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Control of ultrafast photocurrent in twisted bilayer graphene by circularly polarized few-cycle lasers
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We perform nonperturbative calculations of light field induced current in twisted bilayer graphene (tBLG)
irradiated by a circularly polarized (CP) few-cycle laser pulse. The strong-field electron dynamics is simulated
within a single-particle picture by two complementary approaches, including the velocity-gauge density-matrix
equation and the length-gauge time-dependent Schrödinger equation, which both combine a tight-binding model
for describing tBLG electronic structures. The two theoretical approaches yield the same result in the context
of studying the carrier-envelope phase (CEP) and laser intensity dependent photocurrent. We show that the
measured current exhibits a sinusoidal dependence on CEP of CP driving fields, with the sine phase determined
by the electrode orientation with respect to the tBLG lattices. Moreover, it has been proven that an important
reversal of the photocurrent direction occurs as the driving optical field strength increases to the strong-field
regime, which cannot appear in the monolayer or conventional AA- and AB-stacked bilayer graphene. Based on
the analysis of the conduction band population, we successfully identify that such current direction reversal in
tBLG mainly originates from the interference of multichannel electron transition among two conduction bands
and four valence bands closest to the Fermi level. Our results may pave the way toward investigation of nonlinear
optical response in layered materials, and might provide insight for the design of future ultrafast optoelectronic
devices.
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I. INTRODUCTION

Important advances in ultrafast laser technology enable us
to coherently manipulate electron motion in solids on the
subfemtosecond timescale by making use of optical wave-
forms of light. The inducing photocurrent in semiconductors
or dielectrics and its precise control forms the foundation in
lightwave electronics [1,2]. In particular, using intense optical
field can boost the possibility of ultrafast carrier excitation in
wideband materials, which is conducive to building rapid elec-
tronic switches in the petahertz regime [3], since the temporal
scale of electron density oscillation is inversely proportional
to the band gap.

A pioneering work on the electronic signal manipulation
by a few-cycle optical waveform is the experimental realiza-
tion of carrier envelope phase (CEP) control of optical field
induced current in fused silica [4]. Later, it was demonstrated
that similar semimetallization can occur not only in several
other wide band gap insulators subjected to strong optical
fields [5,6], but also in a narrower band gap semiconductor
exposed to a substantially lower light intensity [7]. For the
anisotropic crystals, an ab initio simulation predicts that the
phase of the photocurrent can shift with the driving laser
polarization [8], which is subsequently demonstrated by a
series of experimental observations [9].The coherent CEP
control of electric currents in these kinds of measurement can
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be either explained by the dynamic formation of localized
Wannier-Stark states [4] or attributed to interference between
different multiphoton excitation channels [10]. Additionally,
coherent control using two-color beams of the same vector
mode provides the capability to achieve the complete vectorial
arrangement of currents in a semiconductor [11].

The ultrafast control of field-induced current in graphene,
a typical Dirac material, has also been intensively stud-
ied. Different from dielectrics, graphene with zero band gap
property exhibits an important interband transition, which
can be strongly affected by intraband motion, especially
for higher optical fields [12]. A striking reversal of current
direction is observed in the strong-field regime owing to
field-driven Landau-Zener-Stückelberg (LZS) interference on
a suboptical-cycle timescale [13]. Further experiment and the-
ory shows that this current can be controlled by the electrode
distance and the direction of initial current injection [14], as
well as the chirp rate of the driving pulse [15].

As another important Dirac material, twisted bilayer
graphene (tBLG) has recently attracted lots of interest as it
brings about many novel physical phenomena such as magic-
angle superconductivity [16] and correlated insulator behavior
[17]. Compared with monolayer graphene (MLG), tBLG has
an additional freedom of lattice mismatch between two atomic
layers, leading to the formation of a superlattice and sub-
stantial modification to electronic structures. The previous
study on light-tBLG interaction is mainly concentrated on
cases with relatively weak laser intensity [18,19], for which
the physical mechanism is dominated by the band structure
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around the Fermi level in the low-energy region. Although
the nonlinear process, such as high-order harmonic genera-
tion in tBLG [20,21], was partly investigated very recently,
the other strong-field optical response of tBLG has not yet
been extensively discussed. The superlattice of tBLG usually
corresponds to the smaller folding Brillouin zone where the
electron could be easily accelerated to the edge under strong
fields. Simultaneously, the coupling effect among multiple
bands would become crucial. Hence, it is expected that light
waveform control of ultrafast dynamics in tBLG will contain
unique contents, particularly in the strong-field regime.

In this work, we calculate the optical field induced cur-
rent in commensurate tBLG with large twisted angles. The
few-cycle circularly polarized (CP) pulse with a stabilized
CEP is used to steer two-dimensional (2D) electron motion
that can efficiently prevent the LZS interference. This treat-
ment is helpful to highlight the other interference phenomena
involved in the tBLG photocurrent generation. We perform
nonperturbative calculation of electron dynamics by sepa-
rately solving the velocity-gauge Liouville–von Neumann
equation and the length-gauge time-dependent Schrödinger
equation (TDSE), both taking into account the complete tBLG
electronic structures instead of the widely used low-energy
continuum model [22]. The field-induced current is investi-
gated as a function of several parameters, i.e., CEP, electrode
orientation, and field strength of light pulse, with the particular
emphasis on the influence of the latter. We show that field
strength dependent current exhibits a direction reversal which
cannot occur in monolayer graphene or conventional AA-
and AB-stacked bilayer graphene. The underlying physical
mechanism is further interpreted by the analysis of k-space
conduction band population, and a multichannel interference
process associated with electron transition between different
energy bands is revealed.

