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Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing
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We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a
spin current polarized perpendicularly to the easy plane have phase dynamics analogous to that of Josephson
junctions. Similarly to Josephson junctions, they can reproduce the spiking behavior of biological neurons
that is appropriate for neuromorphic computing. To take advantage of typical spin-orbit torques, we use a
nanoconstriction geometry, in which the magnetostatic interaction and magnetocrystalline anisotropy are tuned
to create an easy plane that includes the interface normal direction. We perform micromagnetic simulations of
such oscillators realized in this geometry and show that the easy-plane spiking dynamics is preserved in this
experimentally feasible architecture. Finally we simulate two elementary neural network blocks that implement
operations essential for neuromorphic computing. First, we show that output spikes energies from two neurons
can be summed and injected into a following layer neuron and second, we demonstrate that outputs can be
multiplied by synaptic weights implemented by locally modifying the anisotropy.
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Spintronic nano-oscillators can emulate neurons: Their
nonlinear dynamics has already enabled multiple demon-
strations of supervised learning [1–4]. However, spintronic
devices have not yet produced the spiking behavior of bio-
logical neurons.

Spiking dynamics is interesting for neuromorphic com-
puting for several reasons: It allows for particularly energy-
efficient encoding of information, but it could also allow
for the implementation of local learning rules such as spike
timing-dependent plasticity (STDP) that enable some forms
of unsupervised learning [5,6]. On the other hand, several
groups are pursuing Josephson junctions as spiking neurons
in neuromorphic computing schemes. Indeed, the supercon-
ducting phase in Josephson junctions can be made to oscillate
so predictably that they constitute the realization of the volt
within the Système international d’unités (SI). They can also
operate in a spiking regime in which they make single cycles
in their phase [7,8]. The chaotic physics of these systems can
give rise to rich and useful neural dynamics, but there the
picosecond timescale of the phase spikes [9] and the low-
temperature setup required for superconducting physics both
make integration of Josephson junction neurons with other
computing technologies challenging.

Khymyn et al. have recently showed that spiking dynamics
similar to that of Josephson junctions could be obtained in
spin Hall nano-oscillators (SHNOs) based on antiferromag-
netic materials [10]. These devices could produce voltage
spikes at terahertz rates provided the injected spin current is
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polarized perpendicularly to the easy plane. Their magnetiza-
tion undergoes a precession in the easy plane with a phase that
can be described by equations analogous to those of the super-
conducting phase in Josephson junctions [11]. Similarly to the
voltage spikes that Josephson junctions emit above the critical
supercurrent [7–9], easy-plane antiferromagnetic oscillators
can emit voltage spikes above the critical spin current den-
sity. This result is promising for its applications in terahertz
generation, neuromorphic computing [12], and macroscopic
antiferromagnetic qubits [13]. However, it is challenging to
realize these devices because of the difficulty of growing
easy-plane antiferromagnetic materials and controlling their
domain structure. Attempts to address this difficulty have led
to the discovery that similar dynamics can be obtained in
synthetic antiferromagnetic junctions [14].

In this work we demonstrate spiking behavior in an anal-
ogous architecture with easy-plane ferromagnetic materials,
which are more readily mastered experimentally, by tuning
anisotropies to create a perpendicular easy plane as shown
in Fig. 1. Besides their capacity to spike, easy-plane ferro-
magnetic oscillators are fundamentally interesting for their
characteristic oscillation properties emerging from the circu-
lar precession as opposed to the elliptical precession more
common in easy-axis oscillators. Circular precession at angu-
lar frequency ω can eliminate the emission at 2ω that increases
the effective damping [15]. As a consequence, easy-plane os-
cillators should have both lower frequency and lower damping
than the easy-axis oscillators.

