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Extraction of the spin-glass free-energy landscape from 1/ f noise measurements
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The 1/ f resistance noise has been measured in thin CuMn (13.5 at.%) spin-glass films. The temperature
and frequency dependence have been analyzed in terms of the landscape of free-energy barriers. This analysis
provides the full barrier distribution for various thin film thicknesses between 10 nm and 80 nm. The free-energy
barrier height distribution’s width and energy position have been determined. Contrary to previous models with
fixed shape and energy, the free-energy landscape is described by a distribution of barriers that both shifts and
changes shape as the temperature is reduced. The dependence of this distribution is in contrast with recent
predictions. Using the fluctuation dissipation theorem, the 1/ f measurements connect with χ ′′, displaying
agreement with other direct measurements of the latter.
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I. INTRODUCTION

After nearly 50 years of intense theoretical and experimen-
tal work, the fundamental dynamics of spin glasses are not
fully understood. There has been notable progress recently,
with numerical simulations for the first time exploring time
and length scales comparable to experiment [1–11].

Recent experiments have shown that the 10–50 Oe applied
fields typically used (e.g., Refs. [2–4,12,13]) to probe the
spin-glass state measurably affect the energy landscape [3].
Previous work by Weissman and collaborators demonstrated
that 1/ f resistance noise measurements in metallic spin-glass
systems are sensitive to the underlying magnetic dynamics
[14–17] and, unlike more conventional measurements, can
be made without an external magnetic field. We use 1/ f
noise measurements to directly probe the spin-glass energy
landscape in mesoscale samples, without applying a field.

In our work, we present three results. First, we relate our
measurements to the out-of-phase part of the ac susceptibility
χ ′′( f , T ) using the fluctuation-dissipation theorem (FDT) and
compare to previous measurements of χ ′′ in thin spin-glass
films. We observe the inferred χ ′′ curves at different fre-
quencies cross at a temperature below the spin-glass freezing
temperature, confirming an earlier result [12]. Second, we
compare our measurements to recent measurements and anal-
yses [1–10] and find that our measurements contrast with the
recent work. Finally, we model the spin-glass energy land-
scape in a way that allows the shape of the energy barrier
distribution to change with temperature, observing a striking
dependence on film thickness.

The magnitude of the 1/ f resistance noise of metallic spin
glasses in the spin-glass state is more than an order of mag-
nitude larger than the background noise [14]. For T/Tf � 1,
where Tf is the freezing temperature, as defined later, local
interference (LI) noise dominates: inelastic scattering events
cause the conduction electrons to lose phase coherence, and

noise is generated by pairwise interference between scattering
sites [14]. On the other hand, for T � Tf , the inelastic scat-
tering length can be much larger than the elastic scattering
length, and the noise is dominated by universal conductance
fluctuations (UCFs), arising from interference between multi-
ple Feynman paths [14]. Feng et al. (FBLM) worked out the
UCF theory for spin glasses, finding a noise magnitude is pro-
portional to (�in/�el )1.5 where �in and �el are the inelastic and
elastic scattering lengths, respectively [18]. The growth of the
inelastic scattering length as the temperature is reduced results
in an approximately T 2 coupling factor between the resistance
and magnetization noise, i.e., SM ∼ T 2SR where SM and SR are
the spectral densities of magnetic and resistance fluctuations,
respectively [14,18]. This temperature dependence will be
modified if the inelastic scattering length reaches the sample
thickness, as it most likely does in our thinnest samples. We
will be careful to point out where this could be a source of
error, and why we do not believe that it is. Finally, we note
that, by symmetry, the resistance is sensitive to a different set
of spin-configuration fluctuations than the magnetization; the
resistance is sensitive only to fluctuations of at least fourth
order. This can be seen by noting that a global spin flip would
not affect the resistance but would have a large effect on the
magnetization. This is believed to explain why the resistance
noise is only weakly sensitive to the application of a magnetic
field [14].

Typical spectra at temperatures above, below, and near Tf

are plotted for a 10 nm thick sample in Fig. 1. One clearly
observes an increase in the magnitude of the resistance noise
near Tf . The resistance noise continues to increase in magni-
tude as the temperature is reduced, even as the magnetic noise
is expected to decrease (i.e., SR is larger at T/Tf = 0.56 than
at T/Tf = 0.82, which we would not expect for the magnetic
noise). This is the result of the temperature-dependent cou-
pling between the resistance and magnetic fluctuations.
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FIG. 1. Measured resistance spectral density, multiplied by
frequency, in a 10 nm thick CuMn sample at three reduced tem-
peratures. The noise magnitude increases by a factor of ∼30 as the
temperature is reduced, and the magnitude of the spectral exponent
declines to ∼0.83 near of Tf .