II. THEORETICAL METHODS

We begin by describing how to construct tBLG with two
MLG sheets. Generally, stacking two MLGs on top of each
other can lead to different configurations. The bilayer system
where the lattices of two graphene layers are completely over-
lapped is termed AA stacking. When we only rotate the top
layer of AA stacking by 60 ° around an axis passing through
a pair of coincident carbon atom sites, the resulting system is
AB stacking. In this case, one of the two sublattices of one
layer lies in the center of the honeycomb structure of the other
layer. If continuing to rotate counterclockwise the top layer of
AB-stacked form by a special angle θ around the same axis,
we can obtain an important tBLG known as the commensurate
structure, which maintains the superlattice translation symme-
try and thus is more convenient for theoretical treatment. Such
commensurate rotation angle should satisfy [23]

cos θ = 3m2 + 3mr + r2/2

3m2 + 3mr + r2
, (1)

where m and r are coprime positive integers. In this work, we
mainly focus on the particular commensurate structure given
by m = 1 and r = 1, yielding the minimal primary supercell.
The other commensurate structures are simply discussed at
the end.

FIG. 1. (a) Schematic setup of generating photocurrent by
circularly polarized light. (b) The in-plane lattice structure of com-
mensurate tBLG with a twisted angle θ ≈ 21.8◦ (m = 1, r = 1). The
α1 and α2 are the basis vectors of the superlattice. The vector em

represents electrode orientation, described by a polar angle θm. (c)
The schematic of BZ corresponding to panel (b). The first BZ of the
top layer (blue dashed hexagon) rotates θ ≈ 21.8◦ counterclockwise
relative to the first BZ of the bottom layer (red dashed hexagon). The
seven smaller hexagons in black are the BZ of superlattice tBLG. G1

and G2 are the reciprocal lattice primitive vectors.

A typical schematic of photocurrent measurement setup is
shown in Fig. 1(a). The charge carriers generated by the tBLG
under illumination of laser pulses can move toward two elec-
trodes, and therefore a photocurrent can be collected. Due to
the anisotropic of tBLG driven by CP pulses, the arrangement
of two electrodes should be carefully considered. We describe
the electrode orientation by a direction vector em, as shown
in Fig. 1(a). The lattice structure of the tBLG (m = 1, r = 1)
is illustrated in Fig. 1(b), where the parallelogram gives the
unit supercell spanned by two basis vectors (α1,α2). Here,
we express the electrode orientation em by a polar angle θm

as em = (cos θm, sin θm ). Figure 1(c) shows the corresponding
Brillouin zone (BZ) of the bottom layer (red dashed hexagon)
and the top layer (blue dashed hexagon), together with the first
BZ of tBLG given by the central small black solid hexagon.
The reciprocal lattice primitive vectors can be chosen as(

G1

G2

)
= 4π

3|α1|2
(

2 −1
−1 2

)(
α1

α2

)
. (2)

The detailed description on the tBLG lattice and BZ can be
found in our recent work [21].

When the tBLG is exposed into a laser field, its electron
dynamics can be modeled by a time-dependent Schrödinger
equation (TDSE) within single-electron approximation,

i
∂

∂t
ψ (r, t ) = [H0 + r · E(t )]ψ (r, t ), (3)

where H0 is the field-free Hamiltonian described by the tight-
binding model [21,24,25], and we adopt the length-gauge
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interaction expression containing the external electric field
E(t ). Unless otherwise indicated, atomic units (a.u.) are used
throughout: e = h̄ = me = 1, where e and me are the electron
charge and mass, respectively. Since the position operator r
breaks translational symmetry, we should construct an ansatz
for solving Eq. (3) within a frame of crystal momentum
moving with the vector potential A(t ) = − ∫ t

−∞ E(t ′)dt ′. For
an initial crystal momentum k0, the wave function can be
expanded as

ψk0 (r, t ) =
∑

i

ck0
i (t )Bi,k(t )(r), (4)

with the time-dependent momentum k(t ) = k0 + A(t ). Here,
the basis function Bi,k(t )(r) denotes the Bloch sum of the car-
bon 2pz orbital, and i labels one atom in the primary supercell
of tBLG. Using the ansatz (4), we can obtain the temporal
evolution for coefficients ck0

i (t ) in a matrix form as

i
∂

∂t
Ck0 (t ) = H(k)Ck0 (t ), (5)

where expansion coefficients form a column vector Ck0 (t ) =
[ck0

1 (t ), ck0
2 (t ), . . . , ck0

l (t )]T , and the tight-binding Hamilto-
nian matrix H(k) consists of elements Hi j (k) = 〈Bi|H0|Bj〉
in the representation of the atomic orbital basis. Taking tBLG
(m = 1, r = 1) as an example, we can choose the parallel-
ogram in Fig. 1(b) as the primary unit cell which includes
28 atoms to construct the tight-binding Hamiltonian, therefore
generating 28 energy bands if only one 2pz orbital is assigned
to one carbon atom. The detailed derivation for obtaining
Eq. (5) is given in Appendix A.

In order to calculate the photocurrent, we need information
on the population of electrons occupying an arbitrary energy
band. Thus, it is necessary to expand the wave function in
valence- and conduction-band representation as

ψk0 (r, t ) =
∑

n

bk0
n (t )φn,k(t )(r), (6)

where φn,k(t )(r) is the nth eigenstate of the field-free Hamil-
tonian H0. If we introduce a column vector notation Ck0

B (t ) =
[bk0

1 (t ), bk0
2 (t ), . . . , bk0

l (t )]T , those coefficients in two differ-
ent representations are related by a unitary transformation
Ck0

B (t ) = U†
k(t )C

k0 (t ), where Uk(t ) is a unitary matrix con-
structed by arranging the eigenvectors of H(k) in columns.
The time-dependent population at a fixed k0 for the nth band
is then given by ρn(k0, t ) = |bk0

n (t )|2.
We numerically solve Eq. (5) under a set of different initial

conditions that only one of the valence band (VB) states is
fully occupied for each time solving Eq. (5). By summing
the contribution of residual conduction band (CB) population
obtained from each individual propagation of Eq. (5), we can
express the total transferred charge density as [13]

Q ∝
∑

s∈VB,n∈CB

∫
BZ

ρs
n(k0,+∞)em · ∇k0εn(k0)dk0, (7)

where the index s indicates that the initial electron occupies
the sth VB, and ρs

n represents the residual nth CB popu-
lation resulted from the s-occupied initial condition. Here,
em · ∇k0εn(k0) describes that carriers move toward the elec-
trode direction with the group velocity determined by the

gradient of the nth CB energy dispersion εn(k0). We point out
that the above treatment is equivalent to fulfilling all VBs, and
simultaneously cancels out the unphysical transitions forbid-
den by the Pauli exclusion principle.