In the first part of this paper we show using the macrospin
approximation that Josephson dynamics can be obtained in an
easy-plane ferromagnetic spin Hall architecture. We explore
the spiking dynamics of this model and show that a spik-
ing macrospin neuron can trigger the activation of a second
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FIG. 1. Schematic of an easy-plane spin Hall nano-oscillator.
The bottom layer is a normal heavy metal (NM) that polarizes the
electrical current je in spin. The top layer is a ferromagnet (FM) with
a net easy plane (the xz-plane) perpendicular to the polarization �p
of the injected spins. The magnetization �m precesses in the xz-plane
with phase φ and small out-of-plane tilt ε.

macrospin neuron via the spin wave emissions resulting from
a spike event. In the second part we perform micromagnetic
simulations and show that such dynamics is preserved for ex-
perimentally feasible nanoconstriction oscillator architecture
[16]. In the third part we show that these oscillators can be
coupled in two-dimensional arrays through synapses whose
weights can be controlled by locally modifying the anisotropy.
We also show that the nanoconstriction geometry allows for
a multi-input neuron. We close by discussing prospects for
neuromorphic computing.

I. MACROSPIN MODEL

To motivate the essential physics of the easy-plane fer-
romagnetic neuron, we show how an appropriately chosen
system can exhibit dynamics described by the same damped
driven pendulum physics that governs the Josephson equation.
We consider a bilayer, shown in Fig. 1, composed of a low
damping ferromagnet with perpendicular magnetic anisotropy
(PMA) on top of a nonmagnetic heavy metal with large spin-
orbit coupling which polarizes the spin of the electrical current
through the spin Hall effect. In the macrospin approximation,
the dynamics of the scaled ferromagnet magnetization, m =
M/Ms, where Ms is the saturation magnetization, follows the
Landau-Liftshitz-Gilbert (LLG) equation

ṁ = −γ0m × Heff + αm × ṁ + τm × (m × p), (1)

where τ = σ j is the spin torque, j is the current density, α

is the Gilbert damping, p = ey is the spin current polarization
direction, γ0 = μ0γ , μ0 is the permeability of free space, and
γ is the gyromagnetic ratio. Since the spins that are injected
from the heavy metal are along the y direction, we tune the
shape and magnetocrystalline anisotropies to create a net easy
xz plane. This can be accomplished by tuning the PMA to
roughly cancel the out-of-plane shape anisotropy and elongat-
ing the slab in Fig. 1 along the x direction to create a net hard
axis along y and a weak easy axis along x [17]. We model this
anisotropy with an effective magnetic field

Heff = Hemxex − Hhmyey, (2)

with characteristic easy- and hard-axis anisotropy frequen-
cies ωe = γ0He and ωh = γ0Hh. The LLG equation above
underpins both the macrospin and micromagnetics simula-
tions throughout the remainder of this paper. In the next
section, we reduce this equation to an effective equation of
motion in φ = arctan(mz/mx ) and show that it maps onto
several other systems of physical interest. Then in Sec. I B
we show that simple simulations of a few coupled macrospins
can capture the physics of spike transmission from neuron to
neuron through a magnetic medium, motivating the full-scale
micromagnetic simulations developed in the rest of the paper.

A. Mapping to the Josephson equation

For easy-axis anisotropy much smaller than hard-axis
anisotropy, ωe � ωh, to linear order in ωe/ωh we find from
Eq. (1) that the precession phase,

φ = arctan

(
mz

mx

)
,

has the equation of motion

1

ωh
φ̈ + αφ̇ + ωe

2

(
1 + 2

ω2
h

φ̇2

)
sin 2φ = σ j. (3)

Under the change of variable δ = 2φ, and neglecting for now
the φ̇2 term, this is analogous to that of a superconducting
phase δ of a Josephson junction [18]

δ̈ + 1

RC
δ̇ + 2eIc

h̄C
sin δ = 2e

Ic
I, (4)

with R, C, and Ic the resistance, capacitance, and critical
current, or equivalently the equation of motion for a damped
driven pendulum. Also of this form are the dynamics of the
precessional phase φ of an antiferromagnetic spin Hall oscil-
lator [10–12]

1

ωex
φ̈ + αφ̇ + ωe

2
sin 2φ = σ j. (5)

The hard axis anisotropy ωh in the ferromagnet gives the
inertia to the system, similarly to the exchange coupling ωex

in the antiferromagnet and the capacitance C in the Josephson
junction. As in the antiferromagnetic system, the second-order
inertial dynamics arises by integrating out the small out-of-
plane magnetization.

