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Achieving strong coupling between light and matter excitations in hybrid systems is a benchmark for the
implementation of quantum technologies. We recently proposed (Bittencourt, Liberal, and Viola-Kusminskiy,
arXiv:2110.02984) that strong single-particle coupling between magnons and light can be realized in a mag-
netized epsilon-near-zero (ENZ) medium, in which magneto-optical effects are enhanced. Here we present a
detailed derivation of the magnon-photon coupling Hamiltonian in dispersive media both for degenerate and
nondegenerate optical modes, and show the enhancement of the coupling near the ENZ frequency. Moreover, we
show that the coupling of magnons to plane-wave nondegenerate Voigt modes vanishes at specific frequencies
due to polarization selection rules tuned by dispersion. Finally, we present specific results using a Lorentz
dispersion model. Our results pave the way for the design of dispersive optomagnonic systems, providing a
general theoretical framework for describing and engineering ENZ-based optomagnonic systems.
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I. INTRODUCTION

Achieving strong coupling between light and matter has
been a benchmark for the development of quantum tech-
nologies [1,2], especially for the design of quantum hybrid
systems [3]. The strong coupling regime is characterized by a
coupling rate that is larger than the typical decay rates of the
constituents, allowing the exchange of quanta between light
and matter excitations in a timescale faster than the decays.
This in turn allows the implementation of quantum proto-
cols such as state transfer [1]. Systems in which the strong
coupling regime has been successfully achieved include the
coupling of superconducting qubits to microwaves [4-6],
semiconductors to THz light [7,8], and the magnetization of
dielectrics to microwave cavity photons [9-12]. The latter
types of systems, called cavity magnonic systems, are par-
ticularly attractive since the magnetization can also couple
to optical photons [13], opening the prospect of a magnonic-
based microwave-to-optical quantum transducer [14—17].

While the strong coupling regime between the quantized
magnetic excitations (magnons) and microwave photons of
a cavity has been now achieved in different experimental
setups [9-12], the coupling to optical photons is still very
weak [16,18,19], limiting the applications of such systems.
The weakness of the optomagnonic coupling is partly a conse-
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quence of the weakness of the magneto-optical (MO) effects,
such as the Faraday and the Cotton-Mouton effects, responsi-
ble for the coupling between light and magnetization. This
roadblock can be partially bypassed by considering an op-
tomagnonical cavity [20-23]: A setup in which the light is
trapped inside the magnetic dielectric by total internal reflec-
tion, yielding a cavity enhancement of the coupling. Efforts
are being made to optimize such systems [24,25], with signif-
icant experimental and theoretical advancements in the recent
years. Nevertheless, the coupling in state-of-the-art systems
(~50 Hz [18]) is not strong enough to surpass the decay rates
of photons (~1 GHz) and magnons (~1 MHz). Theoretical
proposals for optomagnonic crystals predict a stronger cou-
pling rate (~10 kHz) [25], which is still several orders of
magnitude smaller than the optical decay rate in such systems
(~0.1 THz).

Here we explore an alternative route for achieving single-
particle strong coupling between magnons and photons on an
epsilon-near-zero (ENZ) medium, as proposed in Ref. [26].
ENZ media exhibit an almost vanishing permittivity at a
frequency called the epsilon-near-zero frequency [27]. This
behavior is a consequence of dispersion, either due to the bulk
material (e.g., the usual Lorentz dispersion of dielectrics) or
due to the structure of the medium (e.g., a metallic waveguide
operating at a cutoff frequency). In such media, nonlin-
ear effects and secondary responses of the media to optics
are enhanced, making ENZ, and more generally speaking
near-zero-index media, interesting platforms for matter-light
interactions and hybrid systems, for instance, allowing the
realization of strong plasmon-phonon coupling [28]. In par-
ticular, MO effects in ENZ media have been predicted to
yield perfect optical isolation based on the intrinsic nonre-
ciprocal behavior of magnetic systems [29,30], unidirectional
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propagation of photonic states at interfaces between di-
electrics and metals [31], and giant transverse MO Kerr
effect [32,33]. Such enhancement of MO effects points to
the possibility of an enhanced magnon-photon coupling at
the single-particle level in ENZ media, but its description
requires a theoretical framework that incorporates dispersion,
in particular a quantization procedure to describe photons in
magnetic dielectrics, magnons, and their coupling.

In this paper, we present a detailed derivation of the
magnon-photon coupling in dispersive magnetic dielectrics.
We extend the results presented in Ref. [26] for the magnon-
photon coupling to include nondegenerate optical modes and
we treat both the Faraday and Voigt configurations (light
propagating parallel or perpendicular to the magnetization,
respectively). We derive the general features of the coupling,
including the coupling enhancement and the linear relation be-
tween coupling and the ENZ frequency reported in Ref. [26].
For nondegenerate modes, we show that the coupling constant
can vanish at specific frequencies due to “dispersion-tuned
selection rules” that allow only the up or down conversion
of photons with specific polarizations. Such features are inde-
pendent of the dispersion model and can be applied both to
ENZ materials or to structured media. Finally, we specialize
our results to a dispersion model inspired by the dispersion
in bulk paramagnetic and ferromagnetic dielectrics. We study
the propagation regimes of plane waves in such framework,
recovering the isolation features for waves propagating in
the Faraday configuration at the ENZ regime reported in the
literature [29], as well as in the Voigt configuration, and
evaluate the magnon-photon coupling, showing the coupling
enhancement at ENZ and the dispersion selection rules for
nondegenerate modes. Similar dispersive models can be found
in magnetized plasmas [34] and metal-gyroelectric dielectric
structures [35].

Our formalism can be applied to any magnetic dispersive
medium, bulk or structured, provided that the intrinsic losses
are small. Different from previous studies of MO effects in
ENZ media, which are focused on entirely classical phenom-
ena [29-33], our quantized framework is aimed to describe
the coupling between single magnons and single photons in
order to explore the quantum regime. Our results push forward
the design of optomagnonic systems and further motivate the
use of ENZ media as platforms for quantum technologies
and light-matter interactions. Dispersion can also lead to non-
Markovian phenomena [36-38] which adds novel aspects to
optomagnonics.

This paper is structured as follows. In Sec. II we first
obtain the energy densities including dispersion in Sec. IT A.
Then, in Sec. I B we quantize the electromagnetic field modes
following Ref. [39] and extend the formalism to obtain the
optomagnonic coupling Hamiltonian. In Sec. IIC we derive
the relevant optical polarization for plane waves propagating
in magnetized media and for modes of a magneto-optical
Fabry-Pérot cavity. With those modes we evaluate the op-
tomagnonic Hamiltonian for degenerate and nondegenerate
modes in Sec. IID, where we also derive some general
features of the coupling, such as its behavior at the ENZ
frequency and the requirements for achieving strong single
magnon-photon coupling. Finally, in Sec. III we present a dis-
persion model for paramagnetic and ferromagnetic dielectrics,

which we use to specify our results for the optomagnonic
coupling in Sec. III A for both degenerate and nondegenerate
modes. In Sec. IV we present the conclusions and outlook.

II. MAGNON-PHOTON COUPLING HAMILTONIAN
INCLUDING DISPERSION

In what follows, we present a detailed derivation of the
Hamiltonian presented in [26] and generalize the framework
for describing coupling between magnons and nondegenerate
optical modes.

A. Energy density

The starting point is the energy density in a dispersive
medium, obtained following [40,41]. From the instantaneous
Poynting theorem, the energy density is given by

t
w(t) =/ dt'[H -B+E -D], (1)
—00

where E and D are the electric and displacement fields and
H and B are the magnetic and induction fields. We split w(t)
into an electric part w,(t) = f:oo dt'[E - D] and a magnetic
part w,(t) = fi o dt'[H - B]. The energy density here only
takes into account the optical fields and the magnetization.
To describe the magnetization’s dynamics, one has to include
magnetization-dependent effective fields describing, for ex-
ample, exchange interactions and crystalline anisotropy, plus
any other external field, such as an external bias magnetic
field [41,42]. The magnetization’s dynamics is then governed
by the so-called Landau-Lifshitz equation, which is, in gen-
eral, a nonlinear equation for the magnetization. For small
magnetic excitations, that is, for small deviations from the
magnetic ground state, the magnetic excitations behave as
harmonic oscillators, which when quantized describe bosonic
quasiparticles called magnons [41]. The part of the energy
density corresponding to the magnetization’s dynamics yields
in this limit a harmonic oscillator Hamiltonian.

