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Robust lattice manipulation beyond nearest-neighbor coupling by pulsed electric field
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In this paper, we propose an approach to manipulate a translation-invariant single-band tight-binding system
beyond nearest-neighbor coupling. By using a sequence of multiple identical pulsed electric fields with specific
strengths and calculated intervals, the propagator of the system can be fully controlled within an infinite space
with dimensions given by the configuration of existing nonzero couplings. And if the sequence is repeated,
the system evolution can then effectively simulate another system with a different array of hopping energies,
provided that these hopping energies are already nonzero in the simulator. Moreover, the effective system’s
response to a wide range of additional influences, which are not required to be small, is also shown to approach
that of the system it simulates in the limit of high kicking frequency. The simulation is therefore robust and the
simulator can potentially be indistinguishable from the lattice it simulates. Considering the physical simplicity,
this approach cannot only realize flexible experimental platforms for lattices beyond nearest-neighbor coupling,
it is also potentially applicable to the manipulation of actual materials.
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I. INTRODUCTION

Dynamics in translational-invariant lattices has long been
under intense scrutiny. For one-dimensional (1D) single-band
lattices with periodical boundary conditions, i.e., quantum
rings characterized by tight-binding models, there has been
intense research into the effect of controlled magnetic flux
[1–3]. Through gauge transformation, the same model can be
generalized to characterize lattices subject to a homogeneous
electric field, for which the influence of pulsed [4–7], static
[8–10], and alternating [2,11–17] electric fields have also been
extensively examined. As experimental technologies advance,
many interesting long predicted phenomena can finally be
observed, such as Bloch oscillation [8,9,18], Aharonov-Bohm
oscillations [19,20], persistent current [21–25], negative
motion [26–31], speed limit [17,32,33], and dynamical local-
ization [4–6,11–15].

However, most of the research is within the regime of
nearest-neighbor coupling, while the effect of long-range hop-
ping [10,34–36] has been shown as nontrivial and potentially
relevant [37–39]. Experimental platforms with hopping co-
efficients beyond the nearest-neighbor coupling have been
found [40–42], but realizing a high degree of flexibility in the
coupling coefficients remains a challenge. Recently, based on
cold atom simulation of tight-binding models, a helix lattice
system was proposed [43], in which long-range couplings are
somewhat controllable through the shape of the lattice. Also,
manipulation of up to two hopping coefficients was shown
using static electric field [10].
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In this paper, we propose an approach using sequences of
pulsed electric field to realize a flexible Floquet engineering
[44–49] that controls all existing nonzero hopping coefficients
in a single-band lattice with long-range hopping. The formal-
ism for this approach begins in the model of 1D single-band
tight-binding rings pierced by magnetic flux. Using the com-
mutation relations among the different hopping components in
the system Hamiltonian, we decompose the dynamics of the
system and map the propagator of the lattice as a collection of
moving points within two-dimensional (2D) real space. With
few given exceptions notwithstanding, we prove that the array
of coordinates of these points has one-to-one correspondence
with the propagator. Moreover, we find the movements of
these points governed by simple principles: each of them
moves at a fixed speed determined by the corresponding hop-
ping energy, and the magnetic flux determines each of the
motion directions.

Subsequently, by considering the limit of large site number,
we ignore the periodical boundary condition, which equates
the tight-binding ring with a lattice and replaces the magnetic
flux with a homogeneous electric field. Under a series of
kicks by pulsed electric field with a specific strength and
controllable time intervals [7], we show how the displacement
of these moving points can be explicitly and independently
controlled. Therefore, an arbitrary propagator that exists on
the map can therefore be realized, which can be chosen as
identical to the short-time propagator of a different lattice
with the same configuration of nonzero couplings. The same
propagator can then be applied repeatedly using the same
sequence of pulsed electric field at a high frequency, turning
a lattice into a flexible Floquet simulator of lattices with an
explicitly chosen array of hopping parameters.
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Furthermore, in the limit of high kicking frequency, it can
be shown that the simulator lattice will not only faithfully
observe the same evolution, but also respond to external influ-
ences in the same way as the indented effective system. Such
external influences may include arbitrary interactions with an
environment, as well as defects, electron-electron interactions,
and certain band-band interactions. Therefore, if one were
to overcome limitations on the kicking frequency such as
the effect of heating, it is ideally possible for the simulator
lattice to be indistinguishable from the lattice it simulates to
an observer unaware of the pulsed electric field.