In the case of the ferromagnetic easy-plane SHNO there
exists an additional ωe

ω2
h
φ̇2 sin 2φ term that cannot be neglected.

Nevertheless, in the limit ωe � ωh, the precession dynamics
is dominated by the hard-axis anisotropy, φ̇ � ωh, such that

ωe

ω2
h

φ̇2 � ωe. (6)

This additional term is of the same order as the other sin 2φ

term and presents a velocity-dependent contribution to the
restoring force. That the restoring force differs by a factor of
two between the rest and precessional states of the oscillator
may quantitatively complicate the post-spike relaxation of the
system, but the spiking behavior we observe in simulation is
qualitatively similar to that of Eqs. (4) and (5).
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B. Simulation of spiking behavior

In analogy to the superconducting phase across Joseph-
son junctions obeying Eq. (4), we identify 2π phase slips
of the in-plane angle φ with neural spiking events, that is, a
2π rotation in φ corresponds to a single spike. In order to
generate coordinated spiking behavior in one of these oscilla-
tors, we require that the driving torque τ sit near the spiking
threshold. For φ̈ = φ̇ = 0, Eq. (3) exhibits a fixed point at
φ∗ = arcsin[2τ/ωe]/2, which has a real solution only when
2τ � ωe, and has a vertical asymptote at π/4. This value of
π/4 is the critical angle beyond which the driving force will
generate a full 2π rotation of the system. It is analogous to
the π/2 angle of a damped driven pendulum with respect to
the direction of gravity. By tuning the current in our oscillator
to move the fixed point as close to π/4 as possible, we can
make the neuron’s spiking dynamics arbitrarily sensitive to
incoming torques, such as those arising from spin waves due
to another neuron’s spike emission.

From a macrospin perspective, holding φ∗ close to π/4 is
not alone sufficient to generate coherent spiking. If φ∗ is near
π/4 but α is too small, then a single spike event will take
the system into an auto-oscillation regime and a rest state can
never be recovered. This can be understood by imagining the
neighborhood around φ∗ as a simple harmonic oscillator. If
φ∗ = π/4 − ε and α is too small, then the system will have
an underdamped response when it returns to φ∗ after a spike
event. If the amplitude of the underdamped oscillations is
greater than or equal to ε then the system will not settle into φ∗

but instead pass the critical threshold φ = π/4 and undergo
another spike event. Since we want ε arbitrarily small, we use
a large damping value of 0.5 in the macrospin simulations to
ensure an overdamped return to equilibrium (see Appendix for
more details). In a real system however, the Gilbert damping
should be small for efficiently communicating angular mo-
mentum between neurons. A solution is to use large synapses
into which energy can be rapidly evacuated over a single spike
period as a way to present a large effective damping for these
oscillator neurons, as shown in Sec. II.

Note that the total angular momentum generated by a spike
event is largely independent of the angle ε. The notion that
ε can be made arbitrarily small while the spiking energy
remains roughly constant is a crucial feature of this system
for neuromorphic application. Guarantees on stable spiking
behavior near a small value of ε enable neural fan-out, as the
large angular momentum burst of a single neural spike can
be split up to trigger multiple ε-thresholded neurons down-
stream, where the fan-out count depends on ε and the spike
energy. To show that this is possible, we simulate a small
3 × 3 square lattice of weakly easy-axis macrospins to which
is attached two “neuron” macrospins that nominally obey
Eq. (3). The setup is depicted in Fig. 2.

