of the differ-
ent interactions are represented by the color code (see legend). Open
circles represent the top Fe layer while filled circles symbolize the
bottom Fe layer. The spin configuration of the saddle points (SP1 and
SP2) is shown as well as the spin configuration of the intermediate
minimum (M). For the configuration of the initial bilayer skyrmion
A and the final field polarized state B see the insets in Fig. 2.

(J⊥ = 0 meV) we decompose the total energy of the MEP
into the different energy contributions of Eq. (3) (Fig. 5).
As highlighted in Sec. III A the MEP of a bilayer skyrmion
in this system contains an intermediate minimum (M). This
minimum is associated with a skyrmion in one Fe layer, which
is unchanged concerning the corresponding layer for the A
state, and one collinear aligned Fe layer. This indicates that
the skyrmions in the different layers collapse independently
from each other for the uncoupled Fe layers. Hence, we find
two saddle point configurations with energies ESp1

and ESp2
,

respectively. These energies correspond to energy barriers
equal to the barrier of the skyrmion in the magnetic monolayer
Pd/Fe/Ir(111) [Fig. 4(a)].

Both the anisotropy and the Zeeman term favor a parallel
out-of-plane alignment of the spins in both layers. For the
sake of completeness we show all energy contributions to the
total energy of the MEP in Fig. 5. In the following figures we
restrict the decomposition to the intralayer exchange energy
E‖

ex and the DMI energy EDMI since they dominate the energy
of the saddle points ESp1/2

and therefore the energy barriers (cf.
Fig. 5). Further the interlayer exchange energy E⊥

ex is included.
Note that the large contribution of E‖

ex to ESp1/2
originates from

the intralayer exchange frustration within the NRE model
(Tab. I), as reported in Ref. [31]. Below we will call this
mechanism the successive radial-radial (sRR) collapse. We
predict the sRR collapse only for very low values of the in-
terlayer exchange coupling. Figure 6(a) shows the MEP when
one increases the interlayer exchange to J⊥ = 0.15 meV. Now

FIG. 6. (a) Minimum energy path for a bilayer skyrmion in the
αα system with interlayer exchange coupling (J⊥ = 0.15 meV). The
energy contributions of the different interactions are represented by
the color code (see legend). Open circles represent the top Fe layer
while filled circles symbolize the bottom Fe layer. The first saddle
point corresponds to a chimera collapse [cf. Figs. 4(e)–4(h)]. The
energy barrier corresponding to the meta-stable radial saddle point
configuration is visualized by the dashed gray line. [(b) and (c)] The

interlayer exchange energy costs f (ϑ
NN⊥

i
i ) are presented by the color

code versus the in-plane directions, where a is the in-plane lattice
constant. The skyrmion radius Rtop

Sk and the position of the unchanged
layer (top layer in this example) during the first part of the collapse
is represented by a circle. While (b) belongs to the chimera collapse
saddle point configuration (c) represents the saddle point of the meta-
stable sRR collapse for J⊥ = 0.15 meV.

the intermediate configuration M becomes less favorable due
to the increasing interlayer energy costs. One can also recog-
nize that the shape of the total energy of the MEP changes
for the first collapsing layer with respect to that observed in
Fig. 5. This can be attributed to the appearance of the chimera
collapse. The first part of the collapse (reaction coordinate
< 25) corresponds to a side wards movement of the initial
skyrmion, which does not lead to an increase in the energy.
This movement can be explained as a consequence of the
initial geodesic path as described in Ref. [68]. The energy
barrier of the chimera collapse is dominated by the intralayer
exchange, while the amount of the DMI energy at the saddle
point is relatively low compared to the radial collapse mecha-
nism. This is due to the fact that the noncollinear alignment is
preserved for the most part of the skyrmion and only the spins
in one part of the margin of the skyrmion are tilted as visible
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in Fig. 4(h). After the skyrmion in one layer has collapsed
to a parallel alignment the second skyrmion follows a radial
mechanism with the corresponding saddle point Sp2.

Although the interlayer exchange energy does not con-
tribute to the saddle point corresponding to the chimera
collapse in one layer (Sp1) it can explain the appearance of
this collapse mechanism. If N1 is the number of magnetic
moments in layer 1 the energy costs due to interlayer exchange
can be written as:

E⊥
costs = 2 J⊥

1

N1∑
i=1

∑
NN⊥

i

(
1 − mi · mNN⊥

i

)

= 2 J⊥
1

N1∑
i=1

∑
NN⊥

i

(
1 − cos ϑ

NN⊥
i

i

)

= 2 J⊥
1

N1∑
i=1

∑
NN⊥

i

f
(
ϑ

NN⊥
i

i

)
, (8)

while i represents the magnetic moments of one layer, NN⊥
i

numerates the next interlayer neighbors of the magnetic mo-
ment i. The angle between a magnetic moment i and its

neighbor NN⊥
i is expressed by ϑ

NN⊥
i

i and the factor of two
arises due to the definition of the exchange constant as per
atom. The interlayer exchange costs are proportional to the

introduced function f (ϑNN⊥
i

i ). In this formulation it becomes
visible that increased angles between the magnetic config-
urations of the different layers lead to increased interlayer
exchange costs. Therefore the intermediate minimum M be-
comes less favorable, when the interlayer exchange increases.

In Fig. 6(b), we visualize f (ϑNN⊥
i

i ) for the saddle point
configuration Sp1 across the in-plane directions of the system,
which is a direct measure for the interlayer exchange energy
costs. These costs concentrate mainly on one point of the
edge of the skyrmion where the spins are tilting as described
above. The rest of the skyrmion is still parallel aligned to the
nearly unchanged skyrmion in the other layer, which reduces
the interlayer exchange costs. In Fig. 6, the nearly unchanged
skyrmion during the first part of the collapse corresponds to
the top layer and is represented by its radius Rtop

Sk . The radius
was determined through applying the definition of Bogdanov
and Hubert [4] onto the skyrmion profile [69] gained through
a fit to the magnetization of the top layer.

The role of the interlayer exchange favoring the chimera
saddle point can be underlined by a comparison with the
sRR collapse mechanism. For J⊥ = 0.15 meV, it is still pos-
sible within the simulation to meta-stabilize the sRR collapse
mechanism. As indicated by the dashed gray line in Fig. 6(a)
the corresponding energy barrier of the sRR collapse is
slightly larger than the energy barrier of the chimera collapse.
Figure 6(c) shows the interlayer exchange costs of the sRR
collapse mechanism for J⊥ = 0.15 meV and one can identify
the increased energy costs due to the symmetric shrinking
of the skyrmion in one layer compared to the asymmetric
chimera collapse [Fig. 6(b)]. Comparing the radius of the
skyrmion in the top layer (Rtop, chim

Sk = 7.84a) for the chimera
collapse with the radius for the sRR mechanism (Rtop, rad

Sk =

FIG. 7. Minimum energy path for a bilayer skyrmion in the αα

system with interlayer exchange coupling (J⊥ = 2.5 meV). The en-
ergy contributions of the different interactions are represented by
the color code (see legend). Open circles represent the top Fe layer
while filled circles symbolize the bottom Fe layer. An exemplary spin
configuration in the region of the collapse of the second skyrmion is
shown as an inset. For the spin configuration of the actual saddle
point see Figs. 4(i)–4(l).

7.32a) the skyrmion in the top layer is slightly smaller for
the sRR collapse. Here, a is the in-plane lattice constant. This
indicates that the radial collapse mechanism already involves
a small part of simultaneous shrinking of both skyrmions in
the first part of the collapse, which is also related to reducing
interlayer exchange costs.