The remaining of this paper is arranged as follows. In
Sec. II, we establish the one-to-one correspondence between
the propagator of a single-band tight-binding ring or lattice
and the coordinates of a set of moving points in 2D real
space. We also examine the dynamics of these points and show
how the formalism can be generalized to lattices of higher
dimensions. In Sec. III, we present an approach based on a se-
quence of pulsed electric field that controls the propagator of
a single-band lattice with arbitrary long-range hopping, which
allows the lattice to simulate different lattice parameters. In
Sec. IV, we show that, in the limit of high kicking frequency,
the simulation is robust against arbitrary external influences.
Finally, in Sec. V, we summarize our results.

II. FORMALISM

We begin by generally characterizing a 1D single-band
N-site translation-invariant tight-binding ring, which is also
assumed as pierced by a time-dependent magnetic flux and
containing up to the Mth nearest-neighbor coupling. Ignoring
electron-electron interactions, the Hamiltonian of the system
reads

H (t ) =
M∑

m=1

Hm(φt ), (1)

Hm(φt ) ≡ Jm[ε−m(φt ) + ε+m(φt )], (2)

εm(φt ) ≡
N∑

j=1

e−im φt
N c†

j+mc j, (3)

where c j is the fermionic annihilation operator of the jth
lattice site, Jm is the hopping energy between the mth nearest
neighbor, and φt is the magnetic flux through the ring at
time t . Also, unites of h̄ = e = 1 are used, and the periodical
boundary condition of the ring dictates that indices j of c j are
always modulo N .

A. Map of propagator

To decompose the propagator of the system, we take ad-
vantage of the commutation relations of fermionic operators
c j , which conveniently give

[εm(φ), εn(φ′)] = 0, (4)

where m, n are arbitrary integers and φ, φ′ are arbitrary
magnetic flux. In particular, [Hm(φ), Hm′ (φ′)] = 0 makes it
possible to write the propagator as a product of several

independent components:

U (t, t0) ≡ e−i
∫ t

t0
H (τ )dτ =

M∏
m=1

e−i
∫ t

t0
Hm (τ )dτ

. (5)

To further simplify each of the components, we Fourier trans-
form modes c j into Bloch modes bk using

bk = 1√
N

∑
j

e−2π i· jk
N c j, (6)

c j = 1√
N

∑
k

e2π i· jk
N bk, (7)

where k denotes Bloch momentum. Then, considering that
(b†

kbk )2 = b†
kbk , Eq. (2) gives

e−i
∫ t

t0
Hm (τ )dτ =

∑
k

e−iϕmk (t,t0 )b†
kbk, (8)

ϕmk (t, t0) ≡ 2Jm

∫ t

t0

cos

[
m

(
φτ

N
+2π

k

N

)]
dτ,

= 2π [�rmk · �Rm(t, t0)], (9)

�rmk ≡
[

cos 2πmk
N

sin 2πmk
N

]
, (10)

�Rm(t, t0) ≡
∫ t

t0

Jm

π

[
cos mφτ

N

− sin mφτ

N

]
dτ, (11)

where ϕmk (t, t0) characterizes the phase-shift contribution
from the mth nearest-neighbor coupling of an electron on
fermionic mode bk during the period between t0 and t . Fur-
thermore, since the dependency of ϕmk (t, t0) on φt and indices
k are separated into an inner product of two vectors in a real
2D plane, the propagator of the system can thereby be reduced
to

U (t, t0) =
∏

m

Um[ �Rm(t, t0)], (12)

Um[ �Rm(t, t0)] ≡
∑

k

e−i{2π[�rmk · �Rm (t,t0 )]}b†
kbk . (13)

The evolution of electrons on the lattice is thereby mapped
to the movement of several vectors in a real 2D plane. Note
that the function Um itself is given by the number of sites N
alone, while vector �Rm(t, t0) only accounts for the influence
of hopping energy and magnetic flux.