To ensure that the neuronal spikes undergo 2π phase slips
and do not get stuck on the easy axis potential well at φ = π ,
we apply a weak magnetic field B = Bex to the entire system.
This modifies Eq. (3) through the addition of a B sin φ term
on the left-hand side. We tune the current j so that the system
sits just below the auto-oscillation regime and then apply a
small perturbative current δ j (around 3.5% of j) over a small
time window �t shown by dotted lines in Fig. 3. We find that

FIG. 2. Lattice topology of the macrospin simulation. Each cir-
cle represents a macrospin. White circles (φ0 and φ1) are neuronal
macrospins with easy-plane anisotropy and other relevant interac-
tions; gray circles are synaptic macrospins. Connections between
macrospins indicate the presence of an exchange interaction.

this generates a spike (red curve in Fig. 3), and the angular
momentum of that spike deposited into the lattice is strong
enough to trigger spiking events in the other neuron as well
(blue curve in Fig. 3). Note that δ j is turned off well before
the spike peaks; it contributes just enough torque to push the
neuron past its threshold. The rest of the energy for generating
the spike is sourced from the global j running through the
entire system. In this way, j acts as a local energy source for
the neurons, similar to electrochemical energy stored in ATP
in the brain or the voltage rails V = 0 and V = Vdd in a CMOS
circuit.

One also observes small bumps preceding the φ1 spikes
in Fig. 3. Just as δ j triggers the spiking of φ0, these bumps
trigger the spiking of φ1. A more detailed analysis reveals that
these bumps correspond to a spin-ŷ torque injected from the
neighboring easy-axis macrospins in the lattice. Plots demon-
strating this behavior, as well as details of the macrospin
model, are presented in Appendix.

The macrospin model illustrates the principles of op-
eration we envision for a neuromorphic system built on
easy-plane spiking oscillators, but it is limited by the scope
of its realism. In the remainder of the paper, we explore the

FIG. 3. Spiking dynamics of the in-plane phase for the neuronal
spins φ0 and φ1. The system is held close to threshold until a small
current pulse is applied to φ0 during a time interval during indicated
by the dotted lines. This causes a phase spike for φ0 (red curve). A
short time later, φ1 spikes due to excitations from the φ0 spike push-
ing it over its threshold (blue curve). The process is then repeated
multiple times with different intervals.
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FIG. 4. Geometry for micromagnetic simulations. The bottom
layer is normal heavy metal such as Pt and the top layer is a 2 nm
thick CoFeB. The dark blue arrow shows large in plane (yellow) 2π

precessions of the top layer magnetization.

neuromorphic system in micromagnetic simulations. Al-
though the microscale physics becomes significantly more
complex, we recover the same neural behavior, and investi-
gate additional interesting phenomenon such as multineuron
chains, synaptic weights, and additive fan-in.

II. MICROMAGNETIC SIMULATIONS

We perform micromagnetic simulations to show that easy-
plane oscillations and voltage spikes can be obtained in a
nanoconstriction oscillator architecture that is convenient for
coupling oscillators in chains [19]. We consider the geometry
shown schematically in Fig. 4. The nanoconstriction is 300 nm
long and 60 nm wide with arms that are 150 nm long and
540 nm wide.

Easy-plane dynamics requires a ferromagnetic material
with an easy-plane perpendicular to the polarization of the
spin current. Previous studies have used spin valves with
perpendicular spin current polarizer, which have the benefit
of easy plane in the magnetic film plane that is easy to ob-
tain, but at the price of a complicated magnetic film stack
fabrication [21–23]. Here we make the choice to use the spin
Hall effect to inject a spin current. In this case, fabrication is
simple, but the spin current polarization is in the film plane,
such that the easy plane needs to be perpendicular to the film
plane.