To make the simulation more convincing, we also use
density-matrix models for describing strong-field electron dy-
namics. The Liouville–von Neumann equation in the velocity
gauge is solved to obtain the total current density, whose
expression is given by

J(t ) ∝
∫

BZ
Tr{ρ̂(t )[p̂(k) + A(t )]}d2k, (8)

where ρ̂(t ) represents the temporal evolution of the density
matrix, and p̂(k) is the momentum matrix. See Ref. [21]
for details on equations and relevant matrix elements. From
Eq. (8), we can define the time-dependent polarization P(t ) =∫ t
−∞ J(t ′)dt ′. For an ideal model that considers all possible

relaxation mechanisms, the total transferred charge density is
proportional to the value of field-induced polarization P(t ) at
a finite moment after the end of the laser pulse. However, since
we do not consider the relaxation phenomena, the polarization
will continue to oscillate after the laser pulse. To avoid this
problem, we can follow Ref. [10] to calculate the transferred
charge density as the average of P(t ) during a time window,

Q ∝ 1


t

∫ t f +
t

t f

P(τ ) · em(θm)dτ . (9)

We choose t f = 15 fs and 
t = 5 fs throughout and find
that simulation results are insensitive to the two parameters.

For both models, the net current yielded in the ex-
perimental measurement can be approximately regarded as
proportional to Q if ballistic transfer of charge is simply
assumed. We sample the Brillouin zone with a uniform grid
along two nonorthogonal directions of the reciprocal lattice
vectors, and then propagate the TDSE or density-matrix equa-
tion for each independent k. The grid interval of crystal
momentum and evolution time is fixed to δk = 0.004 a.u. and
δt = 0.2 a.u.

III. RESULTS AND DISCUSSION

A. Dependence of photocurrent on CEP
and field strength of light

The electron dynamics of tBLG in a strong-field regime is
sensitive to the full electric-field waveform due to the fact that
it usually occurs on the subfemtosecond timescale. This can
result in light-induced current controlled by CEP of few-cycle
driving lasers. In addition, we devote to a discussion on the CP
field, which can steer electron motion along 2D spiraling tra-
jectories. Thus, the above two factors suggest that we observe
how CEP and electrode orientation affect photocurrent.

We consider tBLG excited by a 5-fs CP pulse with a central
wavelength of 800 nm and a peak field strength of 2.5 V/nm.
The coherent electron dynamics induced by the ultrashort
pulse is faster than electron-electron scattering, which is typ-
ically on a tens of femtoseconds timescale. It is therefore
reasonable to treat the fully coherent evolution and ignore the
relaxation process in our model. Figure 2 shows the light field
induced current as a function of CEP for using a left (ε = −1,
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FIG. 2. The CEP-dependent current in tBLG driven by left (ε =
−1, red dashed) or right (ε = 1, blue solid) CP laser pulse, with the
electrode orientation set as (a) θm = 0, (b) θm = π/4, and (c) θm =
π/2. The laser pulse centered at 800 nm has a duration of 5 fs and a
peak field strength of 2.5 V/nm.

red dashed) or right (ε = 1, blue solid) CP laser, with the
measurement taken at three different electrode orientation
arrangements: (a) θm = 0, (b) θm = π/4, and (c) θm = π/2.
One can see that with different θm the CEP-dependent current
exhibits a phase shift whose value can be directly extracted
from Fig. 2 and is found to be equal to variations of θm, but
with opposite direction for left and right CP pulses. These
important features suggest that the transferred charge density
(or current) can be simply fitted as Q ∝ sin(φCEP − εθm). The
expression represents that the experimental choice of elec-
trode orientation relative to tBLG lattice is not crucial. For an
arbitrary θm, we can always make current reach the maximal
by adjusting the appropriate φCEP. We point out that although
Fig. 2 is obtained by the density-matrix model, the TDSE
approach can yield the same result, which is not shown here.

The result reported in Fig. 2 can be qualitatively inter-
preted by a semiclassical picture. Our tight-binding model for
the tBLG (m = 1, r = 1) yields an almost linear dispersion
around the Dirac points, KD. The first two almost degenerate
conduction bands near the Fermi level can be approximately
described as

Ec(k) = vF|k − KD| + μ. (10)

From the definition of the group velocity and the ac-
celeration theorem, the light field induced current can be

written as

J(t ) ∝ ∇kEc[k + A(t )]|k=KD , (11)

where only the contribution from the Dirac point is consid-
ered. Here for simplicity and analytical treatment, we employ
the CP plane-wave vector potential,

A(t ) = A0[cos (ω0t + φCEP)ex + ε sin (ω0t + φCEP)ey]. (12)

Combing Eqs. (10)–(12), we get

J(t ) ∝ cos (ω0t + φCEP)ex + ε sin (ω0t + φCEP)ey. (13)

Considering the electrode orientation em = cos θmex +
sin θmey, the net current in the experimental measurement can
be approximately regarded as

Q ∝
∫ t0

em · J(t )dt ∼ sin (ω0t0 + φCEP − εθm ), (14)

which is consistent with the fitting result of numerical calcu-
lation in Fig. 2. We denote the initial phase shift as θ0 = ω0t0,
whose value is not important and is determined by the specific
case. Consequently, the condition for the crossing of the red
and blue curves Fig. 2 is given by

sin (θ0 + φCEP − θm ) = sin (θ0 + φCEP + θm ). (15)

It follows that the CEP value of the crossing point is
φCEP = π

2 − θ0, independent of electrode orientation.
The laser field strength is an important parameter that

determines the electron transition mechanism. The increasing
of the optical field is usually accompanied by the conversion
in electron transition dynamics from the perturbative to the
strong-field regime. We now turn to scanning the optical field
to clarify the variation trend of photocurrent in tBLG, and to
reveal the critical field strength at which a different transition
mechanism occurs.