Moreover, given the integrand in Eq. (11), the nature of
vector �Rm(t, t0) is easy to characterize. If one imagine the evo-
lution of each vector �Rm(t, t0) as the coordinate of a point in
the 2D plane, then each of them moves at a fixed speed Jm

π
that

is only determined by the corresponding hopping energy. On
the other hand, the magnetic flux only controls the direction
of its movement.

B. Generalization and analysis

Although the map of propagator given by Eqs. (10)–
(13) is established for tight-binding quantum rings threaded
with magnetic flux, the same model, and hence the map,
is also applicable to a 1D lattice in a time-dependent
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homogeneous electric field. To obtain the specific corre-
spondence, we consider a gauge transformation with unitary
G(t ) ≡ ∑

j exp(i j φt

N )c†
j c j , and the system Hamiltonian from

Eq. (1) is transformed into

H = G(t )H (t )G−1(t ) + i
∂G(t )

∂t
G−1(t ) = Hb + He, (14)

Hb =
M∑

m=1

Jm

N−m∑
j=1

[c†
j−mc j + c†

j+mc j] − ∂φt

N∂t

∑
j

jc†
j c j, (15)

He =
M∑

m=1

Jm

[
m−1∑
j=0

eiφt c†
j cN−m+ j +

m−1∑
j=1

e−iφt c†
N−m+ jc j

]
, (16)

where Hb is apparently the same formalism as the bulk of a
1D lattice subject to an electric field characterized by scalar
potential. Note that Hb no longer satisfies permutation sym-
metry. Compared with H (t ), the removal of these extra terms
in He leads to a discontinuity between mode c0 and cN−1 in
Hb. Nevertheless, in the limit of N → ∞, M � N , and if
none of the electrons goes near the two ends of the lattice, He

can be ignored, i.e., H → Hb. The dynamics of the electrons
is then fully characterized by Hb. In this case, we note that
the last term on the right-hand side of Eq. (15) is in the form
of a scalar potential. The correspondence between a magnetic
flux φt and a time-dependent homogeneous electric field Et is
thereby characterized by

− ∂φt

N∂t
= aEt , (17)

where a is the lattice constant, i.e., the distance between two
nearest-neighboring sites. Moreover, we note that the same
formalism thus far can also be applied to lattices of higher
dimensions within the single-band regime. Apparently, the
formalism Eq. (1) would hold under substitution m → �m,
j → �j, and m φt

N → �l ( �m) · �A(t ), where integer vector �m char-
acterizes the hopping distance in each direction in unit of
site indices, �l ( �m) denotes the corresponding physical displace-
ment, and �A(t ) is a homogenous magnetic vector potential.

Another interesting aspect to this map of propagators is its
periodicity or lack thereof. In a quantum ring of N = 6, for
example, the function U1 is periodical. As shown in Fig. 1(a),
one can find an example of a nonzero �R1 so U1( �R1) = I . And
Fig. 1(b) shows clearly that there are many �R1 on the 2D plane
that lead to a return to the initial state. However, the case of
N = 6 is more of an exception than the rule. In general, we
obviously have