Turning back our attention to the energy density of the
electromagnetic field, let us first consider a monochromatic
field with slowly varying amplitude:

E(r,t) = Re{ET(r, 1)} = Re{E™ (r)e !}

y . L 2
= (EP@)e " + ET(r)e"))2,

where s, = w, + ia, and o, < w.. The displacement field
is given by D(r, ) = Re{eo € [sc, M] - ET) (r)e~'}, where
€ [w, M] is the permittivity tensor that depends on the
magnetization M. The permittivity tensor satisfies the fol-
lowing properties: (i) from its definition in terms of a
response function T w, M] = € [—w, M]; (ii) we as-
sume frequency ranges in which absorption is small, such that
€ w, M] = € [w, M]; and (iii) the Onsager reciprocity
relations imply that Re{s;;[w, M]} = Re{eji[w, —M]} and
Im{e;j[w, M]} = Im{ei[w, —M]}. To first order in the mag-
netization this implies the generic form

elw] iFlo]M, —iFlwlM,
Clo, M] = | —iFlwIM, elw] iFlw] M,
iFlw]M, —iFlwlM;  elw]

3
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We will consider small fluctuations around the saturation
magnetization, such that M, ~ Mg and M, , <« M, where
M is the saturation magnetization, and we assume that the
magnetization and its fluctuations are uniform. Equation (3)
takes into account only magnetic (circular) birefringence, de-
scribed by the off-diagonal elements of “z”, generated by the
Faraday effect. The Cotton-Mouton effect, which generates
both linear and circular magnetic birefrigence, can be taken
into account by adding to Eq. (3) second-order terms in the
magnetization, which we do not consider in this work. For
now, we do not specify e[w] and Flw]. In Sec. III we will
illustrate our results for a specific model of dispersion in
which e[w] is described by the Lorentz model and Flw]
describes the dispersion of the Faraday effect as obtained in
paramagnetic and ferromagnetic dielectrics.
The electric part of the energy density is given by

1 [ oo
we(t) = 7 f dt' (—is ) (EM (r) - DT (r)e= 2o mioet
—00

+EC @) - DD @)X +c.c.). )
Taking the average over a period of the monochromatic wave
and discarding the terms oce™? " we obtain
e = (we(1))
N %O ;o di' () - (—isc € [se, M) - EP ()™
+c.c.) 5

J

corresponding to a rotating-wave approximation (RWA). We
consider small dissipation o, < @, and expand the permittiv-
ity tensor up to linear order in o,

_l.SC?[SC, M] ~ _iwc?[wc’ M]
+ Wedp, (0. € [0e, M), (6)

and thus
t
ue~ L A (@ EO@) - 8, (00 F w0, M])
2 )
E™M(r)). @)

After integrating over time and taking the limit . — 0 we
obtain

U = %OEH(r, 1) B (0 F [we, M) - ED (1), (8)

where we have used the definition of the monochromatic
field (2).

For the magnetic part of the energy density, we re-
call that in a magnetic material B = uo(H + M), where
M is the magnetization. For a monochromatic field B =
Re{B™)(r)e~*'}, while for the magnetization we do not as-
sume a linear response to the magnetic field. Instead, we are
interested in the coupling between light and magnetic excita-
tions, the latter described by

M = M, +Re{sM. (r)e ™"}, ®

where s, = w,, + iy, and w,, is the frequency of the relevant
magnon mode. This yields

1 /! / L
Wy () = ™ / dt' (—isoB7(r) - B (r)e**" — is,BP(r) - B (r)e 2@ 4 ¢ c)
-0

t

4po J oo

t

4[”/0 —00

We consider the typical magnetic excitation frequency, which
is in the GHz range. Since w, is at an optical frequency, there
is a frequency mismatch w. > w,, and after we take the time
average of w,,(t) over one period of oscillations of the optical
electromagnetic field, the terms on the second and third lines
can be discarded in a RWA. We follow the same procedure
that leads to u,., and we get for the magnetic field contribution

1
Uy = —B(r, 1) - B (r, 1).

11
4o b

The total energy density for a monochromatic wave at
frequency w, thus reads as

1
o, = 7 <€0E(_)('¥ 1) - (0. € [we, M]) - ED(r, 1)

+ iB<—>(r, 1) - BP(r, z)). (12)
H“o

dt/(—ismB(_)(r) . (SMJF(r)e—i(wm—w( I pleetam)t c.c.)

(10)

dt' (—is, B (r) - SM (r)e  (@ntoot glactaml 4 ¢ ¢,

(

This is the energy density we use as a starting point for our
quantization procedure in the case of a monochromatic field
that yields the magnon-photon coupling including dispersion.
The definition of energy density in a dispersive medium was
thoroughly discussed in [43], and we take it as a starting point
for a phenomenological quantization of the optomagnonic
coupling in the presence of dispersion, as done in [26].

Nondegenerate modes

We can now adapt the formalism developed in the previous
section to describe many nondegenerate optical modes that
couple to the magnetic excitations. In this case, we assume
that the total electromagnetic field in the volume of interest
is a superposition of discrete frequency components E (r, t) =
Y Re{EM(r, 1)} = X RelE (r)e~}.

Following the same procedure of the last section, we obtain
for the magnetic part of the energy density

1
= — Y B, 1) B 1),

13
4iao (13

c

014409-3



BITTENCOURT, LIBERAL, AND VIOLA KUSMINSKIY

PHYSICAL REVIEW B 105, 014409 (2022)

For the electric part of the energy density we consider as
before the displacement field obtained via the permittivity
tensor. We are interested in effects due to magnetization’s
fluctuations around its saturation value, described by the mag-
netization’s fluctuations in Eq. (9) included only up to first
order in the permittivity, yielding

This corresponds to splitting the permittivity tensor in a
static part and a fluctuating part (see, for example, [44,45]).
We consider that the saturation magnetization is aligned
along e,, such that SMiz(/\/lx:FiMy)ei/\/i, with
el = (e, + iey)/\/i. We also define ?i[a)c, S, M ] =
@ _lwe, SM_].

The electric energy density thus decomposes into two parts
€ [we, M] = € slwe, Ms] + (T o, M e We(1) = we,5(t) + W 5(1), (15)

+ Hec.). (14 where

J

t
Wes(t) = ‘94—0 / dt' Y [(—ise)ES () - (T [se, Ms]) - ES (r)e 0 =

+ (—ise)ESD(@) - (F [se, Ms]) - ESV(r)e 000 e ] (16)
and
t
we,S(t) _ % / dt’ Z[_i(sc’ + Sm)EE_)(r) . (?+[SC,7 8M+]) . Eij')(r)e—i(xy—sb+5m)t
—0oQ c,c’

— i(se — $ET (@) - (& _s0, M_]) - ESP (r)e (0 —semm) (17)
— i(se + sm)Eg’“)(r) . (?+[Sc’v SM.)) _Eij‘)(r)e—i(scr-k&-&-sm)t
— i(s¢ — s)EX () - (T _[se, SM_]) - ESP (p)e e tsemsnlt e c].

For w,_s(t) we use the same arguments as the monochromatic case, which assumes a RWA for the term oce " +¥ and yields
€0 _ <>
tes =7 ) B0 0, (0. F [0, Ms) - EF @, 1), (18)
c

For the term w, s(t) we notice that the average over a period of oscillation imposes a triple-resonance condition: The only
terms that are not discarded in the RWA are the ones oce™"Cc =S¢ +sn) if op. — w. & w,,, and the terms e S =Setsmlt if ¢, — . &
wn, that is, the frequency difference between mode ¢ and mode ¢’ needs to match a magnon frequency. When the modes are
degenerate, since the decomposition of the permittivity is linear in the magnetization and since we have used the RWA, we can
recombine the terms of the decomposition, which will yield Eq. (12). In that case, the energy mismatch is compensated by an
external drive detuned by the magnon frequency. Assuming that the damping coefficients of all the modes are equal, we get the
energy density

t
Ues = %0 / di’ Y [=iseE () - (F 40, sM D) -ESV(r)
- We>wy (19)
— iseES (1) - (T _[s50, SM_]) - ESD(r) + c.c.]e™.