For comparison, we investigate photocurrent generation
in four different graphene configurations, i.e., MLG, con-
ventional AA- and AB-stacking bilayer graphene, and tBLG
(m = 1, r = 1), which are excited by CEP-stabilized few-
cycle 5-fs CP laser pulses centered at 800 nm with a peak field
ranging from 0 to 4 V/nm. Figure 3 shows the current as a
function of optical peak field strength E0, calculated for MLG
(black solid), AA-stacking bilayer (blue dashed), AB-stacking
bilayer (red dot), and tBLG (olive dashed dot), obtained from
(a) the density-matrix model and (b) the TDSE model. In the
simulation, the CEP and electrode orientation are matched
such that the photocurrent reaches the maximum for each
different material. For the tBLG, we choose θm = 0 and CEP
φCEP = π/2. One can see from Figs. 3(a) and 3(b) that both
models yield almost consistent results. Note that calculation
results from Eqs. (7) and (9) are rescaled by multiplying a
constant to make the two theoretical methods give the same
current value at E0 = 2.6 V/nm for tBLG.

Several important characteristics can be found in Fig. 3.
The current monotonically increases as a function of E0

when E0 < 2.6V/nm for all four graphene systems. This is
the typical power-law characteristic in the weak-field regime
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FIG. 3. The current in MLG (black solid), AA-stacking bilayer (blue dashed), AB-stacking bilayer (red dot), and tBLG (olive dashed dot),
calculated as a function of the peak electric field strength E0 using (a) the density-matrix model and (b) the TDSE model. The CP driving pulse
has a central wavelength of 800 nm and a duration of 5 fs.

[26,27] where the perturbative theory holds and the light-
matter interaction can be described by the photon-driven
picture. Although the value 2.6 V/nm is approximately read
from Fig. 3, it can be actually related with a characteristic
energy formulated as an effective Rabi frequency. For the
four graphene systems in Fig. 3, they have similar Dirac-cone
dispersion with a slightly different Fermi velocity vF around
the K point. Following the acceleration theorem, the relevant
electron dynamics along one direction can be qualitatively
described by a two-level Rabi system [13], where the Rabi
frequency is given by �R = vFE0√

2ω0
in atomic units. Here, the

factor
√

2 rises from the circularly polarized pulse we study,
and ω0 is the central angular frequency of the driving pulse.
The electron dynamics lies in the perturbative regime when
the interaction strength is much less than the photon energy;
i.e., �R/ω0 � 1. We consider the situation that light-graphene
interactions start to deviate from the perturbative, but still do
not enter into the strong-field regime. It is therefore reasonable
to choose the middle position �R/ω0 = 1/2 as a definition

of the critical field strength Ec, which gives Ec = ω2
0√

2vF
. With

tight-binding structure parameters and the central driving pho-
ton energy h̄ω0 = 1.5 eV employed here, we can estimate that
the critical field strength for the four graphene systems is
equal to Ec ≈ 2.6−2.9 V/nm. Note that our model yields the
Fermi velocity of MLG and AA/AB bilayers vF ≈ 1 nm/fs,
and the Fermi velocity of tBLG (m = 1, r = 1) v′

F ≈ 0.9vF.
When the optical field exceeds 2.6 V/nm, the dependence

of current on E0 exhibits a different relationship with the
power law, representing that electronic dynamics gradually
enters into the nonperturbative regime. In particular the cur-
rent in tBLG shows nonmonotonic behavior such that even
a reversal of current direction takes place at E0 ≈ 3.2 V/nm.
In contrast, the current in MLG, and AA and AB stack-
ing always stays positive with increasing the optical field
strength.

We point out that the linearly polarized few-cycle pulse can
also result in the reversal of current direction in MLG due
to suboptical-cycle LZS interference [13]. Instead, CP light
used here manipulates 2D electron motion, which prevents

the intra-optical-cycle LZS, since only one transition event
per cycle can occur. This 2D nature causes the direction of
CP-induced current in MLG to not reverse [13]. The same
physical picture can be also applied to AA- and AB-stacking
bilayer graphene because their current curve shares the same
variation trend as the one in MLG, while it fails for tBLG
where the reversal still exists (see Fig. 3). The difference
implies that there is another mechanism behind the reversal
phenomenon in tBLG.

B. Calculation of k-resolved residual
population of conduction bands

The analysis of residual CB population in tBLG is helpful
to clarify the origin of photocurrent direction reversal, as
manifested by Eq. (7). We have calculated the distribution of
total CB population in the k space, which is defined as

ρc(k0) =
∑

s∈VB,n∈CB

ρs
n(k0,+∞). (16)

Figure 4(a) shows the simulation result of ρc(k0) at E0 =
3.5 V/nm. Note that in our simulation the total population
including all VBs and CBs at a fixed k0 is always equal to
the VB number NVB = 14. Several ring patterns exist around
the k-space Dirac point. Around one of the Dirac points in
Fig. 4(a), we also indicate those resonances in black dashed
(red dot) curves, corresponding to the energy difference be-
tween the lowest (the second lowest) CB and the highest
(the second highest) VB equal to nh̄ω0 (n = 1, 2), where
ω0 = 1.55 eV is the central photon energy of the driving light.
The rings are associated with one- and two-photon excitation,
while the Landau-Zener transition is responsible for the cen-
tral bright spot at the Dirac point.