∀�α, �β ∈ R2 : Um(�α + �β ) = Um(�α)Um(�β ), (18)

and it can be shown that ∃ �R1 �= 0,w ∈ R : U1( �R1) = Ie−iw, if
and only if N = 2, 3, 4, 6 (see Appendix A). In other words,
for a 1D translation-invariant tight-binding ring with five
or more than six sites and nearest-neighbor coupling, loca-
tions on the 2D map correspond one-to-one with all possible
propagators within the control of magnetic flux. Moreover,
in the limit of N → ∞, it can be shown that U (t, t0) =
Ie−iw if and only if ∀m : �Rm(t, t0) = 0 (see Appendix B). It
thereby follows that the propagator U (t, t0) of a single-band
translational-invariant lattice has one-to-one correspondence
with the array of vectors �Rm(t, t0). It also follows that a wave
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FIG. 1. Illustrations of the xy plane that �R1 and �r1k reside for a
tight-binding ring of N = 6. (a) The black circle is the unit circle,
on which the red dots are �r1k , k = 0, . . . , 5, which in turn are the
vertices of a green regular hexagon. The black dotted lines are
the contour lines of integer values of function f (�r) = �r · R̃1, with
�R1 = [1

√
3]T . Note that for all k, f (�r1k ) ∈ Z, which entails that

phase shifts ϕ1k (t, t0 ), as given in Eq. (9), are all integer multiples
of 2π . (b) The self-fidelity of a single-site initial state F ( �R1) =
|〈vac|cnU1( �R1)c†

n|vac〉|2.

packet of arbitrary shape propagating in a lattice cannot be
guaranteed to recover its shape at a different location, since
guaranteeing U (t, 0)ψ0 = εm(0)ψ0e−iw for arbitrary initial
wave function ψ0 would require U (t, 0) = εm(0)e−iw, which
would in turn entail U (nt, 0) = [U (t, 0)]n = Ie−inw.

III. MANIPULATION

In the following, we focus on a 1D lattice subject to ho-
mogeneous pulsed electric field similar to those examined by
Ravindranath and Santhanam [7] for lattices beyond nearest-
neighbor coupling. Using the map of propagator as points on
a 2D space, we will show how a sequence of identical electric
pulses can be engineered to navigate these moving points to
arbitrary destinations independently. This in turn enables us to
manipulate the lattice propagator during the whole sequence,
which can then also be repeated so the lattice under the influ-
ence would undergo the evolution of a different lattice.

A. Navigation of the propagator

According to Eq. (17), the presence of an electric field is
physically equivalent to altering magnetic flux; we can then
effectively shift the magnetic flux with pulsed electric field,
which will turn the direction of ∂

∂t
�Rm and enable the naviga-

tion of �Rm. The impact of an electric pulse during a period of
time �t reads

K ≡ a
∫ t0+�t

t0

Eτ dτ = φt0+�t

N
− φt0

N
. (19)

Apparently, in the scenario where �t is very small, i.e., a kick,
a sudden shift in φt will occur. This shift is directly given
by K , which is therefore the strength of the kick. We then
focus on an ideal sequence of identical pulsed electric field
consisting of L kicks, each with the specific strength

K = 2π

L
. (20)
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FIG. 2. Demonstration of navigating �Rm with electric field pulses of L = 5. (a) The pulsed electric field employed. These pulses can be
characterized by φt

N = π

L

∑L
j=0[tanh

t−t j

�t + 1] and Eq. (17), with �t = 3 ns controlling the shape of the pulse. The intervals between pulse
time t j are given by Q = [20, 2 + i, 2 − 2i, 2 + 2i, 2 − i] ns and Eq. (25). For simplicity, the evolution begins at the middle of interval τ0. In
(b)–(d), the blue solid curves are trajectories of �Rm(t, 0) under the pulses shown in (a). Each of them begins at the point of origin and moves
according to Eq. (11) with Jm ≡ π ns−1. In comparison, the black dotted lines are trajectories of �Rm(t, 0) under ideally sharp pulses with
�t → 0. In this case, the pulses are characterized by φt

N = 2π

L

∑L
j=0 �(t − t j ), where �(t ) denotes Heaviside step function.