To obtain the perpendicular easy plane we choose the strat-
egy that was already used to obtain magnetic skyrmions in Co
that relies on adjusting the ferromagnet thickness such that
the demagnetizing field compensates the PMA [17]. In the
simulations we fix the thickness and determine the average
equilibrium magnetization along the different axis for differ-
ent values of PMA [Fig. 5(a)]. We consider 2 nm thick CoFeB
with saturation magnetization Ms = 9.55 × 105 A/m, ex-
change constant Aex = 2 × 1011 J/m, and magnetic damping
α = 0.01. We find the easy plane anisotropy at the transition
from in-plane (mx = 1) to out-of-plane (mz = 1) magnetiza-
tion for the z-axis anisotropy of Ku = 0.54 × 106 J/m3.

In the following, we set the anisotropy to the compen-
sation value and we apply a spin current �js along the y

FIG. 5. (a) Scaled magnetization components as a function of
perpendicular magnetic anisotropy Ku. Transition from in-plane
(mx = 1) to out-of-plane (mz = 1) magnetization is observed for
Ku = 0.54 × 106 J/m3. We use minimize routine from MuMax3 [20]
that finds the ground state using the conjugate gradient method.
(b) Magnetization precession in the x-z plane with color coded time
for input current density j = 2.4 × 1010 A/m2. Discrepancies from
the circular trajectory due to the exact nanoconstriction shape are
visible in the projections on the three planes. (c) Oscillation fre-
quency as a function of the current density. Critical current density is
1.5 × 1010 A/m2.

direction with the spin polarization set to 1. For a cur-
rent density of 1.5 × 1010 A/m2 we obtain large circular
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oscillations in the perpendicular easy plane that present dis-
tortions compared to the simplified macrospin model, as
can be observed in Fig. 5(b) [24]. This spin current den-
sity is comparable to those typically found in spin-torque
nano-oscillators [25], making it realistic for experimental
realizations.

We find easy-plane dynamics for nanoconstriction widths
of 20 nm, 40 nm, and 60 nm, but not for larger widths.
This is due to the fact that magnetization confinement is not
strong enough for larger widths and the hard-axis anisotropy
is not large enough. For the 60 nm width the precession
orbit is less circular than for smaller widths; nevertheless,
all the results we report in this paper use the 60 nm width
because of the greater ease of device fabrication with e-beam
lithography. Furthermore, we find that it is important that y
dimensions of the arms are larger than their x dimensions,
such that their magnetizations are aligned along the y axis
and thus do not interfere with the xz-plane oscillations in the
nanoconstriction.

We use Hilbert transforms to extract the instantaneous os-
cillation frequency as a function of current density [Fig. 5(c)].
The frequency varies approximately linearly over a range
of 1 × 1010 A/m2. For increasing current density the mag-
netization cants more and more out of the easy plane. For
j = 2.7 × 1010 A/m2 the trajectory starts to deviate con-
siderably from a circle in the easy plane, which makes the
frequency saturate. At j = 3.3 × 1010 A/m2 the out-of-plane
angle becomes too large and there are no more coherent
oscillations.

In simple bilayer spin Hall structures, magnetization
dynamics can be detected through the anisotropic mag-
netoresistance effect [26], arising from the fact that the
resistance of the device is dependent on the mutual orientation
between the electric current and the magnetization. Alter-
natively, a tunnel junction could be added on the top such
that the magnetization dynamics could be detected through
the tunneling magnetoresistance effect which has a larger
amplitude. For magnetization states confined to the easy
plane

R(φ) − R(0) ∼ sin2

(
φ

2

)
. (7)

In the figures below, we plot the angular dependence (rather
than the resistance directly) to maintain a close analogy with
the physics of the Josephson junction phase. To obtain the
voltage spikes, we apply a current pulse for a duration that
is equal to a single oscillation period, on the order of 2 ns
for the geometrical parameters we chose. The magnetization
makes a single turn corresponding to a single spike in mag-
netoresistance and then slowly relaxes towards the easy axis
within the easy plane. It takes about 50 ns to completely
relax. After this relaxation time, the nanoconstriction oscil-
lator neuron can be excited and spike again, as shown in
Fig. 6.

Easy-plane nanoconstriction spin Hall oscillators can thus
emulate the spiking behavior of biological neurons. In the
following section we begin the exploration of how they can
be assembled in physical neural networks and used to encode
and process information through dynamics.