The sum in the previous expression indicates that the indices are organized such that w. > w. . Finally, we follow the same
procedure for the monochromatic field, expanding ?i[sc, 8M ] up to first order in o and using that w,, K w. ., we get after
the time integration

tes = 2 Y B0 1) -y, (00 T sl SMD) - EP 1)
4 c c
>0y (20)
+ ECr, 1) - 8y, (0. € 1loe, ML) -ESP(r, 1) + c.c.].
The total energy density is therefore given by
1
u= %0 ;Eg_—)(r, 1) (@ € slwe, Ms]) - ESP(r, 1) + "™ ;Bﬁ."(r, 0-BP 1)+ wg Ueer 21
where

Upr = Z—O[EE’)(r, 1) By (0o & 1@, ML) -EV (1) + EC (1) - (00 € 4 lwe, ML) -EFV (r 1) +ccl. (22)
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Note that in deriving the expressions for the energy density,
Egs. (12) and (21), we employed the RWA, which can fail
in the strong coupling regime [1]. This is usually the case
when the matter excitations and the electromagnetic field
have almost matching frequencies and the coupling rate be-
comes comparable to such frequencies. In the present case, the
magnon typical frequency is far off resonant from the photon
frequency, such that even if the coupling between photons and
magnons is comparable with the magnon frequency, the RWA
is valid.

B. Quantization of the electromagnetic field

In order to quantize the energy density obtained in the last
section, we first decompose the electric field as

E(@,0)=) Ec )=y Re[Coiaci(t)F /()]

ol cl

=Y Re[Ceac 1 (0)F ¢ (r)e '],
c,l

(23)

with the indices [/ distinguishing degenerate modes (e.g.,
degenerate polarization states), and F.;(r) are the corre-
sponding mode functions satisfying

V'FC,l(r):Ov

“N

(24)
V xV xF.@r)— ?[wc, MIF;(r)=0

c?

together with the corresponding boundary conditions. The
mode functions F.; are also a function of the saturation
magnetization. In magnetic dielectric optical cavities, the
magnetization can break degeneracies, e.g., of whispering
gallery modes in spherical cavities [46], which can be ex-
ploited to couple magnons and photons, for example, in
spherical cavity geometries [45]. For simplifying the notation,
we omit the dependence of the mode functions on the magne-
tization. The induction field B(r, t) is given from Maxwell’s
equations by

B(r,t) = ZRe[—
c,l

For a specific mode frequency w,, the energy density given
by Eq. (12) can be decomposed as

ul) + ul®, (26)

Cc,lac,l(t)v X Fc,l(r)]- (25)
HoWc

Uy, =

o

with

D = Z[EOE” 3, (0 € [we, Ms)) - ELT)

+ LB( ) B(+)]
o

1 27)
ND) _ ) <~ )
((‘)‘ : Z Z[SOEC,I < 0y, (@& [we, M]) - EL I
1Al
|
+ —B} - B})1.
Mo ’

The first term P, called here the diagonal term, does not

W, *

couple different modes, and upon quantization yields the usual

Hamiltonian of the electromagnetic field modes in terms of
harmonic oscillators. To include dispersion in the quantiza-
tion, we adopt the procedure by Milonni [39,47,48], which
consists in taking the factors C,; in Eqgs. (23) and (12), such
that 4} yields a Hamiltonian of independent harmonic oscil-
lators for each pair of mode indices c, /. Those factors will
depend on derivatives of the frequency-dependent permittiv-
ity and on the saturation magnetization. The second term in
Eq. (27), u(®, which we call nondiagonal term, yields the
magnon-photon coupling Hamiltonian with a coupling con-
stant that is frequency dependent and depends on derivatives
of the elements of the permittivity tensor describing the effects
of dispersion.
From Eq. (23), we obtain

1
U =7 D ICiPloc PTenloe, Msl. (28)
!

where

T nlwe, Msl = / d3r{eOF7 < B, (0. F [0e, Ms]) - F

+

2|V><F,|2}.
c

(29)

By taking

Cet = 2/Leulwe, Mgl, (30)

Eq. (28) will be given by U =3 |ac|*/2. We can
then define the associated canonical momentum p.; and
position ¢.; through o.; = p.; —iw.q.;, such that the
canonical equations of motion p.; = —a)ZqC,, and ¢ =
p are satisfied. Quantization is performed by promoting
the canonical coordinates to operators satisfying canoni-
cal commutation relations [§.;, pe.rr] = ihé. +6; . The usual
formulation in terms of creation and annihilation oper-
ators is obtained by writing p.; = (iw./2)"?(a., +&Iyl)
and g, = i(h/2w.)" (8, — @ ) with [ac,, &', ;] = 808,
Therefore, quantization yields a.; — /2hw.a.; and the
Hamiltonian U{? — H, =Y hwa al .., besides the zero-
point energy term. The quantized electrlc field is therefore

dhw,

AT g
L nlwe, Ml [ac,[(t)FC’[(r) + ac,ch,[(r)]-

E, t)—Z

€19}

For frequency ranges in which absorption is negligible, the
procedure reproduces quantization procedures formulated in
terms of a suitable Lagrangian including interactions with
matter fields that describe dispersion and losses [49-52].

We can now proceed and obtain the coupling Hamiltonian.
For degenerate modes, we first substitute the mode expansion
for the electromagnetic field in u(>) [see Eq. (27)] such

014409-5
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that

1
Ua()IjD) = Z Za:ylac,l’cc,lcc,l’zc,ll’ [a)cv ML (32)
12l

where

Ic,ll’[a)ca M] = /dsrigoF:,l : 3%(0)5?[0)0, M]) . Fc,l’

+

2

o (VxF;)-(V xFC.l/)}. (33)

As outlined above, the electromagnetic field modes are
quantized by «.; — +/2hw.a.,;, while the magnetization is
promoted to an operator M — M. With this procedure, we

J

obtain the quantized optomagnonic Hamiltonian

hchc,ll’ [a)cv M] AT A

Hcl,cl’ = a,ay. (34)
; VIerrlwe, MsIZe yloe, Ms] !

The specific form of the coupling depends on the overlap
integral Z. ;y[w,, M] which in turn is given in terms of
the magnetization-dependent mode functions F.; and on the
derivatives of the permittivity tensor.

The coupling between different nondegenerate modes is
obtained from u.-. Specifically, the mode decomposition
yields the energy

1
Ucc’ = Z %;[azlac’,l’cc,lCc’,l’Icl,c’l’ [ww we, 8M+] + C-C-],
(35)
where the overlap integral takes the form

L er[we, s, M) = g f d*r{F:, - 0y, (00 € plow, ML) - Fop +Fr - 8, (0. 1loe, SMLD) -Fop).  (36)

The magnetization fluctuations are then quantized by M — 8M_., such that U, yields the interacting Hamiltonian

WeWer

Aoy =h T orlwe, o, espq 18Mia a0 +He. |, 37
bet Z [\/IC/,Z/I/[CUC?MS]IL',”[CUC’MS] terl ant M et j| &7

We>wy

where we have used that Z .y[w., ws, M,] is linear
in M, and defined espq, = M, /|6M|. Within the
Holstein-Primakoff transformation up to first order, M. de-
scribes the annihilation of a magnon, and therefore 1-761,‘./1/
describes the process in which a photon in the mode (¢, ")
with frequency w. annihilates a magnon with frequency w,,
creating a photon in mode (c, [) with frequency w, = w. +
- In the degenerate case, the magnon is created provided
that an external drive is detuned from the optical mode’s
resonance.

C. Plane-wave-like modes: Faraday and Voigt configurations

To obtain the coupling and its explicit dependence on
the functions ¢[w] and Flw], we need to specify the
mode functions F.; and compute the integrals Z ;;[w., M]
and Zy oplwe, oo, esp,]. We first consider plane-wave-
like modes, such that F.;(r) o« e*</l*}” The modes of a
Fabry-Pérot optomagnonical cavity can then be described by
considering perfect conducting boundary conditions confining
the electromagnetic field along one dimension. For F;(r) =
ekeilecdT £ | from Maxwell’s equation we obtain

2
[?c,l . ?c,l + %?[wca M]] : fl = 09 (38)

where
<> O _kc,l;z kc,l;y
K c,l — kc,l;z 0 _kc,l;x
—Re,lyy kc,l;x 0

[
Thus, the wave vector k. ; satisfies the Fresnel’s equation

2
det[ Ker- Ko+ 2 2o, M]} —0. (39
C

The solutions of the above equation give the relation between
the wave vector and frequency k. ;[w.] and, once the boundary
conditions are applied, the discrete values of k.;, and the
corresponding allowed frequencies are obtained.