Recall that the velocity of each moving �Rm is simply the inte-
grand in Eq. (11). Each shift in φt as characterized by Eq. (19)
only changes their moving directions, while the intervals be-
tween these shifts are denoted by τl . The total displacement of
vector �Rm at the end of the whole sequence then simply reads

�Rm = Jm

π

L−1∑
l=0

τl

[
cos 2πml

L

− sin 2πml
L

]
. (21)

Apparently, the displacement of each �Rm at the end of the
sequence is controlled by the array of time intervals τ ≡ {τl}.
Also, the special strength given in Eq. (20) makes the rela-
tion particularly convenient, since the equation above can be
rewritten as

Q ≡ {Qm} = Fτ, (22)

Jm

π
Qm = �Rm · (x̂ + iŷ), (23)

Q0 ≡
L−1∑
l=0

τl , (24)

where F is simply the discrete Fourier transformation and
the contribution of Jm is introduced separately. The intervals
required to realize an arbitrary �R are then explicitly solvable
by combining Eq. (23) with

τ = F−1Q, (25)

where F−1 denotes inverse discrete Fourier transformation.
However, such an explicit solution remains unsatisfactory for
controlling the propagator to the fullest extent. Each of the
time intervals τl has to be a positive real number, which
is not guaranteed by inverse discrete Fourier transformation.
Nevertheless, this issue can be addressed.

For discrete Fourier transformation, the necessary and suf-
ficient condition to τl ∈ R is ∀m : Qm = Q∗

L−m. However, it is
safe to assume that a realistic tight-binding lattice has a limit
to the range of its nonzero hopping, i.e., Jm → 0 for m � M.
By using L � 2M, any given �Rm within m � M can then be

realized with

Q = [
Q0, Q1, . . . QM︸ ︷︷ ︸

M

, 0, . . . 0︸ ︷︷ ︸
L−2M−1

, Q∗
M, . . . Q∗

1︸ ︷︷ ︸
M

]
. (26)

Then, JL−m → 0 for m � M can guarantee that

�RL−m · (x̂ + iŷ) = JL−m

π
Q∗

m → 0. (27)

As for positivity, note that the extra dimension Q0 is con-
veniently not given by any �Rm since m �= 0. By arbitrarily
choosing an Q0 that is large enough, we can then always
guarantee τl > 0. More simply, one can also calculate τ with
an arbitrary Q0 and then ensure the complete positivity of τ

later by adding the same amount of sufficient time to each of
its elements, which corresponds to an increase of Q0.

In Fig. 2, we demonstrate how to navigate �Rm up to m = 3
to an arbitrary given destination using pulsed electric field.
As shown in Figs. 2(b)–2(d), at the end of a sequence of
pulsed electric field given by Q, each �Rm of the lattice will
reach its destination given by Eq. (23). Moreover, regardless
of whether the identical pulses are of sufficiently small finite
width or of ideal infinitesimal width, they will arrive at the
same destination. For obvious geometry reasons, even if each
�Rm had to change direction in an imperfect manner such as
turning continuously, as long as the pulses are identical and
they have the correct strength, the movement in each of the
directions is affected evenly, which only equates the effect of
changing Q0.

B. Floquet engineering

We then discuss turning a lattice into a simulator of a
different lattice characterized by different hopping energies
between nth nearest neighbors. Suppose we are to simulate a
lattice with nonzero coupling up to M ′th nearest neighbor, and
we have a simulator lattice with up to Mth nearest-neighbor
coupling. As long as M � M ′, by using a sequence of electric
pulses, we will be able to navigate each �Rm of the simulator
to undergo the same displacement as its counterpart �R′

m in the
lattice it simulates during an arbitrary period of time T . Then,
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FIG. 3. Fidelity of quantum state evolution between the simula-
tor and the lattice it simulates. The fidelity is given by Eq. (30), and
the initial state is a single electron on an arbitrary single site with
j = 10. The simulator lattice is characterized by Eq. (1) with N = 20
and J ≡ {Jm} = [3, 2, 1] ns−1 up to the third-nearest-neighbor cou-
pling. Under the navigation of Q = T · [1, 0.2, 0.3, 0.6, 0.3, 0.2],
it simulates the evolution of a lattice characterized by J′ ≡ {J ′

m} =
[0.6, 0.6, 0.6] ns−1. Pulses of electric field are characterized as with
infinitesimal width.