It is noteworthy that the chimera collapse also occurs in the
monolayer system but at lower magnetic fields [68]. Therefore
the interlayer exchange interaction shifts the transition of the
radial to the chimera collapse so that it can occur also at
higher fields. In the following, we assign the name succes-
sive chimera-radial (sCR) collapse to transitions which show
a chimera collapse for the first layer followed by a radial
collapse for the skyrmion in the other layer. Increasing the
interlayer exchange to J⊥ = 2.5 meV (Fig. 7), we enter the
regime of intermediate interlayer coupling. The initial GNEB
calculations as described in Sec. III A do not show any in-
termediate minimum and the path has only one saddle point
configuration (Sp). This saddle point configuration includes
a chimera saddle point [cf. Fig. 4(l)] for one layer, while the
other layer has a radial structure of reduced radius compared
to the initial configuration [cf. Fig. 4(j)]. Thus the part of the
collapse, which reduces the size of the skyrmion, occurs si-
multaneously in both Fe layers. The region of the saddle point
describes a successive chimera collapse of the skyrmion in
one layer followed by a radial collapse of the skyrmion in the
other layer. This is underlined by the inset in Fig. 7. Although
this is not the saddle point configuration the second skyrmion
collapse appears to be radial symmetric. To emphasize the fact
that this collapse mechanism is partly simultaneous and partly
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FIG. 8. (a) Minimum energy path for a bilayer skyrmion in the αα system with interlayer exchange coupling (J⊥ = 15.0 meV). The energy
contributions of the different interactions are represented by the color code (see legend). Open circles represent the top Fe layer while filled
circles symbolize the bottom Fe layer. Twice the energy barrier of a skyrmion in the corresponding monolayer system Pd/Fe/Ir(111) is shown
as dashed gray line. The inset displays schematically the stacking of the Fe layers. (b) Analog visualization of the minimum energy path for
the αβ system for J⊥ = 15 meV. (c) The spin configuration of the saddle point for the collapse of the bilayer skyrmion in the αβ system is
shown. For the corresponding configuration of the αα system see Figs. 4(m)–4(p).

successive we call this mechanism semisuccessive chimera-
radial (ssCR) collapse.

Comparing the interlayer exchange energy for the path for
J⊥ = 2.5 meV with the one for J = 0.15 meV it is striking
that it varies only slightly. The lifting of the intermediate
minimum M occurs rather due to the more concurrent DMI
energy curves for the two layers. The difference between the
DMI energy of the bottom and top layer along the reaction
coordinate could thus be used as a quantity to define how
simultaneous a collapse proceeds in the bilayer.

The ssCR collapse mechanism changes to a different
semisuccessive mechanism for J⊥ = 4.9 meV, where the tran-
sition of the bilayer skyrmion is simultaneous for most parts
of the collapse but the region of the saddle point reveals
two successive radial mechanisms. Due to the similarity of
this transition to the ssCR collapse, we do not discuss this
mechanism in detail here, but as it becomes important for
the effective model later we assign the name semisuccessive
radial-radial (ssRR) collapse. Finally increasing the interlayer
exchange coupling to J⊥ = 15 meV, we end up in the high
interlayer coupling regime for both the αα and the αβ sys-
tem. The MEPs of the bilayer skyrmions in both systems are
presented in Figs. 8(a) and 8(b). In this regime, significant dif-
ferences occur in the MEP between the αα system and the αβ

system. We start with the description of the bilayer skyrmion
in the αα system in Fig. 8(a). The difference between the DMI
energy of the bottom and top layers disappears, indicating a si-
multaneous collapse of both layers. The simultaneous change
of both layers during the skyrmion collapse avoids interlayer
exchange costs, which can be seen through the vanishing en-
ergy contribution E⊥

ex. The consequence of this simultaneous
collapse is that the energy barrier is equal to twice the energy
barrier of a skyrmion in the monolayer system (2�Emono).
Moreover, the mechanism in both layers corresponds to the
radial collapse of the monolayer skyrmion.

If we compare this with the collapse of the bilayer
skyrmion in the αβ system [Fig. 8(b)], we also find that the

DMI energy contributions of both layers to the MEP are iden-
tical. Again, the collapse is simultaneous in both Fe layers.
However, if we look at the energy barrier, we find a slight
reduction compared to 2�Emono, which is explained by the in-
terlayer exchange. If we analyze the contribution of E⊥

ex to the
MEP in Fig. 8(b), we find that the saddle point is energetically
favored over the initial state. Furthermore, the field-polarized
state is clearly favored with respect to the interlayer exchange.
The explanation for this is analogous to the cause of the shift
of the critical fields in the magnetic phase diagram discussed
in Sec. IV A.

The insets in Figs. 8(a) and 8(b) contrast the horizontal
shift of the Fe layers in the case of the αβ system with the
directly superimposed layers of the αα system. This shift
causes noncollinear regions of magnetization within one layer
to be slightly tilted with respect to the same structure in the
other layer. Collinear regions are therefore favored in terms
of interlayer exchange and in this sense the bilayer skyrmion
is unfavorable relative to the field polarized state. Since the
saddle point state has a smaller noncollinear fraction than
the skyrmion, the energetic order with respect to interlayer
exchange in the αβ system results in E⊥

ex(A) > E⊥
ex(Sp) >

E⊥
ex(B). The collapse mechanism, on the other hand, is very

similar for the bilayer skyrmions in the αα [Figs. 4(m)–4(p)]
and αβ systems [Fig. 8(c)]. Only the three central spins of the
radial saddle point for the skyrmion in the αβ system have
a slightly larger out-of-plane fraction (see Appendix A). We
will call this collapse mechanism for high interlayer exchange
simultaneous collapse in the following.

C. Energy barriers for bilayer skyrmions

To understand the role of interlayer exchange for the
stability of bilayer skyrmions, a detailed discussion of the
corresponding energy barriers is inevitable [cf. Eq. (1)]. We
therefore systematically varied the interlayer exchange (J⊥ ∈
[0, 30] meV) for bilayer skyrmions (A) in the αα and αβ
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FIG. 9. (a) Energy barriers �E of bilayer skyrmions in the αα system relative to the energy barrier of a skyrmion in the magnetic monolayer
system Pd/Fe/Ir(111) for various interlayer exchange couplings J⊥. For clarity the shown data point density is reduced and the J⊥ axis has an
enlarged scale for small values. We used the NRE model for these calculations (cf. Table I). The background color represents the type of the
collapse mechanism as described in Appendix A and Fig. 17. For collapse mechanisms with two saddle point configurations the corresponding
energy barriers of the first (second) collapse are labeled with filled (open) circles, while the energy barriers corresponding to a collapse
mechanism with a single saddle point configuration are symbolized with squares. The solid (dashed) black line represents the energy barrier
(twice the energy barrier) of a skyrmion in the magnetic monolayer system Pd/Fe/Ir(111). The arrows indicate the directions of the piecewise
GNEB calculations as described in detail in the text. (b) Analog visualization to (a) for bilayer skyrmions in the αβ system.

systems and calculated the energy barriers for the collapse to
the field-polarized state (B). As described in Sec. IV B, MEPs
with an intermediate minimum occur in the low interlayer ex-
change coupling region. These MEPs are associated with two
energy barriers. While the first barrier describes the transition
of the skyrmion in one layer (A → M), the second barrier
is associated with the collapse of the skyrmion in the other
layer (M → B). In contrast, for high interlayer exchange, we
find transitions of the bilayer skyrmion to the field polarized
state of the bilayer with just one energy barrier (A → B). Our
goal is to study the energy barriers �E of bilayer skyrmions
relative to the energy barrier of a skyrmion �Emono in the mag-
netic monolayer system Pd/Fe/Ir(111) [31]. Figure 9 displays
the ratio �E/�Emono as a function of J⊥ for the αα and αβ

system. To provide increased resolution for low J⊥ in Fig. 9,
the corresponding axis was provided with two different scales.
The collapse mechanisms introduced in Sec. IV B are illus-
trated by the background color in Fig. 9. In the following, we
will discuss the determination of these areas and the behavior
of the energy barrier with increasing J⊥.