We focus on two configurations: The Faraday config-
uration, for which k. ;[w.] is parallel to the saturation
magnetization, and the Voigt configuration, for which k. ;[w,]
is perpendicular to the saturation magnetization, as depicted
in Fig. 1. Since we are considering My = Mge,, for the

Faraday Voigt

M x A4
.k T k

Ms

4
'Z:_—_sz IS I 1
e T/
e, e, K
I_,ez T—bez

FIG. 1. Faraday and Voigt configurations. In the Faraday con-
figuration, the wave vector k.; is parallel to the saturation
magnetization, while in the Voigt configuration, the wave vector is
perpendicular to the saturation magnetization. We also consider the
corresponding Fabry-Pérot cavities by imposing perfect conducting
boundary conditions.
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Faraday configuration k. ;[w.] || e,, while for the Voigt con-
figuration we take k. ;[w.] || ex.

1. Faraday configuration

In the Faraday configuration the Fresnel’s equation yields
two wave vectors, labeled with indices / = + and given by

2 ]

k. + = — lelw ] £ | FlolIMs].

5 (40)

The magnetization-dependent mode functions obtained from
the Fresnel’s equation corresponding to k. 4 are

(Acyieik(-.i[wc]z + chie—ikai[w{]Z)

FC,:t(r) = fc,:l: ﬁ )
Sex = e Fisign[Flole,
Flocl . .
(£iM, —sign[FloJIMe,,  (41)
elwc]

where we have considered only terms up to linear order in
M,y and took M, ~ Ms. For M, , — 0, those modes are
circularly polarized with mode functions in the xy plane. For
plane waves propagating in the e, direction in an unbounded
medium, we take Ay = 1 and B4 = 0, for which the normal-
ization constant (30) is given by

Ce+lw.] = [eo([Kel[@c]? + 8u, (0clwc])
+ sen[Flw 118u, (0. Flo )Ms) /2172, (42)
where

Kilw.] = [elo.] £ Ms|Flwll1"2. (43)

2. Voigt configuration

For the Voigt configuration k.; = k. e, and, similarly to
the Faraday case, we obtain two wave vectors labeled with
| = =% given by

2
%
2 +lodd = —elod,

(44)
2 2 2
K2l = ‘“—;‘(»s[wc] - M)
' c elo]
with mode functions
A, ieikc,i[wc]x + B. iefikc,ilwrlx
F..r)=f, . : s
,i( ) f = \/v
_ M, iglw M, M, )
er =t e <f[wc]M§ M)
Flowe] iglw My M, )
e s M (f[wcwg Ms )
(45)

We notice that the mode + has a wave vector independent
of the magnetization and it is imaginary in the regions where
elw.] < 0. Otherwise, the mode — has an imaginary wave
vector for frequencies such that &*[w.] < F[wJM3. We
restrict our analysis to the case e[w.] > 0. For the case of
plane waves propagating in a bulk medium along e,, we take
A; 1+ = 1land B, + = 0. In this case, the normalization factors

are given by

Ce+[wc] = {e0[dn, (wcl@c]) + elwc11/2) 2,
2 2
Cc,f[a)c] = {80|:<1 + ]:[zw—C]MS>aw(»(wcg[wc])
&*lw]
Floc]
elw]

-2 B, (0 Floo )M

-

We notice that C, ;[w.] has the same form as the normal-
ization constant for plane-wave modes in a homogeneous
dispersive materials with no permeability dispersion [53].

Flo M

elwc]

+ S[wc] -

3. Fabry-Pérot cavity

The description of a Fabry-Pérot cavity requires the impo-
sition of boundary conditions. We consider perfect conducting
boundary conditions in the two different configurations: The
Faraday (the magnetization is perpendicular to the cavity
boundaries) and the Voigt configuration (the magnetization is
parallel to the cavity boundary). Otherwise, all-dielectric cav-
ities host quasinormal modes [54-56], that take into account
leakage of the electromagnetic field from the dielectric to
its surrounds. The proper quantization of quasinormal modes
is relevant for all-dielectric cavity quantum electrodynamics
setups [57,58], which we do not discuss here.

For the cavity in the Faraday-type configuration, we take
the wave vector as k = q + k. je;, where g = ke, + k,e,.
From the Fresnel equations we obtain

2

w
ko] = el - 7

1

elw]

+

2 2
\/ 2 el PPl M <w—§8[wc] - q2>.
c c
(47)
The normal modes of the cavity have thus the following form:

e ) )
F.i(r)= fc,jc[q]—v(Ac,ﬁ:e"k‘*iZ + B re+%),  (48)

7

where ¢ = k.e, + kye,, p = xe, + ye,, and V is the volume of
the cavity. The mode vectors f. . [q] are given from Eq. (38)
which for ¢ =0 are given by Eq. (41). We consider per-
fect conducting boundary conditions e, x F. 1 (r) =0 and
e. - (60 € [we, Ms] - F.1(r)) = 0atz = 0, L. From the first
condition at z = 0 we get A, . = —B, . Therefore,

eiq'p

Foie(r)=iA.+f C,i[qlﬁ sin(ke,+2), (49)

where Ac,i is a redefined normalization constant that can be
included in the normalization factor of the quantization proce-
dure. The boundary condition at z = L yields k. + = 2wny /L
with ny integers, and Eq. (47) determines w,, +[q] for each
mode. The exact form of w,, +[g] depends on the dispersion
model.
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Following the same procedure for the Voigt-type configu-
ration cavity k = q + k. je,, where now q = ke, + ke, gives

2 272 2
o = Zelw - 210 o
’ C

2c2¢[w,]
1 |02 Fw M3 (02 Fw M3 5
+ E\/ 252 [a)c] ( 2 +4kz S[CL)C]> .

(50)
The boundary conditions are now e, x F. 1(r) =0 and e, -

(8()(?[0)0, Mgl - F.1(r)) =0 at x =0, L, which gives the
discrete allowed values for the mode frequencies w,, +[ql.
The mode functions have a form similar to Eq. (49), being
proportional to sin(k. +x) and with mode vectors f given, for
q = 0 by Eqgs. (45).

Both for the Faraday and Voigt cavity configurations, the
modes with ¢ = 0 have normalization constants given by
Eq. (30), equal to those obtained for traveling plane waves.
While the Faraday modes exhibit, up to first order in the
saturation magnetization, perfect circular polarization [see
Eq. (41)], due to the circular magnetic birefringence one
the Voigt mode labeled (—) in Eqgs. (45) has a polarization
component parallel to its wave vector. As we show in the
following, due to the polarization of the Faraday modes, the
Kittel-mode-mediated scattering between these modes is not
allowed.

D. Optomagnonic coupling Hamiltonian

With the mode functions and the quantized optical modes,
we can obtain the magnon-photon interaction Hamiltonian
from Eqs. (34) and (37). We consider the case of plane waves
or cavity modes with ¢ = 0 since those have the same mode
polarizations as the plane waves (see Sec. II C 3). Since in the
previous section we have assumed that the saturation magne-
tization is polarized in the e, direction, the fluctuations are
entirely in the xy plane. We therefore take My = M, F
iM,.

For the Faraday configuration, we first notice that the sec-
ond term in Eq. (33) yields no coupling since (V x F7) -

J

W€ _
goeglwe] = = MzppEC, [0:]C_[w,],

2

Flo]

(V x F_) = 0. Furthermore, up to first order in the magne-
tization’s fluctuations

Fi _(r) 0y, (0. [we, M]) - Fe i (r) =0, (51

and therefore Zev—[we, Ml =1, _ [0, M] =
Zet -, 0y, 8e4] = 0 and the magnon-mediated coupling
between Faraday modes vanishes for both degenerate and
nondegenerate modes.