FIG. 6. Normalized tunneling magnetoresistance of the
nanoconstriction easy-plane SHNO. Current pulses with density
j = 2.5 × 1010 A/m2 are applied over 2 ns time intervals spaced by
50 ns.

III. PROPOSAL FOR NEUROMORPHIC COMPUTING:
SPIKE PROPAGATION IN CHAINS OF

NANOCONSTRICTIONS

Easy-plane spin Hall neurons can be assembled in a neural
network as a two-dimensional array of nanoconstrictions. In
this section we simulate two building blocks of such a neural
network that implement operations essential for neuromorphic
computing.

First we show that outputs from two neurons in the same
neural network layer can be summed and injected into a
neuron in the following layer. For this we simulate the ar-
chitecture shown in Fig. 7(a). The two nanoconstrictions on
the left correspond to the two input layer neurons and the
nanoconstriction on the right to a single output layer neuron.
Input neurons can receive an input in the form of a current
pulse. In order to apply current pulses, we envision placing
electrodes on each island and using additive and subtractive
currents to achieve placing the desired current through a sin-
gle nanoconstriction, as in Ref. [3]. We show that if only
one of the input neurons spikes [Figs. 7(b) and 7(c)], the
energy transmitted to the output neuron by the spin waves
propagating in the island between the nanoconstrictions is not
sufficient to make it spike. However if both input neurons
spike at the same time, the output neuron spikes as well
[Fig. 7(d)]. In the simulations, a constant bias is applied in all
the neurons at current density jbias = 0.6 × 1010 A/m2 that
is below the critical current density of 1.9 × 1010 A/m2 of
the three nanoconstrictions structure. The spike in the first
(resp. second) neuron is induced by a 2.7 ns long input current
pulse applied 2 ns (resp. 2.8 ns) after the beginning of the
simulation.

Second, we show that neural outputs can be multiplied
by synaptic weights. To do this, we simulate a chain of
three nanoconstriction neurons, whose top view is shown in
Fig. 8(a). Only the first neuron in the chain receives the in-
put current pulse. The whole chain is biased with a constant
current jbias = 1.6 × 1010 A/m2. An input spin current pulse
with density jpulse = 4 × 1010 A/m2 is applied to the first
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(a) (b) (c) (d)

FIG. 7. (a) Top view of a “two-to-one” neural network building block. (b) Current input only in the first of the input layer neurons (blue),
the output neuron (green) does not spike. (c) Current input only in the second of the input layer neurons (red), the output neuron does not spike.
(d) When both input neurons spike, the energies of output spin waves sum up and make the output layer neuron spike.

nanoconstriction for a duration of 2.7 ns. The excitation
from the first neuron propagates down the chain and with
approximately 2 ns delays we observe spikes in the second
and third junctions, see Fig. 8(b). We demonstrate synaptic
functionality by modifying the coupling between the nano-
oscillators and thus controllably altering the spike propagation
in the chain. This can be done by locally modifying magnetic
properties such as anisotropy or damping in the synaptic is-
lands between each pair of nanoconstriction neurons. Indeed,
neurons are magnetically coupled by spin waves that propa-
gate in these islands. A discontinuity in magnetic properties
induces spin wave reflections and lowers the coupling be-
tween nanoconstriction oscillators. Here we choose to modify
anisotropy rather than damping because experimentally it can
be done in situ by the application of a dc voltage [27]. Alterna-
tively, damping could be modified by ion irradiation [28] once
the neural network has been trained offline and the physical
neural network is prepared for inference.