Figure 1 also shows a temperature-dependent spectral ex-
ponent, related to the shape of the barrier distribution. Noise
with a spectral density SR ∝ 1/ f α where 0.7 � α � 1.3 can
arise from a distribution of two-level systems [19]. The spec-
tral exponent α is related to the shape of the distribution and
the magnitude of the noise is related to the number density
of barriers. In other words |α| = 1, |α| < 1, |α| > 1 indicate
a flat, negatively sloped, or positively sloped distribution. As-
suming that the barrier distribution is temperature independent
and that the noise is generated by thermally activated hopping
over these barriers, one can relate the temperature dependence
of the 1/ f noise magnitude to the spectral exponent at each
temperature with no free parameters. This is the Dutta-Horn
picture [20]. In our spin-glass case, the Dutta-Horn picture as
described does not fit our data, because the barriers have a
strong temperature dependence; however, we can still use the
basic reasoning with a single free parameter (which, follow-
ing Ref. [16], we will call c) to account of the temperature
dependence of the barriers.

II. SAMPLE PREPARATION AND EXPERIMENTAL
TECHNIQUES

We dc sputtered mesoscale samples of thickness 10 nm,
18 nm, 25 nm, 40 nm, and 80 nm. We deposited in 2 mTorr
Ar from several 3 in Cu86.5Mn13.5 sputtering targets, stated
to be 99.95% pure [21], at a typical deposition rate of
approximately 0.5 nm/s. We capped our samples with a
∼5 nm thick layer of rf-sputtered Al2O3 to prevent oxidation.
Our substrates were Si3N4 with preexisting Au contacts, to
allow for low resistance, low noise electrical contact. Follow-
ing the deposition, we used electron-beam lithography and a
standard hard-mask technique to create the noise samples as
Wheatstone bridges, described elsewhere [11]. Additionally,

we simultaneously deposited large-area witness films for con-
ventional measurements of Tf .

The ac technique that we used for our noise measurements
was developed by Scofield [22] and first applied to metal-
lic spin-glass systems by Weissman and his group [14–17].
Briefly, all electronics—including the amplifiers needed to
measure small resistance changes—produce 1/ f noise at low
frequencies. Typically, this 1/ f noise is larger in magnitude
than the 1/ f noise produced by our spin-glass systems. How-
ever, by passing an ac current (at, e.g., ∼40 Hz) through
our spin-glass devices and demodulating the resulting volt-
age signal with a lock-in amplifier, the lock-in contributes
(white) noise near the demodulation frequency, well away
from where the low-frequency 1/ f amplifier noise becomes
dominant. The lock-in output is sent to a computer to compute
the voltage spectral density, which can be converted to a
resistance spectral density using Ohm’s law. By patterning our
devices as Wheatstone bridges with arms close to one another,
we mitigate against both temperature fluctuations (a tempera-
ture fluctuation will affect each arm comparably, and largely
cancel out) and current fluctuations.

For our noise measurements, we warmed above the bulk
spin-glass transition temperature, Tg, and then rapidly cooled
to a measurement temperature below the freezing temperature
(dependent upon the film thickness). This procedure was re-
peated for each temperature of our 1/ f noise measurements.
Some of the measurements were made in a system with a
greater than 10 K/min cooling rate, while others were made
in a closed-cycle system with a slower 2 K/min cooling
rate. One sample was measured both ways; the results were
consistent between the two protocols and refrigerators, within
experimental error.

For conventional measurements of the spin-glass freez-
ing temperature, we measured the zero-field cooled (ZFC)
magnetization of our witness films in a 10 Oe applied field,
using commercially built Quantum Design MPMS systems.
We approximate the freezing temperature of these films as
the temperature corresponding to the peak of the ZFC mag-
netization. Despite the large area (>100 cm2) of these films,
given the small thicknesses, the resulting volume was too
low to determine Tf to better than ∼1 K or to accurately
measure the frequency dependence of Tf . This clearly demon-
strates the advantages of using the noise technique, which
enables us to measure this dependence accurately for samples
with volumes much smaller than could be measured in more
conventional ways.

III. CURVE CROSSING CONFIRMATION

The FDT, i.e., SM ( f ) = (kBT/ f )χ ′′( f , T ), has been demon-
strated to be relevant to spin glasses [23] in spite of their
nonergodic dynamics. We use our measured SR to compute
SM and then use the FDT to compute the imaginary part
of the magnetic susceptibility, χ ′′( f , T ). In Fig. 2, we show
the inferred χ ′′( f , T ) for a 10 nm thick sample, and observe
that the curves at different frequencies cross at a temperature
below Tf . This implies that the peak of the barrier distribu-
tion is producing relaxation times within our measurement
bandwidth, and never occurs in bulk films, but previously
was observed in a 2 nm thick CuMn (13.5 at.%) sample [12].
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FIG. 2. χ ′′ for a 10 nm thick sample, derived using the FDT.
Magnetometry indicates Tf ≈ 26 K.