In the Voigt configuration we also have (V x F*).(V x
F ) = 0. For degenerate modes we obtain

F* -3, (w. € [we, M]) - F

.ei(k(,+—kc.f)-r Flw.]
=1
\%4

awc (ng[wc] ) - awc (a)c]:[wc] )i| Mx

elwc]
(52)

and, thus,

Ic,7+[wm M]
- [Jﬁa%]

=1&é
elw.]

awc (a)cg[a)c]) - awc (wcf[wc])]an

(53)
where E is a mode overlap integral, which can be used as a
generalization to the plane-wave framework presented here.
We follow the quantization procedure outlined above and
consider the Holstein-Primakoff transformation up to linear
order for the magnetization operator Mx ~ Mypr(it + i),
where Mzpp = (Y Mg /2V)'/? describes the zero-point fluc-
tuations of the magnetization given in terms of the volume
of the magnet V and of the gyromagnetic ratio y, and 7'
(/) is the magnon creation (annihilation) operator, satisfying
bosonic commutation relations. The Hamiltonian obtained is
given by

Heom = iligneglwc)a] La. (" +m)+He., (54

where the frequency-dependent coupling constant g[w,] reads
as

8wf (wcg[wc]) - 8wc (wc]:[a)c])i| ’ (55)

elw]

as also derived in [26]. For nondegenerate modes, we have two possible frequency configurations: (I) o, + = wy,— + w,, and
(D w,— = we 4+ + wy. For (I), we get for the overlap integral (36)

awr (a)c, ]:[wc, ]) + 8(1)/ (wc’,ff[wc’,f]) f o — M
IL‘+ C’_[(,()c 45 Wer —, 3e+] = iESO - * + Al [a) . ] 5 —_ 1 . (56)
’ ’ ’ 2 elwe -]
Using the Holstein-Primakoff approximation M+ = 2 Mzppii, and the Hamiltonian from Eq. (37) reads as
Hy o0, = ilgloe, oy _laa_m+ H.c. (57)
with the coupling given by
£
gl wo-] = 7 EMzpeJor 100 ColwclCo. o]
58)
Floe._IM (
X [aa)(ﬁ(a)c,Jr]:[wc,Jr]) + aw(./.(wc’,f[wc’,])]<8[a)—]s —1 .
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For (II), the overlap integral from Eq. (36) is

8w£, wc.fj: W, — + aa}.r (OF4 ]: (0% .F c.—
T o [@e—, 0o, Se,] = iBog— (@ Floe D+ o, (o s Floe D (FloeIMs 1) (59)
2 elwe, -]
The Hamiltonian (37) in this case reads as
I-L)(,__M,(_,‘+ = ihglo.,—, coc/,+]€z";&+rh + H.c., (60)
where the coupling is
&
gl 0o 4] = 7 EMazpr /e w0 1 Ce—[0:]Ce e
61)
Floe_IM (
X [0y, (@ —Floc-1) + 8w3,$(wc/,+f[wcg+])]<dw—]s + 1)-

Notice that both couplings have a similar form with a sign dif-
ference in the last term in brackets. The terms included in the
permittivity tensor do not yield copolarization coupling since
8w._<wy = Bw.,<ws, = 0, although these can be generated
by the terms associated with the Cotton-Mouton effect, which
were not taken into account in our formalism.

1. General properties of the optomagnonic coupling

Without specifying the dispersion model, we can draw
some general conclusions regarding the obtained opto-
magnonic coupling. We are particularly interested in the
behavior of the coupling for frequencies near wgnz.

For the degenerate case, we first notice that, as long as
F?[w,] and 0, (F 2[w,]) are finite as w, — wgNz, We obtain

. C_lo]] 2
hm"’”“’m[ oloc] ] B \/ coo P2l M3, el @

which after some algebraic manipulations leads to [26]

/\jSPF EwEnz (63)
apart from an irrelevant sign[F[wgnz]]. Therefore, irrespec-
tive of the dispersion model, at the ENZ frequency the
coupling between magnons and photons is given by the simple
relation of Eq. (63) which depends on the ratio between the
zero-point magnetic fluctuations and the saturation magneti-
zation, the overlap integral, and the ENZ frequency.

In the case of coupling between nondegenerate modes,
we notice that the optomagnonic coupling for case (I)
e+ > we—, given by Eq. (58), vanishes if Flwy Mg =
elwr ], even though the energy conservation condition
We+ = Wy — + wy 18 by assumption fulfilled. In this case, a
photon in the mode (¢’, —) can not be upconverted to a photon
in (¢, +) by the absorption of a magnon. A complementary
situation happens for case (II) w, - > wy 4 if Flo, Mg =
—¢&[w,,—]: In this case the coupling in Eq. (61) vanishes, and
a photon in (¢, —) can not be downconverted to a photon in
(c’, 4) by the emission of a photon. Cases (I) and (II) are
depicted in Fig. 2. For both cases, the frequencies at which
the coupling vanishes correspond to the frequency at which
the wave vector k. _ vanishes, given by [cf. Eq. (44)]

limwc%wENz [gDeg [w]] =

elwe -1 = £ Flw. -1 Ms. (64)

(

We can understand the suppression of the coupling at these
specific frequencies by inspecting the overlap integral (36).
We first notice that for the considered configuration with sat-
uration magnetization along e,

By (0 € 4w, SML])

0u, (e Flwe ) (M, —iM
= Ju (071 j)i( . Diee. —ere),  (65)
where e. = (e, L ie,)/ /2 and a similar expression is valid
for 9, (wC?Jr[wC, 3M . ]). The coupling between two non-
degenerate plane-wave-like modes (c,!) and (c¢’,1’), with
W] > Wy, s thus proportional to (f:,z ce)ey - fop)—
(f%,-ey)e. - f. ). This term does not vanish if either f.
has a left-handed (LH) polarization component (a component
e-) and f., has a component || e;, or when f., has a
component || e; and f . ; has a right-handed (RH) polarization
component (a component || e). Turning now our attention to
the mode (¢, —) given in Egs. (45), we can rewrite the mode
vector f. _ as
i FlwJMs i

=—(1- e — (1 e
Se— ﬁ( el )e ﬁ( + oo Ye
(66)

The mode + is always linearly polarized along e,. Under the
conditions of case (I), the mode (¢, —) has a definite RH
polarization, thus from our general considerations, it can not
scatter into a higher-frequency mode (c, +). Otherwise, for
case (II), the mode (c, —) has a definite LH polarization and,
therefore, it can not scatter to a lower-frequency mode (¢’, +).
This is a consequence of the conservation of polarization in
the process: A Kittel magnon has a RH polarization, which

| (I) We,+ = Wer — + W | |(H) We,— = Wer 4+ ‘I’Wml

Flwe,—| Mg = elwer ]

LY We,+
X X

Wer | — —'l ‘
g[wca+7wcl’7] = 0 g[wc,f)wc,y‘i’] = 0

FIG. 2. Schematic depicting the vanishing couplings between
different polarized Voigt modes due to dispersion.
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yields the decomposition given by Eq. (65). A photon with
definite RH polarization can not annihilate a magnon with RH
polarization generating a linearly polarized photon. These are
“dispersion-tuned selection rules” that are valid at frequencies
given by Eq. (64). At such frequencies, a Brillouin light scat-
tering experiment would exhibit a perfect transmission peak
for an input light at the — mode, without a peak at a lower
(higher) frequency corresponding to the scattering into the +
mode. This is analogous to the selection rules’ fingerprints
measured in scattering between whispering-gallery modes and
magnon modes in magnetic spheres due to conservation of
orbital angular momentum [59-62].

2. Full Hamiltonian and energy spectrum

Considering the Hamiltonian describing the interaction
between magnons and photons as derived in the previous
sections, we can write the full Hamiltonian describing the
photon-magnon system. We consider two optical modes and
the uniform magnon mode, as was assumed for the derivations
in the previous sections.

For the case in which the optical modes are degenerate the
coupling term is given by Eq. (54) and the full Hamiltonian
reads as

HAp

o= we(@lay +aas) + wmtm

+ igpeglwcl(@la_ —ajat Yo" +m).  (67)

The first and last terms are obtained via the quantization
procedure outlined above. The second term is obtained via the
magnetic energy density with the Holstein-Primakoff trans-
formation [41,42,63], and it takes into account exchange
interactions, and an applied external bias field. An additional
term oc(iii")? + (71)? can be included in the Hamiltonian in
order to describe shape and crystalline anisotropy. We can
find the energy spectrum of Eq. (67) by first performing a
change of basis for the photon modes @, = i(a; + a,)//2
and a_ = (a; — &2)/ﬁ and, then, following [64,65], we per-
form a two-mode polaron transformation H — UTHU, where
U = e with

— m), (68)

A : 8begl®c]
—=wmﬁ1'ﬁ1+< e~ —alay |aja
h W
heglc]
+ (wc— 2Pee T ala, |ala, (69)
O

285 o] .
+ 2P T @lan@lay).

The eigenenergies are given in terms of the eigenvalues of the
number operators ;5 = a, ,d1» and i, = ) by

E"lJlZ»”m

n = Ol + wc(ny + ny)

_ 8begloe]

m

(70)

(n1 —np)*.