the exact same procedure can be performed in continuous
repetition, so �Rm would equal �R′

m at the end of each sequence.
For simplicity, we assume that the duration of each pulse

sequence equals the time period of the evolution it simulates,
i.e., Q0 = T . (See Appendix C for otherwise). In this case, at
each moment t that is the integer multiple of T , the propagator
of the simulator will be equal to that of the lattice it simulates.
In other words,

∀l ∈ Z : U (lT ) = U ′(lT ), (28)

in which U (t ) ≡ U (t, 0). Moreover, since each �Rm only
moves at a fixed speed, there is a limit to how far U (lT + �τ )
can be away from U ′(lT + �τ ) under �τ < T if 1

T → ∞.
More specifically, we have (see Appendix D)

1

T
�

√∑
m

J2
m ⇒ U (t ) → U ′(t ), (29)

which is estimated to be valid continuously for all time t .
As a simple numerical demonstration, we focus on the

evolution of a particular initial state |ψ (0)〉 = c†
j |vac〉 (see

Appendix E for the justification) in a quantum ring, where the
choice of j in c j is irrelevant due to permutation symmetry.
In Fig. 3, we compare the evolution of the simulator lattice
|ψ (t )〉 and that of the lattice it simulates |ψ ′(t )〉 with a simple
fidelity given by

F = |〈ψ (t )|ψ ′(t )〉|2. (30)

As can be seen from the figure, for all kicking frequen-
cies, the fidelity returns to unitary periodically. During each

period, for the simulator with the lowest kicking frequency,
the fidelity would drop to very low level before returning
to unity, On the other hand, for the simulators with higher
frequency, their fidelity remains close to unity throughout the
whole period. There simply is not enough time for them to
get very far. As the frequency of the kicking increases, the
deviation of the simulator lattice from the lattice it simulates
throughout the evolution would approach zero, which is con-
sistent with the prediction of Eq. (29). In a special case, we
also note that one can also recover dynamical localization if
each of the simulated coupling coefficients is chosen to be
zero.

IV. ROBUSTNESS

As far as the quantum state at moments where time t is an
integer multiple of T is concerned, the effective Hamiltonian
in our approach is entirely independent of the choice of pulse
frequency, but the frequency does make a difference in the
presence of additional influences. In the following, we will
show that, in the limit of high kicking frequency, the re-
sponse of the simulator to arbitrary additional influences will
approach the same response as the lattice it simulates when
subject to the same influences. Importantly, these additional
influences can also include the effects of interacting with an
environment.

Open quantum systems are usually studied under Marko-
vian or non-Markovian master equations given by a series of
conditions and approximations. Here, to introduce the envi-
ronment, we instead employ the original untreated formalism
[50,51], which reads

H = H (t ) ⊗ IE + IS ⊗ HE︸ ︷︷ ︸
A(t )

+ Hd (t ) ⊗ IE + HI︸ ︷︷ ︸
B(t )

, (31)

where HE generally denotes the Hamiltonian of the environ-
ment and IS, IE are identity operators on the lattice and the
environment, respectively. Hd (t ) denotes defects introduced to
the ideal lattice characterized by Hamiltonian H (t ). The full
Hamiltonian is then separated into two parts: A(t ) includes
only the undisturbed dynamics of the lattice and the indepen-
dent evolution of the environment, while B(t ) characterizes
additional influences from both within the lattice and the
environment.