It has been demonstrated by Fig. 2 that change of the
driving pulse CEP by π only leads to the opposite sign of cur-
rent. Consequently, the difference between currents generated
by two CEPs φCEP = π/2 and φCEP = −π/2 can maintain
the original sign of the current (φCEP = π/2) unchanged. In
order to track clearly the current direction in the reciprocal
space, we introduce 
ρc(k0), defined as the difference in the
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FIG. 4. (a) The k-resolved residual distribution of total CB population for E0 = 3.5 V/nm. Black dashed (red dot) curves around one of the
Dirac points represent resonances, where the energy difference between the lowest (the second lowest) CB and the highest (the second highest)
VB is equal to photon energy h̄ω0 or 2h̄ω0. (b), (c) The difference 
ρc(k0) between the residual CB population resulting from excitation
with φCEP = π/2 and φCEP = −π/2, plotted at two different peak field strengths (b) E0 = 2.5 V/nm and (c) E0 = 3.5 V/nm. (d) Extracted

ρc(k0) along a straight line denoted by AKB in panel (c), calculated as a function of E0. The black dashed line indicates the field strength
E0 = 3.2 V/nm at which the current direction reverses. Other laser parameters are the same as in Fig. 3.

residual CB population between the excitation pulses with
φCEP = π/2 and φCEP = −π/2. At E0 = 2.5 V/nm, 
ρc(k0)
is plotted in Fig. 4(b), where we only show the vicinity of
one Dirac point due to similar behavior at others. Evidently,
the dominating positive area is located at the left side of the
Dirac point. The asymmetric distribution of 
ρc(k0) along the
horizontal direction forms an observable current. For compar-
ison, we increase the peak field strength to E0 = 3.5 V/nm.
Figure 4(c) shows the corresponding 
ρc(k0), where the main
positive area is changed to the right side of the Dirac point.
The contrast gives direct evidence for the control of current
direction by field strength.

We can further extract 
ρc(k0) along a line that is chosen
to pass through the Dirac point and be parallel to G2, as
denoted in Fig. 4(c), and calculate its variation with the field
strength. The result is reported in Fig. 4(d). One can see that

ρc(k0) evolves almost monotonically until E0 = 2.6 V/nm,
representing the perturbation process in the weak-field limit.
Along the vertical axis, it is also clear to identify a significant
change in the sign of 
ρc(k0) at the field strength E0 ≈
3.2 V/nm, as indicated by the dashed line in Fig. 4(d). At this
time, the interaction falls into the strong-field regime. Here
the dashed-line positon matches well with the field strength at

which the current reverses direction (see Fig. 3). We point out
that Fig. 4 is obtained by the TDSE model, but the density-
matrix model can yield the same result. The specific details
are given in Appendix B.

C. Analysis of transition channel-resolved
population and photocurrent

To get deeper insight into the mechanism of the current
reversal, decompositions of interband transition channels are
useful. The TDSE model allows us to analyze the transition
between a given pair of valence and conduction bands. In
analogy to Eq. (7), we can define channel-resolved transferred
charge density as

Qs,n =
∫

BZ
ρs

n(k0,+∞)em · ∇k0εn(k0)dk0, (17)

which can give rise to the photocurrent originated from the nth
CB whose population is contributed by the initially occupied
sth VB. The superposition of Qs,n over all possible transition
channels from VB to CB yields the total charge density.

For a convenient description below, valence (conduction)
bands from the highest (lowest) to the bottom (top) are marked

014309-6



CONTROL OF ULTRAFAST PHOTOCURRENT IN TWISTED … PHYSICAL REVIEW B 105, 014309 (2022)

FIG. 5. (a) Electronic band structures of our tBLG around the
Fermi energy. The red solid and blue dashed arrows represent single-
photon and two-photon resonance positions, respectively. The black
dashed line represents the MLG energy band for comparison. (b)
The temporal evolution of ρ̄c

12 (top panel) and ρ̄c
34 (bottom panel)

along the high-symmetry pathway under the peak field strength
E0 = 3.5 V/nm. (c) Comparison of three different channel-resolved
currents (Q4, Q2, and Q̄) as a function of E0. Other laser parameters
are the same as in Fig. 3.

successively as V1, V2, . . . (C1, C2, . . .). Figure 5(a) shows
the most relevant four VBs (V1, V2, V3, and V4) and two
CBs (C1 and C2) closest to the Fermi level for tBLG (m = 1,

r = 1).
We first observed the temporal evolution of a popula-

tion of different CBs. Note that ρs
n(k0, t ) defined in both

Eqs. (7) and (17) refers to the acceleration frame. The pop-
ulation evolution in the reciprocal space is better visualized
within the laboratory frame, where the corresponding k-space
population ρ̄s

n(k0, t ) is given by the relationship ρ̄s
n(k0, t ) ≡

ρs
n[k0 − A(t ), t]. Here, the index s indicates that the elec-

tron initially occupies the sth band, and ρ̄s
n represents the

time-dependent population of the nth band obtained from the
s-occupied initial condition. Hence, the population of C1 + C2

bands and C3 + C4 bands can be expressed, respectively, as

ρ̄c
12(k0, t ) =

∑
s∈VB,n=C1,C2

ρ̄s
n(k0, t ), (18)

and

ρ̄c
34(k0, t ) =

∑
s∈VB,n=C3,C4

ρ̄s
n(k0, t ). (19)

Figure 5(b) shows time-dependent population ρ̄c
12 (top

panel) and ρ̄c
34 (bottom panel), calculated along the high-

symmetry pathway �−K − M−� for E0 = 3.5 V/nm. It is
found that ρ̄c

12 starts to grow from the Dirac point at the front
edge of the laser pulse, then spreads to another area, and

finally forms a stable residual distribution. However, ρ̄c
34 is not

obvious until the laser field reaches the maximum, leading to
the final distribution with the amplitude much smaller than
ρ̄c

12. The result implies that the C1 and C2 bands dominate the
photocurrent generation.

In order to further identify VB contributions, we define

Q2 =
∑

s∈{V1,V2}
n∈{C1,C2}

Qs
n, (20)

and

Q4 =
∑

s∈{V1,V2,V3,V4}
n∈{C1,C2}

Qs
n, (21)

which are calculated as a function of field strength.
Figure 5(c) shows that calculations including four VBs (blue
solid) can reproduce almost all important characteristics of
field-dependent total current, same as the olive dashed dot
curve in Fig. 3, while only considering two VBs (red dashed)
is insufficient to capture the current direction reversal. It
follows that the dynamical interaction associated with the
original 28 bands in tBLG can be simplified to a six-band
model (V1−4 and C1,2).