For very low interlayer exchange, the sRR collapse is
preferred. This mechanism is associated with large interlayer
exchange costs, as discussed in the context of Fig. 6. The
sCR collapse minimizes these costs and is therefore preferred
for increasing interlayer exchange. However, it is possible
to meta-stabilize the sRR mechanism up to J⊥ = 0.2 meV
as shown in Fig. 9. This was calculated using the following
methodology. Since the GNEB method calculates the local
MEP closest to the initial path, it is possible to increase
(decrease) the interlayer exchange piecewise and always use
the result of the previous GNEB calculation as the initial
path for calculating the collapse for the next larger (lower)

interlayer exchange. The orange arrows in Fig. 9 symbolize
such calculations for the sRR collapse starting from J⊥ =
0 meV. The steps were chosen to be �J⊥ = 0.01 meV but
for better visibility only a few data points are presented in
Fig. 9. Similarly, a calculation of the sCR collapse starting
from J⊥ = 0.3 meV was performed for piecewise smaller
interlayer exchange. This is indicated by the green arrows
in Fig. 9. From the intersection of the curve for the sRR
collapse and the curve for the sCR collapse, the change of
mechanism for J⊥ = (0.03 ± 0.01) meV for the αα- and for
J⊥ = (0.027 ± 0.009) meV for the αβ system is obtained,
where the error results from the distance of the data points
in the J⊥ direction.

The further one increases the interlayer exchange, the
more energetically unfavorable the intermediate minimum be-
comes. This leads to the fact that above a certain J⊥ only
MEPs with a single saddle point exist. This transition defines
the change of the sCR collapse to the ssCR mechanism. For
the αα system, this happens at J⊥ = (1.1 ± 0.2) meV and for
the αβ system at J⊥ = (1.5 ± 0.6) meV, as indicated by the
change of the background colors in Fig. 8.

As discussed in Sec. IV B, a chimera-like saddle point is
energetically favorable for successive collapsing skyrmions.
Considering the ssCR collapse mechanism for increasing in-
terlayer exchange, we find that the magnetization changes in
both layers become more and more similar during the col-
lapse, except for the region of the saddle point (see Fig. 7).
However, as the shrinkage of the skyrmion proceeds si-
multaneously in both layers, the noncollinear part of the
magnetization for the saddle point becomes smaller. Above
a certain interlayer exchange, the saddle point size is small
enough that the tilting of the spins at the edge discussed in
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the context of Figs. 6(b) and 6(c) for the chimera-like saddle
point means only small savings of the interlayer exchange
costs. From this point on, the ssRR collapse is preferred. The
corresponding limit of the regimes in Fig. 9 is indicated by
renewed change of background color. However, the position
of this transition cannot be inferred from the behavior of the
energy barrier, because the curve in Fig. 9 is continuous.
Instead, the central spins of the saddle point configurations
are analyzed. This approach is described in Appendix A and
Fig. 17. For the αα system as well as for the αβ system the
change of the regimes happens for J⊥ = (4.9 ± 0.05) meV.

It is remarkable how closely the collapse mechanisms in
the αα and αβ system match in the regimes discussed so
far. Let us now consider the regime of ssRR collapse. Here
the energy barrier of the bilayer skyrmion reaches a maxi-
mum and the first differences between the αα system and
αβ system appear. While the energy barrier for the bilayer
skyrmions in the αα system converges towards twice the value
of the energy barrier of the skyrmion in the monolayer system,
the curve for the αβ system only reaches a maximum of
about max(�Eαβ ) ≈ 1.86�Emono with a decrease afterwards.
Increasing the interlayer exchange further finally leads to
the simultaneous collapse regime. The determination of the
border is again described in Appendix A and we observe
the change for J⊥ = (10.0 ± 0.05) meV for the αα and for
J⊥ = (11.9 ± 0.05) meV for the αβ system.

The decrease in the energy barrier for skyrmions in the αβ

system occurs already before the transition to the completely
simultaneous collapse mechanism happens. As the interlayer
exchange is increased within the simultaneous regime for the
αβ system the difference between the saddle point configura-
tion and the bilayer skyrmion in terms of interlayer exchange
energy increases favoring the saddle point. This leads to a
linear decline of the energy barrier as the spin configurations
along the MEP do not change anymore in this regime. This
is in sharp contrast to the behavior of the bilayer skyrmions
in the αα system. Here, the interlayer exchange energy con-
tribution to the MEP reduces to zero when the collapse is
simultaneous in both layers as all neighbors coupled via in-
terlayer exchange are aligned parallel. Therefore the energy
barrier of the bilayer skyrmion equals twice the monolayer
skyrmion energy barrier and is not affected by further changes
in J⊥.

From the decrease of the energy barrier of the skyrmion
in the αβ system for high interlayer exchange couplings we
can draw the conclusion that stability of bilayer skyrmions
not inevitably enlarges for increased interlayer exchange.
Based on these results, it is important to understand for
which interlayer exchange coupling J⊥

C a fully simultaneous
collapse of the bilayer skyrmion occurs. The detailed investi-
gation of these critical interlayer exchange parameters is given
in Sec. IV D.

D. Critical interlayer exchange couplings

During the preceding section the question arose for which
interlayer exchange J⊥ the collapse of bilayer skyrmions
becomes fully simultaneous and which underlying physical
properties determine this transition. To answer these ques-
tions, we reduced the complexity of the system by turning

to the more simple representation of the intralayer interaction
in effective nearest-neighbor approximation, with a value of
J ||

1 = 3.68 meV, as reported in Ref. [31]. This excludes the
effect of exchange frustration on the energy barrier which is
now solely dominated by the DMI, with D1 = 1.39 meV (see
Table I). With these parameters, we performed calculations of
the magnetic bilayer system analog to the preceding section,
yielding the energy barriers, �E , over varying interlayer ex-
change coupling, J⊥, for both the αα and the αβ stacking as
displayed in Figs. 10(a) and 10(c), respectively. Similar to the
case of frustrated intralayer exchange interaction, we observe
an initially strong increase and a subsequent convergence of
the energy barrier to twice the value of the corresponding
monolayer system for the αα-stacked bilayer. This value is
again not reached by the skyrmion annihilation in the αβ

stacking, as the barrier starts to decrease with J⊥ after a
maximum has been reached around J⊥ ≈ 2 meV.

Note that within nearest-neighbor approximation no
chimera collapse mechanism occurs in the low and intermedi-
ate interlayer exchange regimes, highlighting the crucial role
of the intralayer exchange frustration for the formation of the
chimera saddle point state [19,34,68]. Without this additional
stabilization, the energy difference between the radial sym-
metric and chimera saddle point structures in the monolayer
system is larger than the potential energy gain of an occurring
chimera saddle point in the bilayer skyrmion collapse. This
demonstrates that frustration effects of the intralayer interac-
tions can increase the complexity and variety of transitions in
magnetic bilayer systems.

In the following, we focus on the eigenspectra of sad-
dle point states in the interlayer exchange interval J⊥ ∈
[2.0, 3.5] meV, in which the transition of the ssRR collapse
to the completely simultaneous radial collapse takes place.

The eigenvalues of the Hessian HSp correspond to the
curvature of the energy landscape in the vicinity of the saddle
point in the basis of the eigenvectors. In Fig. 10(b), the spectra
of the eigenvalues, εSp,i ∈ {εSp,1, . . . , εSp,N }, are shown for
the saddle points of the αα-stacked bilayer versus J⊥. The
eigenvalues of the monolayer system are added as a reference
and agree with the eigenvalues published in Refs. [37,68].

Both transition mechanisms exhibit a first order saddle
point as they have exactly one negative eigenvalue shown in
the lower part of the panel. The negative eigenvalue of the
ssRR mechanism increases with J⊥ until it reaches the value
of the monolayer close to the critical interlayer exchange of
J⊥

C ≈ 2.6 meV. In the regime of simultaneous collapse, the
eigenvalue of the unstable mode lies exactly on the value of
the monolayer, which can be expected since the magnetic
structures of both layers are identical with the monolayer
saddle point structure.