The qualitative agreement between these measurements and
earlier measurements of χ ′′( f , T ) lends credibility to the more
quantitive comparisons we make in Sec. IV.

We note that the crossing of the inferred curves does not
depend on the temperature dependence of the coupling. The
crossing temperature is the result of the frequency dependence
of the noise, occurring when the magnitude of the measured
spectral exponent goes from less than to greater than unity.
Physically, this corresponds to the peak in relaxation rates
passing through our experimental window.

IV. COMPARISON WITH RECENT WORK

The recent progress [2,3] on spin-glass dynamics has been
made through simulations and experimental results consistent
with a correlation length growing according to

ξ (t, T ) = c1a0(t/τ0)c2T/Tg, (1)

where a0 is the average spacing between magnetic dopants;
τ0 is taken to be ∼h̄/kBTg; Tg is the bulk spin-glass transition
temperature; c1 is a constant found to be approximately 1.5;
and c2 = 1/Zc (Zc is the dynamical exponent) and depends on
whether the dynamics are governed by the fixed point at Tg

(c2 = 1/6.67) or the fixed point at T = 0 (c2 is temperature
dependent and found to be approximately 0.104 over our
typical range of temperature measurement [7]). The maximum
barrier associated with the spin-glass state grows with time
according to,

�max(t, T )

kBTg
= 1

c2

[
ln

(
ξ (t, T )

a0

)
− ln c1

]
. (2)

In thin film studies at sufficiently high temperatures, ξ (t, T )
can grow to the film thickness on experimental timescales.
Thereafter, it can grow no further perpendicular to the plane.
An analysis neglecting in-plane growth then results in a maxi-
mum barrier height that is temperature independent and set by
the film thickness, W , alone,

�max(W )

kBTg
= 1

c2

[
ln

(W
a0

)
− ln c1

]
. (3)

The apparent freezing temperature is then set by the experi-
mental timescale, texp according to,

texp ∼ τ0 exp(�max/Tf ). (4)

The data from Refs. [2,3] are well fitted by this form. How-
ever, measurements of the magnetic field dependence of the
maximum barrier height in Ref. [3] strongly suggest that the
correlated regions are not spherical, but pancakelike, with an
in-plane correlation length approximately one order of mag-
nitude larger than the perpendicular correlation length for a
20 nm thick film. It is an open question how the in-plane
correlation length growth affects the barrier heights. It is im-
portant to note that, in order to use this analysis [Eqs. (1)–(4)],
a specific cooling protocol must be used. The temperature
must be cycled above the bulk Tg between each measurement
and then rapidly quenched to the measurement temperature.

This greatly differs from earlier analyses (e.g.,
Refs. [12,13], among many others), which assumed the
phase transition occurs at a reduced temperature (as low as
0 K for a two-dimensional film) and the dynamical properties
of the freezing (e.g., the frequency dependence of Tf ) were
set by the two-dimensional growth of the correlation length.
In contrast, in the more recent analysis, it was assumed that
near Tf , the critical point at the bulk Tg governs the growth
of the spin-glass correlation length until it reaches the film
thickness, after which it was assumed that any further growth
did not affect the dynamics. Here, the freezing temperature
is set by the film thickness alone. Excellent agreement with
numerical simulations vindicated this approach [10].

We quantitatively compare with both the earlier work
[12,13,16] and the more recent analyses [1–3] by consid-
ering the frequency dependence of Tf . We compute b−1 ≡
d ln Tf /d ln f [16] for the previously published data. For our
noise data, we calculate

c = −∂ ln SR

∂ ln T

(
1 + ∂ ln SR

∂ ln f

)−1

, (5)

which is essentially equivalent to b when evaluated at Tf

[16]. For temperature-independent barriers, both b and c are
approximately 34. Our form for c assumes a T 2 coupling
between the resistance fluctuations and the magnetic fluc-
tuations; if the inelastic scattering length has reached the
film thickness, as it likely has near and below Tf in our
thinnest film, there will be a small (∼ 5%) correction that
does affect our comparison with previous measurements. Well
away from Tf , this correction could be much larger, as is the
uncertainty in c.