We continue to analyze excitation processes among the
six bands by imaging time-dependent population at a fixed
E0 = 3.5 V/nm. The transition from V1,2 to C1,2 can be char-
acterized by

ρ̄a(k0, t ) =
∑

s=V1,V2
n=C1,C2

ρ̄s
n(k0, t ), (22)

which is plotted in Fig. 6(a). It is evident that ρ̄a first appears
near the Dirac point K and subsequently spreads following
the laser field oscillation, consistent with the Landau-Zener
(LZ) tunneling picture. Additionally, the residual distribution
of ρ̄a in Fig. 6(a) suggests the existence of a single-photon and
two-photon transition process if we interpret the interaction in
the frequency domain, as marked by the arrow in Fig. 5(a).

For clarifying transitions from V3,4 to C1,2, we calculate
the population of the middle VBs V1,2,

ρ̄m(k0, t ) =
∑

s=V3,V4
n=V1,V2

ρ̄s
n(k0, t ). (23)

The result is reported in Fig. 6(b), representing that the
electron is excited from V3,4 to V1,2 beginning around the
� point, where LZ tunneling easily happens due to the al-
most close band structure. The residual population of ρ̄m in
Fig. 6(b) also suggests the existence of a dominant single-
photon transition process between V3,4 and V1,2, as marked
by the arrow in Fig. 5(a).

It is expected from Fig. 6(b) that V1,2 serves as a bridge
that connects the transition between V3,4 and C1,2, which can
be verified by comparing the total population,

ρ̄b(k0, t ) =
∑

s=V3,V4
n=C1,C2

ρ̄s
n(k0, t ), (24)

and the direct transition population ρ̄d(k0, t ). The latter,
ρ̄d(k0, t ), is obtained by the following procedures: During
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FIG. 6. The time-dependent population for (a) ρ̄a transition from
V1,2 to C1,2, (b) ρ̄m transition from V3,4 to V1,2, (c) ρ̄b transition
from V3,4 to C1,2, and (d) ρ̄d direct transition from V3,4 to C1,2

without passing through V1,2. Significant single-photon and two-
photon resonances are indicated on the right side. The CP laser pulse
centered at 800 nm has a duration of 5 fs and a peak field strength of
E0 = 3.5 V/nm.

each propagation step of solving Eq. (5) at such initial con-
dition that V3,4 is fully occupied, Ck0 (t ) is transformed to
band representation Ck0

B (t ), followed by artificially removing
populations of V1,2, and then transformed back to atomic
orbit representation Ck0 (t ). The process is repeated until the
end of the pulse; meanwhile ρ̄d(k0, t ) is calculated similar
to Eq. (24) but using the modified Ck0

B (t ). Figures 6(c) and
6(d) show ρ̄b(k0, t ) and ρ̄d(k0, t ), respectively. The com-
parison of the two figures shows that removing the bridge
V1,2 will lead to dramatically reduced ρ̄d(k0, t ), demon-
strating that V1,2 plays a crucial role in electron transition
from V3,4 to C1,2.

We also estimate the modified current Q̄, defined by the
situation that when the index s �= V1,2 in the summation of
Eq. (7) the contribution of V1,2 is removed by the same
procedure as calculating ρ̄d(k0, t ). This treatment represents
that those transitions to CBs through V1,2 as a bridge are
not considered. Afterward, the Q̄ is plotted as a function of
E0, as shown by the black dashed-dotted line in Fig. 5(c).
In this case, the current reversal disappears. Thus, the above
results identify two dominant channels that contribute to the
C1,2 population, including the direct transition from V1,2 to
C1,2 and the indirect transition from V3,4 to C1,2 through V1,2.
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FIG. 7. The current in tBLG (m = 1, r = 1) as a function of
peak electric field E0, calculated for six different CEPs. Other laser
parameters are the same as in Fig. 3.

The interference of two quantum pathways leads to the current
direction reversal in tBLG.

D. Influence of CEP and twisted angles

In order to obtain a comprehensive observation, we have
further investigated the effect of the CEP of the driving pulse
and twisted angles on field-dependent current.

Figure 7 shows field strength dependent current in tBLG
(m = 1, r = 1) under six different CEPs. We only plot the
TDSE result, and the density-matrix model yields the same
conclusion. The electrode orientation is fixed to θm = 0. One
can find that for all CEPs the phenomena of current reversal
always exists. We have demonstrated that the current direction
reversal mainly originates from quantum interference between
direct and indirect transition channels. The different CEP val-
ues cannot break this interference picture, so the sign reversal
is not dependent on CEP. However, in a strong-field regime
the electron dynamics is sensitive to the full electric-field
waveform. The different CEPs can lead to a different phase
being involved in the transition interference process and can
also affect the k-resolved asymmetry distribution of conduc-
tion band population. Therefore, for the E0-dependent curve
in Fig. 7 the current amplitude and the positon at which the
sign reverses are dependent on CEP.

What makes tBLG special for the current reversal phenom-
ena? To answer this, we first emphasize the importance of the
electronic interaction between adjacent layers. We calculate
the field strength dependent current for the uncoupled tBLG
(m = 1, r = 1) which is defined by removing all the inter-
layer hopping. The result is shown in Fig. 8(a). Evidently, the
current reversal disappears when the interlayer interaction is
artificially set to zero, even if the twisted angle still exists.