In comparison to the monolayer system, a new saddle
point eigenmode appears in the bilayer system, which con-
nects the ssRR and the simultaneous collapse mechanisms
and is therefore coined layer-aligning mode [Fig. 10(b)]. For
increasing J⊥, its eigenvalue approaches zero at J⊥

C before it
steeply rises again in the simultaneous collapse regime. This
mode softening around J⊥

C is responsible for the transition
between the ssRR and the simultaneous collapse mechanisms
in both the αα and the αβ-stacking. The spectrum of the
latter is shown in Fig. 10(d). It resembles the spectrum of the
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FIG. 10. [(a)–(c)] Energy barriers of bilayer skyrmions in the αα and the αβ system relative to the energy barrier of skyrmions within the
magnetic monolayer system Pd/Fe/Ir(111) for various interlayer exchange constants J⊥. The effective parameter set (cf. Table I) is used and
the background colors follow the definition of the collapse mechanisms as defined in Fig. 9 for the NRE model. For better visibility, every
third data point is displayed. [(b) and (d)] Visualization for the αα and αβ system, respectively, of the lowest eigenvalues of the Hessian of the
saddle point configuration which belong to the energy barriers displayed in (a) and (b) for various J⊥. The identified eigenmodes calculated
for the bilayer system are labeled with BL. For a detailed description see the text. The dashed lines indicate the eigenvalues for a skyrmion
in the monolayer system at B = 4.0 T described with the effective model [37]. In (d), a fit following Eq. (13) is presented by a red line.
(e) Representation of the saddle point configuration for the bilayer skyrmion in the αα system for J⊥ = 2.3 meV. (f) Visualization of the
eigenvector for the layer-aligning mode of the saddle point presented in (e). The color code represents the z-component of the orientation of
the vectors.

αα-stacking except for a larger critical interlayer exchange of
J⊥

C ≈ 3.0 meV and eigenvalues that slightly deviate from their
monolayer counterparts with increasing J⊥.

In order to deepen the understanding of the layer-aligning
mode, we display the spin structure of the ssRR saddle point
for a value of J⊥ = 2.3 meV in Fig. 10(e). The spin structure
of both layers is quite similar, but shows small deviations
especially in the three central spins, which are slightly rotated
downward in the top layer, but point almost toward each other
in the bottom layer, implying that the radial collapse is more
advanced in the bottom layer than in the top layer as it is
expected for the ssRR collapse mechanism.

By looking at the corresponding eigenvector [Fig. 10(f)],
one can already guess that its application to the top layer
would push the magnetic structure in this layer further in the
direction of the radial collapse. In contrast, the application of
the eigenvector to the bottom layer would rotate the central
moments in the opposite direction, resulting in more similar
saddle points and thus a more simultaneous collapse in both
layers.

However, the visual examination of the eigenvector is lim-
ited and we apply the mode following method as proposed in
Ref. [68]. Each mode following step consists of the calcula-
tion of the desired eigenvector by partial diagonalization of the
Hessian matrix and the subsequent rotation of the magnetic
structure in the direction of this eigenvector. The resulting

magnetic state is then the starting point for the next mode
following step. A mode tracking algorithm which compares
the previous eigenvector with the newly calculated ones en-
sures that always the eigenvector that is the most similar to
the followed eigenmode is chosen. With this technique, the
energy landscape in the direction of the eigenmode can be
determined. See movies in Ref. [70] for a visualization of this
technique.

Figure 11(a) shows the energy over the coordinate q, which
determines the displacement of the magnetic structure along
the layer-aligning mode, where a value of q = 0 corresponds
to the simultaneous collapse. The color encodes the geodesic
distance between the magnetic structures in the top and bot-
tom layer. Thus the more blue (red) the color is, the more
simultaneous (successive) the collapse mechanism is. The
mode following calculations are performed for varying values
of the interlayer exchange, J⊥, resulting in one line per calcu-
lation. As starting points, the relaxed saddle point structures
as obtained by CI-GNEB have been used.

For small values of J⊥, the energy profiles show two de-
generate minima for both possible realizations of the ssRR
collapse mechanism. By following the layer-aligning mode
from one minimum to the other, the saddle point of the
simultaneous collapse is passed as an intermediate local
energy maximum. With increasing J⊥, the two degenerate
energy minima become more shallow until they vanish at
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FIG. 11. (a) Local energy landscape along the layer-aligning
mode for different J⊥ around the saddle point configurations of
bilayer skyrmions in the αα system. An example for a corresponding
eigenvector is shown in Fig. 10(f). The energy is displayed relative
to the energy of the simultaneous saddle point configuration Esim and
visualized over the displacement q along the mode. The color code
represents the geodesic distance between the magnetizations of the
top layer 	M top and the bottom layer 	Mbottom. [(b) and (c)] Position
and value of the local energy minima from (a) recorded over J⊥. The
green lines indicate fits of Eqs. (10) and (11), respectively.

J⊥
C ≈ 2.6 meV and a single minimum at q = 0 emerges for

even larger J⊥.
This behavior can be discussed analog to Landau’s theory

for continuous phase transitions by modeling the energy to the
fourth power along the mode:

E (q, J⊥) − Esim = a(J⊥) · q2 + b(J⊥)

2
q4, (9)

where the displacement along the mode q takes the role of the
ordering parameter, E (q, J⊥) is the energy along this ordering
parameter for some value J⊥ of the parameter provoking the
phase transition, and Esim is the zero point of this energy,
which will be defined below. In order to prohibit indefinite
negative energies for indefinite order parameters b(J⊥) > 0
has to hold and it will be further assumed that b(J⊥) = b0 is
valid near J⊥. Calculating the stationary points q0 of Eq. (9)
yields

q2
0 = − a

b0
.

We obtain one local minimum (q0 = 0) for a > 0 and two
local minima for a < 0, which mimics exactly the behavior
of the energy landscape of the layer-aligning mode near J⊥

C .
Therefore one can model a(J⊥) ≈ a0(J⊥ − J⊥

C ) for a0 > 0
and J⊥ close to J⊥

C and the positions of the minima follow

q0,± = ±a0

b0
|J⊥ − J⊥

C | 1
2 . (10)

Further, the energy of the local minima can be determined
through

E (q0,±) = − a2
0

2b0
(J⊥ − J⊥

C )2. (11)

Fitting Eqs. (10) and (11) to the data obtained by the mode-
following method yields a0 = (2.98 ± 0.04) meV/rad2, b0 =
(1.61 ± 0.03) meV/rad4 and J⊥

C = (2.613 ± 0.003) meV
[see Figs. 11(b) and 11(c)]. A phase transition implies a
symmetric configuration above J⊥

C which splits up into two
configurations with lower symmetry below J⊥

C . The nature
of this symmetry can be revealed through visualizing the
geodesic distance [32] between the magnetization of the top
Fe layer 	M top to the magnetization of the bottom Fe layer
	Mbot:

L( 	M top, 	Mbot ) =
√(

l top,bot
1

)2 + (
l top,bot
2

)2 + · · · + (
l top,bot
N/2

)2
,

(12)

where N/2 is the number of spins per layer and the l top, bot
i

are geodesic distances between the points of the unit sphere,
which correspond to the spins in the top and bottom layer,
respectively. This quantity is represented by the color code
in Fig. 11(a). While blue represents parallel aligned layers,
red indicates a net angle between the magnetization of the
different layers. Therefore one can conclude that indeed the
simultaneous collapse mechanism matches with the high sym-
metry configuration for interlayer exchange couplings above
J⊥

C . Below J⊥
C two collapse mechanisms are possible with

saddle point configurations obeying a successive transgression
of the Bloch-like points in each layer and thus represent-
ing a lower symmetry. Note that the energy for each slice
(each J⊥) in Fig. 11(a) is meant relative to the simultaneous
configuration Esim. This simultaneous configuration is a local
minimum for J⊥ > J⊥

C and a local maximum for J⊥ < J⊥
C .