In the recent analyses [1–3], �max is fixed by the film thick-
ness and is temperature-independent, so b ≈ 34. From our
measurements, c ≈ 75, 90, 100, 150, 170 for the 10 nm,
18 nm, 25 nm, 40 nm, and 80 nm films, respectively. This is
inconsistent with the recent work.

Our computed values are qualitatively consistent with
Ref. [12,13]; the agreement is improved by assuming there
are nonmagnetic layers (of combined thickness ∼6 nm) at the
surfaces of our films. This is supported by our measurements
of Tf , approximated by the peak of the ZFC magnetization
(in a 10 Oe applied field) in our witness films. The mea-
sured Tf values are smaller than the Tf values measured in
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FIG. 3. Barrier distributions at T = 0 for our five thicknesses, based on our measurements of SR( f , T ) for film thicknesses: (a) 10 nm,
(b) 18 nm, (c) 25 nm, (d) 40 nm, and (e) 80 nm. The bold portions fall within our measurement bandwidth. The dashed portions are an
extrapolation to guide the eye.

multilayer films with metallic spacer layers, previously ob-
served in Ref. [24]. Notably, c ≈ 75 in our thinnest film,
consistent with Ref. [12] and the droplet model prediction for
a two-dimensional film, and in our two thickest films, c ≈ 150
and c ≈ 170, similar to b−1 ≈ 190 for the 50 nm thick film
in Ref. [12]. For completeness, we find Tf = 26 K, 32 K,
40 K, 46 K, and 49 K for the 10 nm, 18 nm, 25 nm, 40 nm,
and 80 nm films, respectively.

It is not clear why our data demonstrate reasonable agree-
ment with Refs. [12,13], as the recent analysis would predict
that our cooling protocol should give very different results
(Ref. [1] was able to reconcile Refs. [12,13] by assuming
a cooling protocol in which the temperature was not cycled
above the bulk Tg between measurements). This discrepancy
between our results and Eq. (3) warrants future consideration;
the observation of barriers fixed by the film thickness is a
prerequisite for many interesting experiments.

V. BARRIER DISTRIBUTION CALCULATIONS

Having demonstrated a temperature-dependent barrier dis-
tribution, we use our noise measurements to calculate the
spin-glass energy landscape. In the simplest picture, the
spin-glass state has been modeled as a collection of super-
paramagnetic clusters with a fixed, temperature-independent
distribution of blocking temperatures. However, doing this
requires an unphysical attempt frequency (10100 Hz or larger),
indicating the inadequacy of this model and that the transition
a cooperative, with barriers growing as the temperature is
reduced [25,26]. This is consistent with our data. However,
any comparison of our data with earlier data [12,13,25,26]
is tenuous, as the cooling protocol used was not fully spec-
ified, and, as previously mentioned, the spin-glass energy
barriers strongly depend on the cooling protocol [1]. When
it is possible to fit the measurements with an unphysical at-
tempt frequency, we can instead consider a the distribution of
blocking temperatures of fixed shape, shifting towards larger

blocking temperatures as the sample temperature is reduced.
From this analysis, we can model the energy barrier distri-
bution as a function of temperature. The parameters b and c
quantify how rapidly this distribution shifts with temperature.

We use the Dutta-Horn analysis employed by Fenimore
and Weissman [16] to compute the shape of this energy barrier
distribution and calculate c [given in Eq. (5)]. Our data can be
fitted by a distribution with a linear temperature dependence.
With the shape of this distribution for each thickness, we
extrapolate to T = 0 taking the temperature dependence of
the barriers as �(T ) = �(0) + (c − 34)kBT . As can be seen,
both the energy of the peak of the distribution and the width
of the distribution increase with sample thickness. In Fig. 4,

FIG. 4. Position of peak and FWHM/�peak in Fig. 3 vs film
thickness. The peak position increases with thickness. In our range
of thicknesses, the data can be fit with a logarithmic dependence.
Within experimental uncertainty, the FWHM/�peak is independent
of thickness.
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FIG. 5. Extracted barrier distributions for film thicknesses: (a) 10 nm, (b) 18 nm, (c) 25 nm, (d) 40 nm, and (e) 80 nm. Each segment
corresponds to a different reduced temperature T/Tf and the finite segment length is the result of the finite experimental bandwidth, explained
in the text. All distributions have an implied peak, with larger thicknesses having a peak at a larger barrier height. Additionally, the larger
thicknesses exhibit a stronger temperature dependence than the thinner samples.

we plot the peak of that distribution and the full-width at
half-maximum, normalized by the peak position.