The anisotropy in the whole magnetic structure is Ku =
0.54 × 106 J/m3. We locally modify the anisotropy by 10%
in a 150 nm wide area in the center of the island between
the second and third neuron, such that synaptic anisotropy
becomes K syn

u = 0.6 × 106 J/m3, and we observe that the first

two neurons undergo spike bursts containing two spikes each,
while the third neuron does not spike [Fig. 8(c)]. As the input
current pulse is of the same amplitude and duration, we inter-
pret this emergence of spike bursts as due to the conservation
of the total energy in the system. For the first neuron, the sec-
ond spike lasts longer because the magnetization decelerates
when aligned with the easy axis as it is not receiving any drive
current any more.

Similarly, when we increase the anisotropy of the first
island, only the first neuron undergoes spike burst where its
magnetization makes three whole turns in the easy plane,
while the two following neurons stay still [Fig. 8(d)]. We can
thus decrease the synaptic weights by locally increasing the
anisotropy in the islands by for example applying a dc voltage
on this area. This breaks the magnetization dynamics in the
island and thus impacts the mutual oscillator coupling.

IV. CONCLUSION

There are some attractive features of this approach to neu-
rons and synapses. One is that the close-to-threshold current
going through all of the neurons allows for gain, serving as
a local energy source for generated spikes. That the spike

(a) (b) (c) (d)

FIG. 8. (a) Top view of a chain of three nanoconstriction neurons. (b) Responses of the three nanoconstrictions show spike propagation.
(c) When the anisotropy is modified in the second synapse, the first and second neurons spike, but the third one does not. (d) When the
anisotropy is modified in the first synapse, the spikes do not propagate further. The first neuron spikes, but the two following ones do not.
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FIG. 9. Lattice topology of the macrospin fan-out simulation.
The “upstream” neuron φ0 generates a spike after being given a per-
turbative current j on top of the static current j. The “downstream”
neurons φ1 and φ2 both spike in response, as a consequence of spin
excitations mediated by the 3 × 3 lattice.

energy is independent of how close to threshold the system sits
could enable fan out. We demonstrate the potential for fan-out
behavior in a macrospin simulation. We extend the macrospin
model of Sec. I (also detailed in Appendix) by including two
downstream neurons rather than one. The lattice topology of
the coupled macrospins is indicated in Fig. 9.

Again we hold the static torque as high as possible, in this
case τ = 0.288, and again weakly coupled them ωJ = 0.3
compared to the hard axis energy ωh = 1. All other param-
eters are the same as in Appendix. Just as before, we apply
a small perturbative torque δτ = 0.001 only to the upstream
neuron φ0. The excitation in the synaptic lattice generated by
the spike on φ0 causes spiking activity in φ1 and φ2, shown in
Fig. 10.

In such a small macrospin system, the simplified dynamical
mechanisms can sometimes lead to different essential physics
than what one finds in micromagnetic simulations. We can
verify by eye in the micromagnetic simulations that it is a
pulse of spin wave energy that travels from one neuron to
another and causes the target neuron to spike. But in the
macrospin model, there exist regimes that transmit spikes not

FIG. 10. Demonstration of spiking fan-out in a simulation of
coupled macrospins. A current j running through the entire system
keeps “neuron” macrospins close to their spiking threshold. Then a
small perturbative current (dashed gray line) is applied only to one
macrospin (corresponding to φ0, the black line). This extra torque
pushes the spin over its threshold, and it undergoes a single spiking
event. Angular momentum propagates through the lattice (Fig. 2) and
triggers spikes in both φ1 (red) and φ2 (blue). The plots are shifted
arbitrarily in the vertical direction for clarity.

FIG. 11. Spiking event interaction between a downstream neural
spin (φ1) in and its neighboring spin in the lattice (φsynapse ). By
around ωht = 1550, the influence of an upstream spiking event (from
φ0) causes φsynapse to cant in the y direction. Being exchange coupled
to φsynapse, the neural spin φ1 picks up a weak y component and begins
to precess, driven by the hard-axis field. Even once the y torque from
the synapse dies down (dashed gray line returning to equilibrium at
ωht ≈ 1675), the neuron has already passed its threshold and starts
to spike. Note that m1

y is the normalized magnetization of the neuron,
but in the simulation its non-normalized magnetization M1

y is ten
times that of the synaptic spins.

by spin wave but by effective single-domain switching driven
by φ0.