The displacement along the mode q is also expressed relative
to this simultaneous configuration. All these consideration
were done for the bilayer skyrmion collapse within the αα

system. For the purpose of substantiating the same mechanism
in the αβ system, we show that a0 and J⊥ can already be de-
rived from the eigenvalue spectrum in Fig. 10(c). The second
derivative of Eq. (9) yields the curvature at the minimum along
the energy reach along the layer-aligning mode c and thus the
corresponding eigenvalue

εSp,c =
{

2a0|J⊥ − J⊥
C |, J⊥ > J⊥

C
−4a0|J⊥ − J⊥

C |, J⊥ < J⊥
C

(13)

for J⊥ close to J⊥
C . A fit of Eq. (13) to the layer-aligning mode

for J⊥ > J⊥
C results a0 = 1.71 meV/rad2 and J⊥

C = 3.06 meV
for the αβ system. This fit is displayed by a line in Fig. 10(d).
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FIG. 12. (a) Minimum energy paths of bilayer skyrmions in the
αα system based on the effective parameters from the monolayer
system Pd/Fe/Ir(111) for different values of the DMI (see color
code in legend). The interlayer exchange constant is set to zero
(J⊥ = 0 meV). For comparison the energy barrier of the skyrmion
in the magnetic monolayer for Deff = 1.39 meV [31] is indicated as
dashed line. (b) Energy barriers and radius of the bilayer skyrmions
in the magnetic monolayer systems for different values of the DMI.
The radius of the relaxed bilayer skyrmion is given in units of the
lattice constant a.

E. Varying the monolayer barrier

Addressing the issue of designing a magnetic bilayer sys-
tem which yields maximum skyrmion stability an estimate of
the critical interlayer exchange strength J⊥

C from the prop-
erties of the underlying monolayer system is important. We
assume that the energy barrier of the skyrmion in the magnetic
monolayer system may influence J⊥

C of the bilayer system.
Therefore we varied the barrier of each skyrmion in the bi-
layer by systematically varying the DMI within the effective
model (Deff ∈ [1.19, 1.59] meV). Figure 12(a) shows the ob-
tained MEPs for five values of the DMI for J⊥ = 0 meV.
The collapses are similar to the MEP of the skyrmion in
the underlying monolayer system as discussed in Fig. 5. Fig-
ure 12(b) presents the energy barrier of the first collapse and
the radius of bilayer skyrmions for switched off interlayer
exchange depending on the corresponding value of the DMI.
In agreement with Ref. [69] the radius and the energy bar-
rier increase with the DMI strength. Since J⊥ = 0 meV this
energy barrier corresponds to the energy barrier of the un-
derlying magnetic monolayer system �Emono. Therefore the
variation of the DMI parameter yields a variation of the energy
barrier of the magnetic monolayer skyrmion in the interval
�Emono ∈ [25, 130] meV.

FIG. 13. Critical interlayer exchange J⊥
C for skyrmions in mag-

netic bilayer systems based on the effective parameter set (Table I)
for different values of the DMI. The color code indicates the different
values of the DMI which define the energy barrier of a skyrmion in
the corresponding magnetic monolayer system (cf. Fig. 12). Circles
denote the αα system and diamonds represent the values of J⊥

C for
the αβ system. See Fig. 18 for the corresponding visualization of the
energy barriers of the bilayer skyrmions.

After defining αα- and αβ-stacked systems for these DMI
values, we vary the interlayer exchange coupling and calcu-
late the energy barriers of the bilayer skyrmions analog to
Sec. IV C. We have to mention that during this variation no
chimera type saddle points appear, which we attribute to the
lack of intralayer frustration for the effective parameter set. In
Appendix B in Fig. 18, we present, similar to Figs. 10(a) and
10(c), the energy barriers of the bilayer skyrmions relative to
the energy barrier of the skyrmion in the corresponding mono-
layer system for the αα- and αβ-stacks, respectively. Further
we determined the critical interlayer exchange parameters J⊥

C
by calculating the eigenvalue spectrum and applying a fit
following Eq. (13) for J⊥ > J⊥

C as presented in Fig. 10(c). The
obtained values of J⊥

C are displayed for the αα and αβ system
in Fig. 13 as a function of the energy barrier of a skyrmion
in the corresponding monolayer system �Emono. Note that the
determination of J⊥

C for Deff = 1.19 meV was not possible for
the αβ system as the divergence of the layer-aligning mode is
overlapping in the eigenvalue spectrum with another collapse
mechanism of the low interlayer exchange regime here.

Although the critical parameter J⊥
C is always a bit larger for

skyrmions in the αβ-stacked system than for the skyrmions
in the αα system both follow the same trend. As the mono-
layer barrier increases a higher interlayer exchange coupling
is needed to force the system into a simultaneous collapse,
which is indicated by the increase of J⊥

C in Fig. 13. For
comparison we observed J⊥

C = 10.0 meV for the αα and J⊥
C =

11.9 meV for the αβ system treated with the NRE-parameter
set in Sec. IV C. This corresponded to an energy barrier
�Emono ≈ 143 meV of the underlying monolayer system.

It is striking that for systems examined with the effective
parameter set the critical interlayer exchange parameters are
significantly smaller than for the systems treated with the NRE
model. This is an indication that in real systems with exchange
frustration a much larger interlayer exchange is needed to
force a simultaneous collapse of the skyrmions in the different
layers. Therefore, if one aims to design a magnetic bilayer
system with maximum skyrmion stability two aspects have
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to be considered. On the one hand, a higher energy barrier
of a skyrmion in the underlying monolayer system provides a
higher energy barrier for the simultaneously collapsing bilayer
skyrmion. On the other hand, one needs higher interlayer
couplings to realize this simultaneous transition.

F. Energy barriers for multilayer skyrmions

Our previous results for skyrmions in bilayers carry over
to systems with more layers. For this purpose, we again use
the effective parameter set to exclude exchange frustration
effects within the layers. Energy barriers for skyrmions were
obtained in three layer and four layer systems, with the mag-
netic atoms of the different layers all occupying the same
lattice sites. Following our notation, these system are of the
αα type. We also studied a system with four layers and six
layers with an αβ stacking. For weak interlayer exchange, we
calculated increased multiplicity of collapse mechanisms, in
agreement with the bilayer results. Presenting this complexity
is beyond the aim of this paper. We therefore present here
only the regime of large interlayer exchange coupling. The
energy barriers depending on the interlayer exchange J⊥ of
the skyrmions in the multilayer systems studied are shown in
Fig. 14(a) relative to the energy barrier of the skyrmion of the
monolayer system.

As expected, the energy barriers for the three layer (four
layer) skyrmions in the αα system converge to three (four)
times the energy barrier of the skyrmion in the monolayer
system. However, it can be observed in Fig. 14(a) that a larger
interlayer exchange coupling J⊥

C is needed in the case of the
three and four layer system to force a simultaneous collapse
of the skyrmions than in the bilayer. If we extrapolate the
results obtained here for the skyrmions in the αα systems
[Fig 14(b)] to a system with L layers in which the atoms of all
layers occupy the same lattice sites, we confirm the conjecture
�E = L�Emono for the skyrmion in the multilayer system as
long as J⊥ > J⊥

C holds and we only consider nearest-neighbor
interlayer exchange interactions. This is in agreement with the
prediction in Ref. [54].

It is the general view that an increase in magnetic material
leads to an increase in the stability of skyrmions in mag-
netic multilayers. To ensure simultaneous behavior of these
skyrmions, it is often concluded that the largest possible in-
terlayer exchange is desirable. Our calculations for the αα

systems confirm this. If we move to the αβ systems, which
are relevant for real layered materials, we also find that in-
creasing the number of layers increases the energy barrier
of the skyrmions [Fig. 14(a)] consistent with the studies of
Hoffmann et al. [53].

However, the situation is more complicated. What can be
deduced from the data shown in Fig. 14(a) is that the max-
imum stability for skyrmions in multilayers is achieved for
a certain value of interlayer exchange. The maximum of the
energy barrier for the skyrmion in the four layer αβ system
is below 3.5 times the energy barrier of the skyrmion in the
monolayer system and is obtained for J⊥ ≈ 6 meV. The max-
imum achievable energy barrier for the skyrmion in the six
layer αβ system is even below five times the energy barrier in
the monolayer system. This is in contrast to the common belief
that interlayer exchange coupling does not affect the stability

FIG. 14. (a) Energy barriers of skyrmions in magnetic multi-
layer systems for various interlayer exchange couplings J⊥ relative
to the energy barrier of the skyrmion in the magnetic monolayer
Pd/Fe/Ir(111). The effective parameter set is used for these calcu-
lations. The energy barriers for the skyrmions in the two-, three-
and four-layer systems obeying a αα-stacking sequence are shown
in magenta. The barriers for the two-, four-, and sixlayer systems
with αβ-stacking are shown in black. (b) Energy barriers from (a) as
a function of the number of layers for fixed values of J⊥. The
corresponding data points are indicated by empty squares in (a). For
the αα systems the layer-dependent energy barrier is presented for
J⊥ = 10 meV, while it is shown for the αβ systems for J⊥ = 12, 15,
18, and 21 meV.

of multilayer skyrmions as long as it is strong enough to allow
simultaneous behavior of the skyrmion.