Given Eq. (31), we consider the rotating frame with respect
to A(t ), which is characterized by a propagator

UA(t ) ≡ T exp

[
−i

∫ t

0
A(τ )dτ

]
= U (t ) ⊗ e−iHE t , (32)

where T exp denotes the time-ordered exponential. The evo-
lution of the full quantum state ψ (t ) is then given by

∂

∂t
ψ̃ (t ) = −iB̃(t )ψ̃ (t ), (33)

ψ̃ (t ) ≡ U −1
A (t )ψ (t ), (34)

B̃(t ) ≡ U −1
A (t )B(t )UA(t ). (35)

Suppose A(t ) is given for the simulator lattice, its counter-
part for the lattice it simulates H ′(t ) is thereby denoted as
A′(t ) = H ′(t ) ⊗ IE + IS ⊗ HE . Likewise and correspondingly,
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FIG. 4. Demonstration of lattice simulation under additional influence. The same parameters from Fig. 3 are employed, except for the
following interventions: (a) An additional electric field characterized by −aE = 2

√
2πns−1 and Eq. (17); (b) Anderson noise characterized by

Eq. (35) with randomized An ∈ [0, 10] ns−1, and for each different value of period T , 10 iterations are carried out and shown as superimposed
semitransparent curves.

we can also denote U ′
A(t ), ψ̃ ′(t ), B̃′(t ). However, the for-

malism of additional influences without rotating frame B(t )
must be the same for both the simulator and the system it
simulates, i.e., B(t ) ≡ B′(t ), which can be easily guaranteed
for a wide range of additional influences, such as extra electric
field, electron-electron interaction, or band-band interaction.
We note that they are straightforward to show formally if the
full system is transformed into a gauge where all the electric
field is introduced as a scalar potential [e.g., Eq. (15)] instead
of vector potential [e.g., Eq. (3)], which is allowed since the
condition of Eq. (29), once established, would remain true
under gauge transformation.

Apparently, even without additional influence, A(t ) would
not approach A(t ) regardless of the kicking frequency. How-
ever, when the kicking frequency is high, Eqs. (29) and (32)
can give UA(t ) → U ′

A(t ), which is sufficient to ensure a ro-
bust simulation: For any given identical initial state ψ̃ (0) =
ψ (0) = ψ ′(0) = ψ̃ ′(0), Eqs. (33)–(35) would give B̃(t ) →
B̃′(t ), then ψ̃ (t ) → ψ̃ ′(t ) and eventually ψ (t ) → ψ ′(t ). In
other words, in the limit of high kicking frequency, the dy-
namics of the simulator would approach that of the lattice it
simulates as long as they are subject to the same additional
influence.

We note that, in the formalism above, the identical ad-
ditional influences on the two systems are not required to
be small. The difference between B̃(t ) and B̃′(t ) only grow
linearly with the magnitude of B(t ), which can always be
suppressed, in theory, with an increase of kicking frequency.
Also, even in the case where a strong additional influence
came to dominate the dynamics of both systems, since the
additional influences on them are identical, one could still
expect a high fidelity between their dynamics. Ideally, to an

observer unaware of the pulsed electric field, the simulator
lattice could be indistinguishable from the lattice it simulates,
which is not a general feature in Floquet engineering, where
the effect of open quantum systems remains an open question
[46,49,52]. Experimentally, however, since the single band
model is itself an approximation [44], challenges remain in
increasing kicking frequency, such as the effect of (interband)
heating [53,54]. The simulation would be short-lived under
high frequency kicking unless one could somehow suppress
the heating from these arbitrarily shaped pulses.

For simplicity, the numerical demonstration is limited to
intervention within the Hamiltonian, for which the same
parameters from Fig. 3 are used. In Fig. 4(a), the evolu-
tion of the simulator lattice and the lattice it simulates are
compared under the same additional static electric field. In
Fig. 4(b), Anderson tight-binding model [4,55] is considered
by introducing site-diagonal random potential [56] into the
Hamiltonian in Eq. (1) as follows:

H (t ) → HA(t ) ≡ H (t ) +
∑

n

Anc†
ncn, (36)

where site-dependent An characterizes randomized site ener-
gies that compromise translational invariance.