Second, we point out that the current direction reversal can
also occur at other twisted angles. For example, we investigate
three different twisted angles smaller and larger than the one
used in Fig. 3. Figures 8(b)–8(d) show the E0-dependent cur-
rent calculated for twisted angle θ = 13.2◦ (m = 2, r = 1),
θ = 18.0◦ (m = 4, r = 3), and θ = 27.8◦ (m = 2, r = 3),
respectively. One can see that the current direction can reverse
at these twist angles, except that the electric field position
where the current reversal occurs is different. To further be
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FIG. 8. (a) The current in tBLG (m = 1, r = 1) as a function of
peak electric field E0, calculated for switching off all interlayer hop-
ping. (b–d) The current in tBLG as a function of peak electric field
E0, calculated for different twisted angles: (b) θ = 13.2◦ (m = 2,

r = 1), (c) θ = 18.0◦ (m = 4, r = 3), and (d) θ = 27.8◦ (m = 2,

r = 3). Other laser parameters are the same as in Fig. 3.

sure that the current reversal will not occur in MLG and
AA/AB bilayers, we have calculated E0-dependent current
upon scanning the field strength up to as high as 10 V/nm,
and find that there are still no reversal phenomena.

According to the above analysis, we can interpret that
tBLG is special due to the particular band structure. The
mismatch rotation angle between two atomic layers and the
interlayer interaction can introduce an additional freedom that
leads to forming a moiré pattern superlattice with a higher
periodicity. This property corresponds to the Brillouin zone
folding in tBLG compared with MLG or AA/AB stacking.
This kind of band structure supports multichannel interference
including direct and indirect transition among a few bands
near the Fermi level. Consequently, the current sign reversal
can occur for tBLG.

IV. CONCLUSIONS

In summary, we have theoretically investigated light field
induced current in the minimal commensurate tBLG, arising
from the nonlinear optical response to an intense few-cycle
CP pulse. The tight-binding electronic structure of tBLG is
incorporated into two independent single-particle methods,
i.e., a TDSE in the length-gauge and density-matrix equation
in the velocity gauge, for describing the strong-field electron
dynamics. The results obtained by the two models are cross-
checked to ensure the validity of our simulation.

Generally, the length gauge and velocity gauge are not
completely equivalent due to the inevitable approximations
made in the practical calculation. It is pointed out in [28]
that length gauge can avoid unphysical zero-frequency di-
vergences and is more suitable for at least the calculation of
frequency-dependent susceptibilities. In contrast, the velocity-
gauge nonperturbative expression may lead to false poles and
suffers from the singularity in the low-frequency regime [29].

In our work, the photon energy of an 800-nm driving field can
be thought of as sufficiently high in comparison with the tBLG
band gap, so that true resonances of the system are dominant
and the low-frequency singularity is suppressed. At the same
time, we only focus on the net photocurrent and do not care
about frequency-dependent physical quantity. Consequently,
our results do not depend on the use of the length-gauge or
velocity-gauge approach.

We show that optically induced currents are dependent on
both the electrode orientation relative to the tBLG lattice and
the exact waveform of CP light field that is controlled by CEP.
This kind of dependence can be fitted to the sine function with
the phase determined by the algebraic sum or difference of
CEP and orientation angle. The property can be also simply
interpreted in terms of the semiclassical acceleration theorem.
Therefore, the practical arrangement of electrodes is free,
since its orientation can be simply considered as a trivial phase
shift of CEP-dependent current.

We further demonstrate that photocurrent exhibits a non-
monotonic behavior as optical field strength increases to the
strong-field regime, even leading to a striking reversal in the
current direction. This is a unique feature associated with
the tBLG that is not present in a monolayer or conventional
bilayers. The residual population of CBs in the reciprocal
space is also calculated, which uncovers an important sig-
nature of the field strength control of electric current and
the resulting reversal phenomena. Additionally, a detailed
analysis of channel-resolved population and current verifies
that dynamics in tBLG is predominately governed by four
VBs and two CBs closest to the Fermi level. Based on this
analysis, we explain the current direction reversal in tBLG
as a result of quantum interference of direct and indirect
transition channels. Our work reveals the promising optical
and electric properties of tBLG, which might be used in future
optoelectronics.
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APPENDIX A: DERIVATION DETAILS

In this Appendix we provide more details about the solu-
tion of the TDSE based on the tight-binding approximation.
We consider a general situation that there are several atoms
per unit cell and several orbitals on a given atom. In this case,
the basis function that satisfies Bloch’s theorem is constructed
by the linear combination of atomic orbitals φαn as

Bα,n,k(r) = 1√
N

∑
R

eik·(R+τn )φαn(r − R − τn), (A1)

where α specifies the shape of the orbitals (s, p, etc.), n labels
one atom in the primary cell, and τn is the location of atom n
relative to the primary unit cell. Here the sum runs over lattice
vectors R, and there are N unit cells in the crystal.
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By applying the basis function Eq. (A1) in a moving frame
where the lattice momentum is shifted by the vector potential

of the laser pulse, we can write the wave function for an initial
crystal momentum k0 as

ψk0 (r, t ) =
∑
αn

ck0
α,n(t )Bα,n,k(t )(r), (A2)

with the time-dependent momentum k(t ) = k0 + A(t ). Differentiating both sides of Eq. (A2) with respect to t , we can get

i
∂ψk0 (r, t )

∂t
= i

∑
αn

∂ck0
α,n(t )

∂t
Bα,n,k(t )(r) + E(t ) ·

∑
αn

ck0
α,n(t )

1√
N

∑
R

(R + τn)eik(t )·(R+τn )φαn(r − R − τn)

= i
∑
αn

∂ck0
α,n(t )

∂t
Bα,n,k(t )(r) + E(t ) · rψk0 (t ) − E(t ) ·

∑
αn

ck0
α,n(t )

1√
N

∑
R

(r − R − τn)eik(t )·(R+τn )φαn(r − R − τn).