Comparing the different αβ systems also indicates that the
decrease of the energy barrier for high interlayer exchange
couplings occurs with a more negative slope the more layers
are involved. This leads to the fact that the energy gain in
terms of skyrmion stability by adding another layer decreases
with increasing interlayer exchange coupling [Fig. 14(b)]. We
propose that the energy barrier of skyrmions in αβ-stacked
multilayer systems with L layers is thus given by �E =
g(J⊥) L�Emono. Where the function g(J⊥) < 1 attributes to
the fact that optimizing the skyrmion stability through adding
more layers relies on the choice of the optimal interlayer
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FIG. 15. (a) Temperature independent pre-exponential factor
τ0 T [Eq. (6)] for skyrmions in magnetic bilayer systems based on
the magnetic monolayer system Pd/Fe/Ir(111) in αα and αβ stack-
ing for various interlayer exchange couplings J⊥. The dashed line
indicates pre-exponential factor for skyrmions within the magnetic
monolayer system Pd/Fe/Ir(111) [37] for B = 4.0 T. (b) Skyrmion
lifetime τ for T = 30 K calculated with the Arrhenius law [Eq. (1)]
using the energy barriers �E from Fig. 10(a) and the prefactor τ0

displayed in part (a) of this figure.

exchange. This counterintuitive result provides an important
contribution to the understanding of skyrmion stability in
magnetic multilayers and is visualized in Fig. 14(b). Here
we extracted the energy barriers for fixed values of J⊥ from
Fig. 14(a) and plotted versus the number of layers.

G. Lifetime of bilayer skyrmions

In the preceding sections we discussed the dependence of
the energy barrier on the interlayer exchange in magnetic
bilayer systems, which is the dominant contribution to the
lifetime at low temperatures due to the exponential term in
Eq. (1). However, as reported in Refs. [37,40], the effect
of the change of the pre-exponential factor should not be
underestimated. Therefore we present the calculation of the
pre-exponential factor τ0 for the generic example of the bi-
layer stacks based on the effective parameter set as discussed
in Sec. IV D. For the purpose of underlining our results con-
cerning the stability of skyrmions in the strong interlayer
exchange coupling regime we only discuss here collapse paths
passing through a single saddle point on the energy surface.
Collapses involving intermediate metastable states can be de-
scribed using the Master equation and are beyond the scope
of this article. The diagonalization of the Hessian matrix for
the bilayer skyrmion and the saddle point configuration gives
us the eigenvalues of the initial bilayer skyrmion εA,i and the
saddle point configuration εSp,i. The determined eigenvalues
allow the calculation of the prefactors following Eq. (7). Note

FIG. 16. Energy barriers of bilayer skyrmions in αα (magenta)
and αβ systems (black) relative to the energy barrier of the skyrmion
in the magnetic monolayer Pd/Fe/Ir(111) depending on the inter-
layer exchange per unit cell J⊥. The effective model was used to
describe the intralayer exchange coupling. The different values of ε

encode different distributions of the interlayer exchange to the first
neighbor and second neighbor shell [see Eqs. (14) and (15)]. A value
ε < 0 indicates a frustrated system in terms of interlayer exchange
coupling.

that in the case of a bilayer system, the Hessian matrix of
a spin configuration has twice as many eigenvalues as the
corresponding matrix of the monolayer system. However, the
pre-exponential factors are still comparable, since only the
ratio of the eigenvalues of the initial configuration and the
saddle configuration enters into Eq. (7).

Figure 15(a) shows a highly similar behavior for the αα

and αβ stack regarding the pre-exponential factor τ0. A sharp
decline of τ0 occurs around J⊥ = 3.0 meV followed by an
increase towards the prefactor of the magnetic monolayer sys-
tem, which is indicated by the dashed line. This narrow sink
is produced by the softening of the layer-aligning saddle point
mode which approaches zero in this regime (see Fig. 10). The
softening leads to a division by zero in Eq. (7) and therefore τ0

approaches zero for J⊥ ≈ J⊥
C . In this region the applicability

of the harmonic approximation is questionable. Nevertheless,
it is remarkable that the prefactor reduces the stability of the
bilayer skyrmions for both stackings compared to the prefac-
tor of the skyrmion in the magnetic monolayer system (dashed
line in Fig. 15). We attribute this to an increased entropic
difference between the transition state and the skyrmion state
for intermediate interlayer exchange couplings as the number
of possible transition mechanisms reduces with increased ex-
change couplings between the layers.

In 2017, Wild et al. [42] investigated the lifetime of
skyrmions in B20 compounds. Changes in the magnetic field
which lead to an increased energy barrier were counterbal-
anced by changes in the pre-exponential factor by 30 orders
of magnitude leading to a substantial reduction of the lifetime
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FIG. 17. [(a)–(c)] Representation of the saddle point configuration of the bilayer skyrmion collapse in the αα system for J⊥ = 3, 7, and
15 meV. The mz

i -component of the magnetic moments i is emphasized by the color code. In each layer, the magnetic moments i with the
minimum mz

i component are highlighted with a white box. (d) Analog representation for the saddle point configuration of a collapse in the
αβ system for J⊥ = 27 meV. (e) Visualization of the minimum component of the magnetization in the z direction for collapses of bilayer
skyrmions in the αα system for various J⊥ for both layers l = 1 and 2. The background color indicates the regime of the collapse types as
introduced in Sec. IV B. (f) Analog visualization to (e) for the αβ system. For comparison the corresponding value for the monolayer skyrmion
collapse in Pd/Fe/Ir(111) is indicated as dashed black line in (e) and (f). All calculations where done with the NRE parameter set and only
each third data point is shown for better visibility in (e),(f).

of skyrmions by entropic effects [42]. However we expect that
the increase in the energy barrier for skyrmions in systems
with multiple magnetic layers always goes along with such a
entropic induced decrease of the pre-exponential-factor τ0 for
low J⊥. As the interlayer exchange coupling increases above
J⊥ ≈ 15 meV the prefactor of the bilayer systems reaches the
prefactor for skyrmions in the monolayer system [Fig. 15(a)].
Note that the visualization in Fig. 15(a) is valid for all tem-
peratures T since the linear dependance in Eq. (7) allows
to display τ0 T . Since there are two minimum energy paths
describing independent but equivalent realizations of the ssRR
collapse for J⊥ < J⊥

C , we multiplied τ−1
0 by a further factor

of two in this regime. These two realizations can be obtained
from one another by swapping the magnetic configurations of
the layers.

In Fig. 15(b), we calculated the lifetime τ for the exem-
plary temperature T = 30 K. For the shown parameter range
of J⊥, the stability of the bilayer skyrmion is always enhanced
compared to the skyrmion in the magnetic monolayer sys-
tem. The results of this section exemplify that the effects of
changing the pre-exponential factor are relatively small when
varying the interlayer exchange compared to the influence of
the energy barrier on the lifetime of the bilayer skyrmions
discussed here. Therefore one can associate the results of

the previous sections regarding the energy barriers of bilayer
skyrmions directly with the stability of these skyrmions.