To verify that we are in a spin-wave driven regime, rather
than a single-domain-driven one, we zoom in on one of the in-
duced spiking events. Figure 11 shows the angular behavior of
an induced downstream neural macrospin in blue (φ1) and its
neighboring lattice macrospin in gray(φsynapse). A wide packet
of y-angular momentum (gray dashed line) arrives from the
lattice centered around time ωht = 1600. The injection of this
angular momentum from synapse to neuron causes the neuron
moment to tilt slightly out of plane, which in turns causes
φn to precess slightly in the easy-plane anisotropy field. By
the time the packet of angular momentum is used up (around
ωht = 1600), the neuron has already passed its spiking thresh-
old.

Notice that as the spiking grows, the neural phase is ad-
vanced relative to the synaptic phase. This indicates that the
spiking mechanism does not arise from the lattice mimicking
the source neuron in a single domain fashion and simply
dragging the downstream neuron along with it. Rather, a small
packet of momentum triggers a downstream spike event, and
then the nearby lattice spins are dragged through a spiking
motion by this newly spiking downstream neuron.

In conclusion, we have proposed a new geometry for an
easy-plane ferromagnetic spin Hall oscillator. We have shown
using a macrospin model that such oscillator can produce volt-
age spikes and thus emulate a biological neuron. We have then
shown in micromagnetic simulations that such easy-plane ge-
ometry can be obtained in compensated PMA ferromagnets
and that it can be conserved by fabricating oscillators in
the nanoconstriction geometry which is very convenient for
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DANIJELA MARKOVIĆ et al. PHYSICAL REVIEW B 105, 014411 (2022)

coupling the oscillators in chains. Finally, we show that spike
propagation between the nanoconstrictions can be controlled,
thus giving a proof-of-principle demonstration of synaptic
functionalities.
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APPENDIX: MACROSPIN MODEL DETAILS

In Sec. I, we used a simple macrospin model to demon-
strate spiking and fan-out behavior. In this Appendix, we
clarify details of that model and show that the downstream
spiking is in fact driven by a small torque that surpasses a
neural threshold rather than any sort of single-domain spiking
behavior that could plausibly occur in such a small, simple
model.

We simulate the model using the eleven spins connected
to their nearest neighbors by a simple exchange interaction
J in the topology of Fig. 2. It is convenient to work in di-
mensionless units in which all frequencies are scaled by ωh

(time scaled by 1/ωh) to set the timescale similar to that of the
spiking behavior. All quantities reported below are dimension-
less. We weakly couple the spins by setting the characteristic
exchange frequency ωJ = 0.31, which is necessary to avoid
a spiking event simply driving single domain switching via
strong exchange coupling. We use a large value α = 0.5 of the
Gilbert damping to represent dissipation modes that cannot be
modeled in the macrospin system, which are necessary to en-
sure an overdamped return to the balance point φ∗ as outlined
in Sec. I. The neuron macrospins are subject to a weak easy
axis anisotropy of characteristic frequency ωe = 0.05 along
x̂, while the synaptic lattice macrospins have an out of plane
easy axis ωz = 0.2 and a weak easy axis ωs = 0.1 along ŷ that
models the shape anisotropy of the micromagnetic system. A
weak magnetic field with characteristic frequency ωB = 0.05
is applied to all spins to destabilize the φ = π potential well.
Finally, we artificially inflate the saturation magnetization of
the neuronal spins by a factor of ten compared to the lattice
spins. This models the comparative softness of the synaptic
modes compared to the hard neuronal modes observed in
micromagnetics.

The analysis of Sec. I suggests that the π/4 threshold sits at
τ = ωe/2 = 0.025. We find that we can push τ slightly higher
than this, to τ = 0.02895, due to applied B field. At selected
times, we add a spike of height δτ = 0.001. This generates
the neuronal spikes observed in Fig. 3.
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