The aforementioned (Dutta-Horn) model fixes the shape of
the barrier distribution, and while it models our data well in
the vicinity of Tf , at lower temperatures the agreement is poor,
and our measured spectral exponent is always larger in mag-
nitude than would be expected from this model. In principle,
it might be possible to improve the agreement by allowing
c to vary with temperature and by altering the temperature
dependence of the coupling between the resistance and mag-
netization noise. However, the uncertainty in c grows very
large near the temperature where the magnitude of the spectral
exponent is unity, and the coupling between resistance and
magnetization is not known to sufficient precision for this to
be helpful. For these reasons, we wished to model our data
in another way. As with measurements of χ ′′ [12,13,25,26],
our noise measurements directly probe the distribution of re-
laxation times in our system. In contrast with the Dutta-Horn
analysis, we make no explicit assumption about the shape of
our barrier distribution. Instead, from our data, we extract
a segment of the barrier distribution at each measurement
temperature, making two assumptions. The first is that the
dynamics are driven by thermally activated hopping over en-
ergy barriers, with a physically reasonable attempt time on
the order of ∼h̄/kBTg, and that spectrum is a superposition of
these two-level systems. There is evidence the systems are not
two level but many level and they interact [17]; however, this
simplification gives a tractable model. The second assumption
is that only barriers within one decade of frequency of our
measurement bandwidth contribute substantially to the spec-
trum within our bandwidth. This is likely not well satisfied,
as the high density of barriers near the peak of the distribu-
tion ostensibly always plays a role. However, this assumption
allows our distribution to both shift and change shape as the

temperature is reduced, in contrast with earlier models that fix
the shape. This second assumption explains why we extract
only a portion of the barrier profile at each measurement
temperature. If the largest (smallest) frequency within our
measurement bandwidth is fmax (min) = f0 exp[−�/kBT ], then
the smallest (largest) barrier falling within that bandwidth is
given by � = kBT ln( f0/ fmax (min)). Smaller (larger) barriers
result in faster (slower) transitions, falling outside of our
bandwidth. For our measurements, typically fmax is between
100–500 mHz and fmin is between 10–100 μHz.

Our results are displayed in Fig. 5 for five thicknesses. The
segments were computed by adding Lorentzian spectra, with
a distribution that is nonzero between one decade lower than
fmin and one decade larger than fmax. We used a T 2 coupling
between the magnetic and resistance fluctuations, as described
earlier in the paper. We modified the distribution by hand,
until it reproduced our experimental data to within experi-
mental uncertainty. Additionally, we added in a nonmagnetic
background spectrum with a linear temperature dependence.
This describes the noise well above Tf and is much smaller
than the magnetic noise at low temperatures. The background
spectrum contributes substantially only near Tf ; at lower fre-
quencies, the magnetic noise is much larger. The range of
temperature near Tf where the background is a substantial
contribution is narrow, and, e.g., a constant temperature de-
pendence would not have a large effect on our distributions.
The clear change in the sign of the slope of the observed
segments of D(�) in Fig. 5 as the temperature is changed in-
dicates a peak in the distribution appearing to pass through our
measurement bandwidth at temperatures near where the sign
changes. The change in temperature dependence as a function
of thickness is also striking. The distribution for the 10 nm
thick sample has a much weaker temperature dependence than
the 80 nm thick sample. This is evidenced by the fact that at
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many temperatures near Tf the probed portion of the barrier
distribution has similar, overlapping density for the 10 nm
thick sample, where there is no such overlap in the thicker
samples. A direct comparison with the Dutta-Horn analysis
cannot be made, as we have no means of extracting the portion
of the barrier distribution outside of our measurement band-
width. However, our model reproduces our measured data,
within experimental error, at all temperatures.

VI. CONCLUSIONS

In conclusion, we have explicitly extracted a temperature-
dependent energy barrier distribution, consistent with our
measured 1/ f noise data, in CuMn thin films. We have
extracted the shape, width, and energy position of the distribu-
tion versus temperature for films of five thicknesses between
10–80 nm. Previous analyses [1,12,13] considered only the
temperature and frequency dependences of the peak of the
distribution, whereas we display the full shape and position.
Our distributions exhibit a temperature-dependence consistent
with earlier measurements [12,13], despite using a cooling
protocol suitable for comparison with simulations that sug-
gest temperature-independent barriers [1,2,4]. More work is
needed to understand the apparent discrepancy between our
measurements and those of Refs. [2,3]. Additionally, using

the FDT, we show that our noise measurements reproduce the
most notable feature of the temperature and frequency depen-
dence of χ ′′ in the thinnest CuMn films. This both confirms
the previous result and lends credibility to our interpretation
of our measurements as roughly equivalent to more conven-
tional magnetometry, despite probing a different set of spin
configurations.
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