V. CONCLUSIONS AND DISCUSSION

In this work, we investigated fundamental properties of
skyrmion stability in magnetic multilayer systems. We con-
sidered multilayers built from single Fe layers with the
magnetic properties taken from the well-studied film system
Pd/Fe/Ir(111) and coupled by interlayer exchange of variable
strength J⊥. The layers are either stacked in αα order, in
which the magnetic atoms are placed on top of each other,
or in αβ order, with magnetic layers horizontally offset from
each other. This shift describes the relative position of the
magnetic layers with respect to each other and is therefore
characteristic for directly adjacent magnetic layers in fcc- or
hcp-stacked thicker magnetic layers as well as for various
multilayer systems consisting of magnetic layers sandwiched
between nonmagnetic layers.

For both stacking orders of magnetic bilayers, we found
the expected simultaneous collapse of skyrmions in both Fe
layers when J⊥ exceeds a critical interlayer exchange, J⊥

C . The
collapse splits into the successive annihilation of skyrmions
in individual layers for small J⊥, which can be seen as the
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FIG. 18. [(a) and (b)] Energy barrier �E of bilayer skyrmions in
the αα and αβ system for various interlayer exchange couplings J⊥

relative to the energy barrier of a skyrmion in the underlying mono-
layer system �Emono. The variation of the DMI is indicated through
the color code in the legend. (a) displays the αα and (b) presents
the αβ system. The vertical dashed lines indicate the positions of
J⊥

C (see Fig. 10). These critical interlayer exchange couplings J⊥
C are

displayed in dependence of �Emono in Fig. 13.

bilayer analog to the occurrence of chiral magnetic bobbers
in bulk systems [67]. For intermediate strengths of J⊥, a rich
phase space of collapse mechanisms arises, in which the inter-
layer exchange interaction can favor a mix of semisuccessive
chimera and radial symmetric mechanisms.

Our analysis of the eigenvalue spectrum of the bilayer
system revealed the layer-aligning eigenmode, which is re-
sponsible for the transition from the ssRR collapse to the
simultaneous collapse. We found, that this transition can be
described accurately by Landau’s theory for continuous phase
transitions, which provides a stable definition of the critical
interlayer exchange J⊥

C . This can help to design multilayer
systems in the simultaneous collapse regime, which is de-
sirable for most applications since the annihilation processes
become more complex and thus harder to control for less
strongly coupled systems.

Harmonic transition state theory calculations show a small
dependence of the prefactor on the interlayer exchange con-
stant and the number of magnetic layers which indicates only
a minor role of entropic effects in the investigated parameter
space. However, the situation could be different for couplings
below J⊥

C where the role of additional multilayer eigenmodes
is more complex.

Considering nearest-neighbor interlayer exchange, the en-
ergy barrier protecting skyrmions in the αα-stacked systems
equals the energy barrier for the corresponding skyrmion in
the magnetic monolayer multiplied by the number of magnetic
layers L as long as J⊥ > J⊥

C . The critical value J⊥
C , on the

other hand, is increasing with L as well and is thus limiting
the number of layers in the simultaneous collapse regime
for a given J⊥. These results are consistent with the notion
that a strong interlayer exchange is desirable for increasing
skyrmion stability.

However, for an αβ stacking, collinear structures are fa-
vored by the nearest-neighbor interlayer exchange interaction.
This leads to the existence of a sweet spot for the strength of
J⊥, at which the increase of the total energy barrier due to the
increased number of layers and the reduction of the energy
barrier caused by strong interlayer coupling is optimized.

It turns out, that the optimal choice of J⊥ changes drasti-
cally with the number of coupled magnetic layers, the other
interaction parameters, and the crystal structure of the mul-
tilayer. These results occur systematically and consistent for
our model systems with and without intralayer exchange frus-
tration and over a large interval of nearest-neighbor interlayer
exchange parameters.

Our motivation was to obtain general trends for exchange-
coupled monolayers with a single-parameter study and at
the same time to be consistent with a well-established
Pd/Fe/Ir(111) system in the case of vanishing interlayer ex-
change. However, as contributions of second nearest-neighbor
interlayer exchange bonds introduce horizontal components
of the interlayer exchange interaction for both the αα and
αβ stackings, it is important to discuss their influence in the
context of the presented results. To address this aspect, we per-
formed calculations where we model the interlayer exchange
according to the following formulas:

J⊥
1 = 1 − ε

nx
1

J⊥, (14)

J⊥
2 = ε

nx
2

J⊥, (15)

where J⊥
1 and J⊥

2 are the interlayer exchange constants per
atom for the first and second neighbor shells, respectively; nx

1,
nx

2 are the number of neighbors in the corresponding shells
for stacking x. For αα and αβ stacking, we particularly have
nαα

1 = 1, nαα
2 = 6 and nαβ

1 = 3, nαβ

2 = 3. The value of ε de-
scribes the contribution of the first and second neighbors into
the total interlayer exchange per unit cell. We have investi-
gated the case of ε = 0.1 and 0.25 for a bilayer system and
calculated the skyrmion collapse energy barrier as a function
of J⊥. The intralayer exchange was modeled according to the
effective model.

The corresponding results are presented in Fig. 16. We
found that for a given J⊥ > J⊥

C the skyrmion collapse barrier
�E decreases with ε for both stackings of the magnetic layers.
Nevertheless, adding interlayer exchange beyond nearest-
neighbors does not lead to qualitative changes in the J⊥
dependence of the collapse energy barrier for the αβ stacking.
In contrast, the behavior of �E for the αα stacking changes
sharply and becomes similar to that for the αβ stacking thanks
to the presence of the horizontal components of the interlayer
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exchange. As a consequence, �E does not converge to twice
the value of the energy barrier for a monolayer system �Emono

in the strong coupling regime even for the αα stacking. Quan-
titatively, for the same value of ε, the energy barriers of the
skyrmions in the αα-stackings are always larger than in the
corresponding αβ system in the strong interlayer exchange
regime. Noteworthy, one can achieve a barrier larger than
2�Emono by engineering the interlayer exchange frustration
modeled here by negative ε values (see Fig. 16).

Note that these calculations cannot be considered an ex-
haustive study of the effect of the shell-resolved interlayer
exchange on the skyrmion stability. However, they demon-
strate that the energy barrier of multilayer skyrmions is
hardly ever a simple multiple of the energy barrier for the
corresponding monolayer skyrmion �Emono, as in-plane com-
ponents of the interlayer exchange couplings are likely present
in real systems. In the case of nonfrustrated interlayer ex-
change, this simple scaling relation �E = L�Emono can be
regarded as an upper limit for the achievable energy barriers
of skyrmions in multilayer systems. The actual energy barrier
can be significantly smaller than this value.
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APPENDIX A: IDENTIFICATION
OF COLLAPSE MECHANISMS

The examination of bilayer skyrmion collapses as a func-
tion of interlayer exchange coupling J⊥ in Sec. IV B revealed
several mechanisms. In Fig. 9 in Sec. IV C, an overview of the
parameter range of J⊥ for the respective collapse mechanisms
is indicated by the background color. While the boundaries
between the mechanisms in the low interlayer exchange

region are determined from the corresponding energy barriers
in Fig. 9, this section shows how the boundaries between the
regimes in the intermediate and high coupling regions were
determined.

In Figs. 17(a)–17(d), saddle point configurations are shown
for different values of J⊥ for the αα- and αβ systems. While
Fig. 17(a) shows a saddle point of ssCR collapse, Fig. 17(b)
illustrates the ssRR collapse, and Fig. 17(c) demonstrates the
saddle point for the simultaneous collapse in the αα system.

An example of a saddle point for large J⊥ for the αβ

system is given in Fig. 17(d). If one searches for the magnetic
moment with the minimum magnetization in the z direction
for each layer [see white boxes in Figs. 17(a)–17(d)] and plots
this value above J⊥, a systematic classification of the mecha-
nisms can be made. For the αα system this representation can
be found in Fig. 17(e) and for the αβ system in Fig. 17(f). At
this point, it is important to mention that the indexing of the
layers is arbitrary, since the order of the skyrmion transitions
in the different layers is not fixed. We now define the transition
between the ssCR regime to the ssRR collapse mechanism by
the jump visible in Figs. 17(e) and 17(f) for J⊥ ≈ 5 meV. The
transition from the ssRR regime to the region of simultane-
ous collapse can again be defined by the point at which the
minimum magnetization in the z direction coincides in both
layers.