Each optical mode has a nonlinear energy shift o<
g%eg [a)c]ni2 /@y, which becomes comparable with the single-
magnon transition energy if glzjeg[a)c] ~ wy, a regime at-
tainable at wgnz provided that the zero-point magnetization
fluctuations are large, which depends on the cavity vol-
ume. From Eq. (63), since Mzpr/ Mg = (y1i/2V Mg)'/?,
8peglwENZ] ~ W), can be achieved with cavity volumes

2
. YEnz hy

a)2 2./\/15.

m

(71)

The saturation magnetization depends on the material, while
the magnon frequency w, is defined by an external bias
magnetic field Hgx via w, = pnoyHgx. The ENZ frequency
depends on the specific dispersion model. Taking as an ex-
ample the saturation magnetization of yttrium-iron garnet
(YIG), Mg =196 kA/m [41], we can estimate V ~ 4.7 x
1072wy, /w2 um?. Thus, in the typical case where w,, ~
27 x 10 GHz, gpeglwenz] ~ @, can be achieved in a cav-
ity with a volume ~um?® provided that the ENZ frequency
is wgnz ~ 27 x 1400 THz, which is the case considered in
Ref. [26] for the dispersion model of Sec. III.

The fingerprints of the nonlinear energy dispersion can be
probed via the power spectrum of one optical mode under
an external coherent drive as we report in [26]. For that, the
magnon sidebands in the power spectrum generated by the
energy dispersion given in Eq. (70) need to be resolved, which
requires the single-magnon strong coupling regime where the
coupling is larger than the magnon (k,) and photon decay
rates (x). The magnon decay rate depends on the Gilbert
damping and it is typically ~MHz. The photon decay rate
depends on the intrinsic material losses and on cavity design
(radiative decay). The optical decay in optimized state-of-
the-art systems is ~GHz. Since ¥ < w,,, the most stringent
requirement in terms of volume and ENZ frequency is the
one for glwgnz] ~ w,- For YIG inspired parameters, the es-
timate of wgnz presented in the previous paragraph and the
requirements discussed above correspond to high-frequency
photons, which would induce transitions between the bands
of the material [66], introducing an additional dissipation
channel. Nevertheless, experiments with cerium-substituted
YIG films [67] indicate a large value of the Faraday effect per
unit length at such frequencies. Given those considerations,
prospect implementations of such system would incorporate
the magneto-optical effects of magnetic dielectrics in layered
structures exhibiting an effective ENZ behavior [31-33,68] or
in waveguides [29,30]. Since our theory is valid despite the
origin of dispersion, it can also be applied to such structured
media.

The strong single-particle coupling in this system yields
the nonlinear energy spectrum of Eq. (70), which in turn gen-
erates photon blockade in optomagnonical cavities. The cavity
frequency is shifted by the number of photons, thus, after a
first photon is added to the cavity, by an external source, the
nonlinear energy shift prevents a second and multiple photons
to enter the cavity [64]. Such effect can be probed by the
measurement of the cavity output field statistics which, in this
case, would be antibunched. Another possibility for probing
the strong single-magnon coupling is via magnon-induced
transparency. In this case, a control drive with frequency wp
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changes the transmission of a second weaker probe drive
with frequency w,. Induced transparency was described for
single-particle weak coupling cavity optomagnonics [23], in
which the control is tuned at the first red magnon sideband
wp = w, — Wy, generating an interference with a probe input
at the cavity frequency, such that the latter is perfectly trans-
mitted. This can be measured via a transmission spectrum as
a function of the probe frequency which has a transparency
peak at the cavity frequency. When the system exhibits a
strong single-magnon coupling rate, such standard induced
transparency would be modified due to the nonlinear shift
in the transitions, yielding a modification in the transparency
peak at the cavity frequency [69]. Furthermore, an induced
transparency signal would be obtained at the second magnon
sideband, that is, for w, = w. — 2w,,, for a control drive at the
cavity frequency wp = w. [69]. Such signal is a consequence
of two-photon transitions driven by the nonlinear coupling
term in Eq. (67), and would be an unambiguous fingerprint
of single-magnon strong coupling in an ENZ optomagnonical
cavity. Finally, the strong magnon-photon coupling regime
can be harnessed for the deterministic optical generation of
nonclassical magnon states [65].

For the case of nondegenerate optical modes, it is not pos-
sible to find the energy spectrum analytically. Nevertheless, if
the frequency difference between the optical modes w_ — w4
is comparable to the magnon frequency w,, and the coupling
g < wy, an effective Hamiltonian can be obtained by per-
forming a Schrieffer-Wolf-type transformation [70]. In this
case, the effective interaction between photons and magnons
can be used to realize a quantum nondemolition measurement
of the magnon number [70].

III. LORENTZ DISPERSION MODEL
FOR A FARADAY-ACTIVE MEDIUM

We now describe the features of the frequency-dependent
optomagnonic coupling in a specific dispersion model based
on the dispersion obtained in paramagnetic and ferromagnetic
dielectrics. The frequency dependence of the permittivity ten-
sor is obtained following Ref. [71], which yields a permittivity
tensor linear in the magnetization that takes into account the
Faraday effect. This framework does not include the Cotton-
Mouton effect.

To derive the dispersion of the optical properties of a mag-
netic dielectric, we consider the linear response of the medium
to an electromagnetic field defined via the polarization

t

Pi(r,1) = (Bi(r, D)) = 80/ dt’ xu(t —t)Ex(r,t), (72)

—00
where [, k = (x,y, z), the average value is over the thermal
state of the system at + = —oo, and (Y[a)] is the suscep-
tibility tensor. The permittivity tensor is given by € [w] =
1 + ¢ [w]. At optical frequencies, the only transitions lead-
ing to dispersion in our model are electric dipole transitions.
Magnetic dipole transitions, that would generate dispersion in
the magnetic permeability, are far off resonant and we can
be safely disregarded. At some intermediate frequency it is
possible that dispersion due to both magnetic and electric
dipole transitions might be present, a framework which we
do not study here. This case can be particularly important for

structured media with effective properties mimicking those
of continuum bulk media and can be relevant for describing
optomagnonics in near-zero index (NZI) media, in which both
the permittivity and the permeability vanish [27,72].

The susceptibility tensor is a response function that can be
calculated from the eigenstates of the system’s Hamiltonian.
We assume that inside the infinitesimal volume surrounding a
point r, the electric field does not vary appreciably and that the
volume contains a number N of magnetic ions. We then com-
pute the contribution of each individual ion to the response
of the material. For a single ion, the interaction with light is
given by the usual dipole interaction in the long-wavelength
approximation

H =Ho+V -E,1), (73)
were V = —er is the dipole operator and H;,, includes all
terms defining the internal ionic levels [73-75]:

I:Iion = H() + ﬁl’ (74)

where H, defines a set of unsplit ground states denoted
by {lg)} and a set of excited states {|e)}. The perturbation
term H, splits the ground-state degeneracy, it can contain
spin-orbit coupling, crystalline fields, the Zeeman interaction
(with an external bias magnetic field), and exchange fields.
The crystalline anisotropy and Zeeman and exchange inter-
actions break the degeneracy of the ground-state manifold,
while the spin-orbit and the Zeeman interactions break the
degeneracy of the excited states. Spin-orbit coupling is partic-
ularly important for the Faraday effect: It mixes excited states
with different spin components, allowing transitions between
ground states with different magnetic moments, e.g., from
m; = —% tom, = +%.

We assume transitions between a group of ground states
and a group of excited states. From the Kubo formula, the
component lk (I,k = x,y, z)AofAthe susceptibility is given
by xi(t — 1) = £O(t — t'){[V;, Vi) (the tildes indicate op-
erators in the interaction picture). Assuming that only the
lower-energy levels of the orbitals are occupied, one gets

xulwl =) pX (o, weg)[%Re((gleld (elVi1g))
e (75)

+ i1m<<g|Vk|e><e|V,|g>>]

with p, the Boltzmann factor giving the population of a given
ground state |g), and X (w, w.,) a complex shape factor for the
transition between the relevant states given by

2w

. 76
— w? = 2iwne.,q,) (76)

X(w, we ) =
J&j h( nggj
The response function depends on the dipole matrix tran-
sition elements (g|Vi|e), which in turn are defined by the
perturbation terms included in H,. First-order perturbation
terms, such as the one arising from spin-orbit coupling,
contribute to inelastic scattering and generate the Faraday
effect [71,73-75]. Second-order scattering processes, for ex-
ample arising from exchange interaction, contribute to the
Cotton-Mouton effect.
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To obtain the dispersion properties of the permittivity
tensor, we first write the transition frequencies between an
excited and a ground state as

AE, — AE,

A ; (77)