(A3)

By combining Eqs. (A3) and (3), we arrive at

i
∑
αn

∂ck0
α,n(t )

∂t
Bα,n,k(t )(r) = H0ψk0 (t ) + E(t ) ·

∑
αn

ck0
α,n(t )

1√
N

∑
R

(r − R − τn)eik(t )·(R+τn )φαn(r − R − τn). (A4)

After multiplying Eq. (A4) by B∗
β,m,k(r) and then integrating over real space, Eq. (A4) becomes

i
∑
αn

Sβm,αn(k)
∂ck0

α,n(t )

∂t
= Hβm,αn(k)ck0

α,n(t ) + E(t ) ·
∑
αn

dβm,αn(k)ck0
α,n(t ), (A5)

where some matrix elements are explicitly given by

Sαn,βm(k) = 〈Bα,n,k(r)|Bβ,m,k(r)〉 =
∑
Rnm

eik·Rnm〈φαn(r)|φβm(r − Rnm)〉, (A6)

Hαn,βm(k) = 〈Bα,n,k(r)|H0|Bβ,m,k(r)〉 =
∑
Rnm

eik·Rnm〈φαn(r)|H0|φβm(r − Rnm)〉, (A7)

dβm,αn(k) =
∑
Rnm

e−ik·Rnm〈φβm(r − Rnm)|r|φαn(r)〉, (A8)

with the definition Rnm = R + τm − τn.
We can rewrite Eq. (A5) in a matrix form without displaying the indices,

iS(k)
∂

∂t
Ck0 (t ) = [H(k) + E(t ) · d(k)]Ck0 (t ), (A9)

where S(k) is called the overlap matrix, H(k) is the tight-binding Hamiltonian matrix, and d(k) is the dipole transition matrix.
We notice that Eq. (A9) is a general formula. In practice, we can make some additional approximation to simply this equation.
For S(k) and d(k), in the spirit of the tight-binding condition, the basic assumption is that the overlapping between atomic
orbitals on different atomic sites is negligibly small. When the orbitals are further assumed to be normalized, S(k) becomes
unity matrix and we have [30]

〈φβm(r − Rnm)|r|φαn(r)〉 = δR,0δnm(Rnmδβα + d̃βα ), (A10)

where d̃βα represents the intra-atomic dipole matrix element. By substituting Eq. (A10) into Eq. (A8), d(k) becomes zero if the
selection rule forbids the intra-atomic dipole transition.

After using these approximations, Eq. (A9) can reduce to Eq. (5), as given in the main text.
For the commensurate tBLG studied in our work, we only consider the 2pz electron. The tight-binding Hamiltonian can be

written as

HtBLG =
2∑

s=1

∑
〈i, j〉

V 0
ppπ ĉ+

si cs j+
2∑

s=1

∑
i j

t ss̄
i j ĉ+

si cs̄ j, (A11)

where the first term represents nearest-neighbor interactions in the graphene layer s, and the second term represents the interlayer
interaction between different graphene layers s and s̄. The hopping integral between atom i and atom j, which are in different
layers, is given by the following formula based on the Slater-Koster mechanism [24,31]:

ti j = V 0
ppπ exp

(
−|Ri j | − acc

λ

)
·
[

1 −
(

Ri j · ez

|Ri j |
)2]

+ V 0
ppσ exp

(
−|Ri j | − d0

λ

)
·
(

Ri j · ez

|Ri j |
)2

, (A12)
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FIG. 9. (a) The k-resolved residual distribution of total CB population for E0 = 3.5 V/nm. Black dashed (red dotted) curves around one
of the Dirac points represent resonances, where the energy difference between the lowest (the second lowest) CB and the highest (the second
highest) VB is equal to photon energy h̄ω0 or 2h̄ω0. (b), (c) The difference 
ρc(k0) between the residual CB population resulting from
excitation with φCEP = π/2 and φCEP = −π/2, plotted at two different peak field strengths (b) E0 = 2.5 V/nm and (c) E0 = 3.5 V/nm. (d)
Extracted 
ρc(k0) along a straight line denoted by AKB in Fig. 4(c), calculated as a function of E0. The black dashed line indicates the field
strength E0 = 3.2 V/nm at which the current direction reverses. Other laser parameters are the same as in Fig. 3.

where V 0
ppπ is the hopping integral for two vertically located

atoms in the adjacent layers, d0 is the distance between
graphene layer s and s̄, λ modulates the decay of hopping
integral at the large distance, and ez is the unit vector perpen-
dicular to the tBLG plane. In our simulation, these parameters
are V 0

ppπ = −3.03 eV, V 0
ppσ = 0.39 eV, d0 = 3.35 Å, and λ =

0.27 Å.
Different from many previous works, we establish a

full Hamiltonian for tBLG without using low-energy con-
tinuum approximation, and numerically obtain all energy
bands through a complete diagonalization algorithm. As for
large-angle tBLG, the U(1)v symmetry can be broken, and
the intervalley coupling can result in the increased band
gap opening between Dirac points as the twist angle θ in-
creases. Indeed, our tight-binding model can lead to such a
gap of about 4 meV at θ ≈ 21.8◦ (m = 1, r = 1). This gap
value is similar to the previous result, 3–9 meV, reported
in Refs. [25,32]. Additionally, our model can support the
first magic angle θ ≈ 1.08◦ at which band flattening occurs
and simultaneously reveals the fact that the Fermi velocity
monotonously decreases with decreasing twist angle [21].
There characteristics are quite consistent with many previous

studies utilizing different approaches [23,33,34], thus demon-
strating the validity of the model.

To check the robustness of results to the tight-binding pa-
rameters, we have used another set of parameters, which are
taken from [24], i.e., V 0

ppπ = −2.7 eV, V 0
ppσ = 0.48 eV, and

λ = 0.453 Å. They are increased by 12.6%, 23%, and 67%,
respectively, in comparison with our used values. We find
the result and conclusion in this work are robust against the
variation of tight-binding parameters.

APPENDIX B: DENSITY-MATRIX CALCULATION
CORRESPONDING TO FIG. 4

For the density-matrix model, the population calculation is
much easier in comparison with the TDSE model. The diag-
onal elements of the density matrix represent the population
on each energy band. Thus, the residual CB population can be
directly obtained by summing the required diagonal elements
at the end of the pulse. We perform the same calculation
corresponding to Fig. 4. The results are reported in Fig. 9.
One can see that almost the same distribution is present as in
Fig. 4.
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