APPENDIX B: VARYING THE MONOLAYER
SKYRMION BARRIER

Similar to Figs. 10(a) and 10(c), we varied the interlayer
exchange coupling and calculated the energy barriers of bi-
layer skyrmions. In addition, we varied the energy barrier of
the skyrmions in each layer by changing the value of the DMI
(Deff). This is described in Sec. IV E. The results of these
calculations are shown in Fig. 18(a) for the αα systems and
in Fig. 18(b) for the αβ systems. We calculated the critical in-
terlayer exchange parameters J⊥

C , which mark the onset of the
regime of the simultaneous skyrmion collapse, by calculating
the eigenvalue spectrum as presented in Figs. 10(b) and 10(d)
and fitting of Eq. (13) to the eigenvalues of the layer-aligning
mode above J⊥

C .

[1] C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M.
Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy
et al., J. Phys. D: Appl. Phys. 53, 363001 (2020).

[2] A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031
(2017).

[3] R. Wiesendanger, Nat. Rev. Mater. 1, 16044 (2016).
[4] A. Bogdanov and A. Hubert, Phys. Stat. Sol. (b) 186, 527

(1994).
[5] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,

A. Neubauer, R. Georgii, and P. Böni, Science 323, 915
(2009).

[6] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[7] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).

[8] T. Moriya, Phys. Rev. 120, 91 (1960).
[9] M. Heide, G. Bihlmayer, and S. Blügel, Phys. Rev. B 78,

140403(R) (2008).
[10] M. Perini, S. Meyer, B. Dupé, S. von Malottki, A. Kubetzka, K.

von Bergmann, R. Wiesendanger, and S. Heinze, Phys. Rev. B
97, 184425 (2018).

[11] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze,
G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R.
Wiesendanger, Nature (London) 447, 190 (2007).

[12] P. Ferriani, K. von Bergmann, E. Y. Vedmedenko, S. Heinze,
M. Bode, M. Heide, G. Bihlmayer, S. Blügel, and R.
Wiesendanger, Phys. Rev. Lett. 101, 027201 (2008).

[13] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A.
Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel,
Nat. Phys. 7, 713 (2011).

014414-19

https://doi.org/10.1088/1361-6463/ab8418
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1002/pssb.2221860223
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevB.78.140403
https://doi.org/10.1103/PhysRevB.97.184425
https://doi.org/10.1038/nature05802
https://doi.org/10.1103/PhysRevLett.101.027201
https://doi.org/10.1038/nphys2045


HENDRIK SCHRAUTZER et al. PHYSICAL REVIEW B 105, 014414 (2022)

[14] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,
K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[15] N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann,
and R. Wiesendanger, Phys. Rev. Lett. 114, 177203
(2015).

[16] D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann,
A. Kubetzka, O. Hovorka, H. Fangohr, and R. Wiesendanger,
Phys. Rev. B 99, 214408 (2019).

[17] P.-J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von
Bergmann, and R. Wiesendanger, Nat. Nanotechnol. 12, 123
(2017).

[18] M. Hervé, B. Dupé, R. Lopes, M. Böttcher, M. D. Martins,
T. Balashov, L. Gerhard, J. Sinova, and W. Wulfhekel,
Nat. Commun. 9, 1015 (2018).

[19] S. Meyer, M. Perini, S. von Malottki, A. Kubetzka,
R. Wiesendanger, K. von Bergmann, and S. Heinze,
Nat. Commun. 10, 3823 (2019).

[20] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
[21] P. Ferriani, I. Turek, S. Heinze, G. Bihlmayer, and S. Blügel,

Phys. Rev. Lett. 99, 187203 (2007).
[22] B. Hardrat, A. Al-Zubi, P. Ferriani, S. Blügel, G. Bihlmayer,

and S. Heinze, Phys. Rev. B 79, 094411 (2009).
[23] S. Blizak, G. Bihlmayer, and S. Blügel, Phys. Rev. B 86, 094436

(2012).
[24] B. Dupé, M. Hoffmann, C. Paillard, and S. Heinze,

Nat. Commun. 5, 4030 (2014).
[25] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Phys.

Rev. Lett. 115, 267210 (2015).
[26] A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, and A.

Manchon, Phys. Rev. Lett. 117, 247202 (2016).
[27] G. Beutier, S. P. Collins, O. V. Dimitrova, V. E. Dmitrienko,

M. I. Katsnelson, Y. O. Kvashnin, A. I. Lichtenstein, V. V.
Mazurenko, A. G. A. Nisbet, E. N. Ovchinnikova, and D.
Pincini, Phys. Rev. Lett. 119, 167201 (2017).

[28] R. Juge, S.-G. Je, D. S. Chaves, L. D. Buda-Prejbeanu, J. Peña-
Garcia, J. Nath, I. M. Miron, K. G. Rana, L. Aballe, M. Foerster,
F. Genuzio, T. O. Mentes, A. Locatelli, F. Maccherozzi, S. S.
Dhesi, M. Belmeguenai, Y. Roussigné, S. Auffret, S. Pizzini, G.
Gaudin et al., Phys. Rev. Appl. 12, 044007 (2019).

[29] J. Grenz, A. Köhler, A. Schwarz, and R. Wiesendanger, Phys.
Rev. Lett. 119, 047205 (2017).

[30] I. S. Lobanov, H. Jónsson, and V. M. Uzdin, Phys. Rev. B 94,
174418 (2016).

[31] S. Malottki, B. Dupé, P. F. Bessarab, A. Delin, and S. Heinze,
Sci. Rep. 7, 12299 (2017).

[32] P. Bessarab, V. Uzdin, and H. Jónsson, Comput. Phys. Commun.
196, 335 (2015).

[33] L. Desplat, J.-V. Kim, and R. L. Stamps, Phys. Rev. B 99,
174409 (2019).

[34] F. Muckel, S. von Malottki, C. Holl, B. Pestka, M. Pratzer, P. F.
Bessarab, S. Heinze, and M. Morgenstern, Nat. Phys. 17, 395
(2021).

[35] P. F. Bessarab, G. P. Müller, I. S. Lobanov, F. N. Rybakov, N. S.
Kiselev, H. Jónsson, V. M. Uzdin, S. Blügel, L. Bergqvist, and
A. Delin, Sci. Rep. 8, 3433 (2018).

[36] G. P. Müller, P. F. Bessarab, S. M. Vlasov, F. Lux, N. S. Kiselev,
S. Blügel, V. M. Uzdin, and H. Jónsson, Phys. Rev. Lett. 121,
197202 (2018).

[37] S. von Malottki, P. F. Bessarab, S. Haldar, A. Delin, and S.
Heinze, Phys. Rev. B 99, 060409(R) (2019).

[38] L. Desplat, D. Suess, J.-V. Kim, and R. L. Stamps, Phys. Rev. B
98, 134407(R) (2018).

[39] S. Paul, S. Haldar, S. von Malottki, and S. Heinze,
Nat. Commun. 11, 4756 (2020).

[40] A. S. Varentcova, S. von Malottki, M. N. Potkina, G.
Kwiatkowski, S. Heinze, and P. F. Bessarab, npj Comput. Mater.
6, 193 (2020).

[41] U. Ritzmann, S. von Malottki, J.-V. Kim, S. Heinze, J. Sinova,
and B. Dupé, Nat. Electron. 1, 451 (2018).

[42] J. Wild, T. N. G. Meier, S. Pöllath, M. Kronseder, A. Bauer, A.
Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J.
Müller, A. Rosch, C. Pfleiderer, and C. H. Back, Sci. Adv. 3,
e1701704 (2017).

[43] B. Dupé, G. Bihlmayer, M. Böttcher, S. Blügel, and S. Heinze,
Nat. Commun. 7, 11779 (2016).

[44] C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio,
C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia,
C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M.
Weigand, J. Raabe, V. Cros, and A. Fert, Nat. Nanotechnol. 11,
444 (2016).

[45] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K.
Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand et al.,
Nat. Mater. 15, 501 (2016).

[46] O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves,
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