Weg = W0
where hwy is the energy difference between the energy
levels without the perturbations and AE/, = E/,) — Ec()
are the energy differences between perturbed and unper-
turbed levels. We also assume that the magnetization is
saturated along the e, direction. Assuming that the pertur-
bations responsible for breaking the level degeneracies are
small, we take AE,, AE, < |iw — liwg + iwnel, and since
Im[(g|V,|e){e|Vy|g)] = 0, the components of the susceptibil-
ity tensor are given by

ZwoAj
h(a)(z) —w? 4+ i2wn) ’

Xolo] =N Z

Xxjjlo]l =

[P

w —w? 4+ 12a)n)

[1 2 AF — Ak }(f “—f
x |1 =2w C =10,
0 li(wf — w* + i20n) *

(78)

where Aj =73, . Pl [(gV;le)|? and fi=

(g|Vi|e)(e|V lg) = 2|(g|VﬁE|e)|2. For simplicity we take
the diagonal components of the susceptibility as

2(1)()N./4
h(wE — ? + i20n)

xjjlo] = (79)

The off-diagonal component y,, can be computed by first
writing

xolol = xY o] + xS lo] + x5 o], (80)
where

(1)[ 1= iNo Z&g 'Og(ffg B f—ig
Ky L1 = (@} — @? + i20n)

2) lszNw Zg,e IOgAEg(fjg - fig
Xy 0] = 3 ; 81

li(w} — w* + i20n)
. eg  reg

X;S)[w] _ _ZZwONa) Zg.e PAE(fF — £ ).

li(w} — 0® + i2wn)2

We define P, = > le){el, such that 3, f. (elVLPV|g).
Furthermore, the energy corrections are given by ﬁrst—
order perturbation theory AE, = (e(g)|Hile(g)) such that
>, AE, £ = (g|V+P,H,P,V~|g). The nonvanishing terms of
the susceptibility depend on specific characteristics of the
ground and excited states defined by the terms included in
Hy, and the calculation of (g|V..P.V=|g) and (g|VLP,H;P,V+|g)
follows the procedure outlined in Ref. [71]. It can be shown
that Eq. (80) is proportional to the ground-state magnetic

moment M,, such that the off-diagonal component of the

susceptibility reads as

Xwylo] = iFlo](NM;)
2w(NM,) Az
= 2 2 Az 2 2. ’
h(a)o —w’ + 12a)n) h(a)o —w? + 12a)n)
(82)
where
}_[ ] 2w |:A + A3a)() :|
w .
(0} — @? + i20n) ? (0} — @? + i20n)
(83)

The calculations can be generalized to include the other
components of the susceptibility tensor which give the per-
mittivity tensor in the form of Eq. (3). In this model for the
dispersion of a Faraday-active dielectric, A, depends on the
deviations of the g factor of the ion from 2.002 and is only
relevant for ground states with both nonzero orbital angular
momentum and splitting due to crystalline anisotropy. For
ions with ground states with zero orbital angular momentum,
A = 0 and the only term contributing to the Faraday effect
is the one proportional to A3, which is given in terms of the
spin-orbit coupling constant for the excited-state manifold.
The saturation magnetization is NM, = M. The formula is
also valid for paramagnets and can be generalized to include
contributions from different types of ions, which extends the
description to ferrimagnets. We consider here that the medium
in which the electromagnetic waves propagate is described by
the above dispersion model.

In the limit w < wo, €;;[0] = 1+ x;;[0] = £ is the elec-
trostatic permittivity [40]. Assuming equal values of the
permittivity for all diagonal components we obtain

Fla)o

A= —(8 -1 (84)
and, therefore,
wi(E —1)
(0% — ? +i201)

xjjlo]l = (85)
The off-diagonal terms define the Faraday rotation angle per
length as

o Xxyle]

—(” [@] — nyfw]) = %Taﬁﬂ[w]

where nif[w] = +/¢elw] £ Flw]Mg are the refractive in-
dices for positive and negative circular polarizations and
nlw] = (n_[w] + ny[w])/2 is the average refractive index
of the medium. At frequencies w <K wy, filw] >~ n[w] =

Plw] = . (80)

1+ x[w] = Ve[w]. We can write for a magnet with mag-
netization saturated along e,
o Flo]
Plw] = M. 87
2 Jelw]
. . _ _w _F[w]
The Verdet constant is given by V[w] = —5- VAT We can
then write compactly
Xxy[w] = Z-F[U)]Mza
2(E—1
oo =14+ 2D (88)

(0% — ? +i20n)
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FIG. 3. Faraday rotation angle per unit length [see Eq. (86)] in units of w,/c as a function of the frequency in units of wy for (a) and
(b) A, = 0 and (c) and (d) A3 = 0. The insets show a zoom-in around the ENZ frequency wgnz. For both cases the Faraday rotation angle is
enhanced in this frequency region, but does not diverge. For these plots we adopted & = 4.9.

Before proceeding, we introduce the adimensional param-
eters i) = n/wo, Ay = Ay Ms/wy, and A3 = A3 Ms/w?3. The
weakness of optomagnonic effects implies that A3 < 1.
For the parameters corresponding to the 500-nm transition
of octahedral oriented Fe’* ions in YIG, we have A; ~
10~* [71,76,77]. This particular case corresponds to a ground
state with no orbital angular momentum, and thus A, =0.
Here, we study a more general framework and describe fea-
tures from both A, and A3 terms. Furthermore, even though
the above model is based on ionic transitions between a
set of ground and excited states, a similar dependence of
the permittivity on the frequency describes the properties of
other systems such as magnetized plasmas [34] and metal-
dielectric-gyroelectric heterostructures [35].

The diagonal part of ¢[w] follows the usual Lorentz-model
behavior and vanishes at @ = wpnz = wov/E(1 — n?/2w3),
which we call the ENZ frequency. In what follows we consider
the case ) <« 1, such that we can neglect its effect as long
as the frequency range is far from the resonance frequency
wo. In this case wpnz = wo/E. Similarly to e[w], whereas
the Faraday rotation angle also diverges at wy for n — 0, it
is finite around wgnz. This is shown in Fig. 3 where we plot
the Faraday rotation angle for A, = 0 [Figs. 3(a)and 3(b)] and
for A3 = 0 [Figs. 3(c) and 3(d)]. The former case corresponds
to the framework of Ref. [26].

A. Characterization of the plane-wave modes
for the Lorentz dispersion model

Before evaluating the optomagnonic coupling for the
Lorentz-type dispersion model, we discuss the propagation
characteristics of the plane-wave modes obtained in Sec. IIC
for both Faraday and Voigt configurations.

Figure 4 shows the wave vector for electromagnetic waves
propagating in the Faraday configuration for (a) A, = 0 and
(b) A3 = 0. We notice a frequency range (shaded region in the
figure) in which only one of the modes has a real wave vector,
while the other exhibits a pure imaginary wave vector. In this
range, only the (4) mode propagates, while the (—) mode is
evanescent. This is the basis for designing a magneto-optical
based isolator in the Faraday configuration [29]. A similar

effect is also present for EM waves in the Voigt configuration,
as depicted in Fig. 5. The wave vector of the Voigt mode (—)
diverges at wgnz due to the term o< F 2[w] /elw] [cf. Eq. (44)]
for both cases depicted in Fig. 5. From Eq. (45), we also
notice that at wgnz the polarization of this mode is f_ o e, ||
k_, implying that the mode describes perfectly longitudinal
waves. This is due to the frequency-dependent circular mag-
netic birefringence. This is in contrast with the Faraday case,
which exhibits finite wave vectors for both modes at the ENZ
frequency and always has (discarding terms oM, ,) perfectly
circular polarization. Furthermore, in the Voigt configuration
there is also a region in which one of the modes propagates

0.015
(a)
<001 -
o
% 0.005 |
‘TH‘ 0'- ---J----' A2 = O
=2 , 1 .
o 221356 2.21359 221362
= A
8 WENZ
> 003 v
e, ® |
g 0.02 \@\ w}\’
X 1 PR
001! ® : \”“,/
1
R
0. feeebeeed A3 =0
2.21349 2.21359 2.21369

Frequency w/wo

FIG. 4. Wave vectors (real part) for EM plane waves propagating
in the Faraday configuration for the dispersion model of Eq. (88) as a
function of the frequency (in units of wy) for a frequency range close
to the ENZ frequency. (a) For A, = 0 and A; = 10~* and (b) for A; =
0 and A, = 10~*. The shaded regions indicate the frequency range in
which only one polarization propagates. We have adopted & = 4.9.
Frequency in units of the ionic transition frequency w,, wave vectors
in units of ¢/wy.
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FIG. 5. Wave vectors (real part) for EM plane waves propagating
in the Voigt configuration for the dispersion model of Eq. (88) as
a function of the frequency (in units of wy) for a frequency range
close to the ENZ frequency. (a) For A, = 0 and A; = 10~* and (b) for
A3 =0 and A, = 107, The shaded regions indicate the frequency
range in which only one polarization propagates. We adopted & =
4.9. Frequency in units of the ionic transition frequency w,, wave
vectors in units of ¢/w.

while the other is evanescent, yielding, similar to the Faraday
case, to optical isolation.

B. Optomagnonic coupling for the Lorentz
dispersion: Degenerate case

Given the dispersion model we can study the behavior of
the optomagnonic coupling in the Voigt modes as a func-
tion of the frequency. The coupling for degenerate modes
[see Eq. (55)] is shown in Fig. 6 using the expressions for
e and F given in Eq. (88), and for several values of A,
and As. At @ = wgnz, as shown in Fig. 6, the coupling is
Mygprwenz/ Ms. The prefactor for the adopted values is
Mypp/ Mg ~ 6.8 x 1073//V. Smaller magnetic volumes
yield stronger couplings, as we discussed in Sec. II D. In par-
ticular, for illustrative parameters of YIG, Ay ~ 0, A3 ~ 1074,
& = 4.9, and for a volume of ~(um)? it can be shown that the
coupling is g ~ 2w x 10 GHz, comparable to the magnon fre-
quency as reported in Ref. [26]. Even though one of the wave
vectors for the Voigt modes exhibits a diverging behavior at
wENz, the coupling remains finite.

For frequencies w < wy, 9, (wce[w.]) ~ & and

Flocly eelon]) — B, (@ Fleoe])
elw]
~ Flo] — 8, (@ Flod) (%9)

- _wcawﬂ (f[a)c] )

In this limit and for the Lorentz-type dispersion model,
Flo] ~ o F (with F a constant), thus, .9, (Flo:]) ~
Flw]. Therefore, C_ ~ Cy = 1//&o, and the obtained cou-

— |
£ N2
= (e} 5.-
% E N ------._._
8 O ,mee 1077
Q : - e rm—r——
5 3 2214 2215 2216 2217 2218
c » (b)
g =
g
g3
S =
@)
00} . . : ‘ :
2214 2215 2216 2217 2218
WENZ

Frequency w/wq

FIG. 6. Optomagnonic coupling for degenerate modes as a func-
tion of the frequency, for frequencies close to the ENZ point. (a) For
A, = 0and (b) for A5 = 0, see Egs. (88) and (83). For these plots we
adopted & = 4.9. Frequency in units of the ionic transition frequency
wy, and the coupling is given in units of Mzprwy/ Ms.

pling in terms of the Faraday rotation angle per length
reads as

091:
G~—, (90)
JE
consistent with the expression used in the optomagnonics
bibliography in the nondispersive regime [20,23].

C. Optomagnonic coupling for the Lorentz dispersion:
Nondegenerate case

In Fig. 7, we show the optomagnonic coupling for non-
degenerate modes. We consider both the case w; > w_
[Figs. 7(a) and 7(b)] and w_ > w, [Figs. 7(c) and 7(d)].
In both plots we assumed w, = @, + @, with w,/wy =
10~*. For the typical value of w,, = 10 GHz, which can
be externally tuned via a magnetic field, this parameter
regime corresponds to an ionic transition frequency wy in
the hundreds of THz, which, for instance, is the case of one
pronounced resonance of the iron ions of yttrium-iron gar-
net [26,71,76]. In general, the case A; = 0 exhibits a stronger
coupling that goes to zero slower than its counterpart with
Ay =0. As in the previous case, the coupling strength is
proportional to the ratio Mzpr/ M, therefore, smaller mag-
netic volumes yield better coupling rates under the assumption
of perfect overlap [E = 1 in Egs. (67), (57), and (60)]. In
both cases, we see that at the frequencies labeled wv,, in
Figs. 7(b) and 7(c) at which the coupling vanishes. Those
are given by Eq. (64): Z@wlMs _ 1 — 0, for w, > w_ and

elwvan]
%+1:0forw_ > w,.
The frequency at which the coupling vanishes depends on
the dispersion model parameters, as we show in Fig. 8, we
show the frequency wv,, at which the optomagnonic coupling
vanishes for each case as a function of the model param-

eters A3 and A,. In these plots we restrict the parameters
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FIG. 7. Optomagnonic coupling between nondegenerate modes as a function of the frequency (in units of ;) for (a), (c) A, = 0 and several
values of A5 and for (b), (d) A; = 0 and several values of A,. The arrows indicate the frequencies wv,, [see Eq. (91)] for which the coupling
vanishes. Parameters in correspondence with Fig. 3. Frequency in units of the ionic transition frequency wy, and the coupling is given in units

of Mzprwy/Ms.

to the range —0.1 < 52,3 < 0.1, and we notice that in such
parameter range, wva, varies linearly with the constants 52,3.
Furthermore, we notice that the plots depicted in Figs. 8(a)
and 8(c) are mirror images of each other. For the dispersion
model considered here, wv,, is defined by

WVan (a)g - a)%,an)ﬁz + a)OA3
= i(wé - w%/an) [w(2)(§ -+ (a)(Z) - w%’an)]’

and thus the equation for the — sign can be obtained by
the transformation A, 3 — —A, 3 from the equation for the

oD

(a) wVan/UJO
0.1
226
224
A3 0 222
2.20
2.18
-0.1 1
-0.1 2.16
(b)
2.26 ~
o 4 -
< 0 Ay =0
£ 22 lmmm g
>
E \
2.16
0 0. 0.1
Az o

+ sign. This corresponds to a mirror transformation in the
(A2, A3) plane.

IV. CONCLUSIONS

To summarize, we derived a general framework for de-
scribing the coupling between magnons and photons in media
with a dispersive permittivity. We applied the phenomeno-
logical quantization procedure by Milonni [39], generalizing
it to include the Faraday effect, thus obtaining the interac-
tion Hamiltonian describing the coupling between a uniform

(c) WVan/Wo
0.1
226
2.4
As 0 222
220
2.18
> w
—0.1 ‘ +‘ 2.6
-0.1 0. 01 7
@ Ay
_ 226
3 /
~
S 22]|m==mm=—m e,
5 Az 2 A2 =0
2.16
-0.1 0 0.1

As 2

FIG. 8. Frequencies at which the optomagnonic coupling between nondegenerate modes vanishes as a function of the model parameter A,
and A3. (a), (b) For the case w, > w_ and (c), (d) for the case w_ > w,.. Parameters in correspondence with Fig. 3.
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magnon mode and plane-wave-like optical modes in an ENZ
Faraday-active medium. Our approach is valid for quasi-
monochromatic fields (e.g., those of an optical cavity), under
the assumption of small losses. We derived in detail the
optomagnonic coupling enhancement at the ENZ frequency
shown in [26] for degenerate optical modes. For nonde-
generate modes, dispersion yields frequencies at which the
coupling constant vanishes due to the polarization of the
optical modes at those specific frequencies, giving rise to
dispersion-sensitive selection rules. We discussed moreover
the propagation regimes of plane waves in dispersive Faraday-
active dielectric media, and showed that in both Voigt and
Faraday configurations, there is a frequency range in which
optical isolation can be realized via dispersion. Furthermore,
the wave vector of the longitudinal plane waves in the Voigt
mode diverges, a behavior that is not imprinted in the coupling
constant.

Even though our results are valid for either bulk propaga-
tion or a Fabry-Pérot cavity, the formalism can be generalized
to different geometries. An open cavity can be treated
by incorporating quasinormal modes [57,58]. In this case,
dispersion due to cavity design can be relevant, and the fre-

quencies where the system exhibits a ENZ behavior can be
tailored.

Our results are general and can be applied to different me-
dia, including magnetized plasmas [34] and structured media,
such as gryoelectric-dielectric heterostructures [35]. An ENZ-
based platform for magnon-photon coupling as proposed in
our work combines the singular phenomena typical of waves
in ENZ media, such as field concentration, energy tunneling,
and wavelength stretching, with the unique characteristics of
magnonic systems, for example, high tunability and nonre-
ciprocity. Applications of the platform can take into advantage
the strong magnon-photon coupling, for instance, for quantum
nondemolition measurements of magnons.
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