As can be seen from Fig. 4, when the sequence repeat
frequency is low, the fidelity of the simulator will quickly
diminish under either kind of additional influence as its evo-
lution diverges from that of the system it simulates. However,
as the frequency of the sequence increases, i.e., 1

T → ∞, the
fidelity between the quantum evolutions of the simulator and
that of the system it simulates approaches all-time unity. In
other words, with a sufficiently high kicking frequency, one
can ensure that the lattice responds to a wide range of addi-
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tional influences in almost the exact same way as the system
it simulates.

V. DISCUSSION AND CONCLUSION

In this paper, we developed an approach to control the evo-
lution of single-band tight-binding quantum rings and lattices
beyond nearest-neighbor coupling. By using a sequence of an
identical pulsed electric field with strength given by Eq. (20)
and intervals given by Eqs. (23) and (25), the propagator of a
different lattice with up to the same hopping distance can be
engineered within the well-defined space given by Eq. (12).

Moreover, by applying the sequence periodically at a high
frequency, one tight-binding lattice with long-range hopping
can simulate the evolution of a different lattice with a different
array of hopping coefficients, as long as all the correspond-
ing couplings are nonzero in the simulator. Provided that
the hopping energies of the simulator are much greater than
those in the system it simulates, the simulator can evolve at
the same rate as the system it simulates. Otherwise, a time
scaling would be required, but we note here that time scaling
could also be useful as an equivalent of tuning the strength of
environmental noise.

More importantly, if the frequency of the periodical se-
quence is high enough, we show that the evolution of the
simulator lattice also responds similarly as the system it sim-
ulates to arbitrary additional influences. The most general
formalism of external influences is employed, so the con-
clusion holds universally for all kinds of effects, such as
additional electric field, Anderson noise, and environmental
noises. It therefore stands to reason that, at a sufficiently high
frequency, the simulator would ideally be indistinguishable
from an actual lattice with the simulated parameters to an
observer unaware of the pulses. However, we note that there
are challenges yet to overcome experimentally, such as the
effect of heating from the arbitrarily shaped electric pulses,
especially if they were to be applied repeatedly at a high
frequency.

As we have shown, the formalism and hence the approach
in this paper can be directly generalized to lattices of higher
dimensions. It can potentially help to realize a flexible simu-
lation platform for arbitrary tight-binding single band lattices
beyond nearest-neighbor coupling or even property manipula-
tion of actual crystal lattices. In particular, since electric pulse
sequences are easy to be altered instantaneously, the approach
can be applied to studies on the quenching of lattice pa-
rameters. Furthermore, by considering electron-electron and
band-band interaction as additional influences, applications to
multiband and multielectron systems are also possible.
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APPENDIX A: LACK OF PERIODICITY OF U1

In the following, we show that U1 cannot be periodical
unless N = 2, 3, 4, 6. Since U1 satisfies Eq. (18), a necessary
and sufficient condition to U1 being periodic thereby reads

∃�α �= 0 : U1(�α) = Ie−iw, (A1)

where w is an arbitrary phase factor. Note that the periodic-
ity defined here is indifferent to the global phase. Consider
realizing equal phase shifts for each Bloch momentum k
under Eq. (13); it then follows that U1 is periodic if and
only if

∃�α �= 0 : ∀k, k′ : [(�r1k − �r1k′ ) · �α] ∈ Z. (A2)

We then focus on a regular N polygon with �r1k as its
vertices, e.g., the green regular hexagon in Fig. 1(a). For
clarity, vertices are hereby denoted as capital letters such as
A, B,C, D. Given any integer N , it is quite easy to show if U1

is not periodic:
N = 3, 4 notwithstanding, one can always find pairs of par-

allel diagonals(edges) AB, CD that satisfies
−→
AB = q

−→
CD, where

q is the ratio of length between the pair of diagonals(edge).
Periodicity thereby demands that there exist a non-zero �α

with which
−→
AB · �α and

−→
CD · �α are both integers for all possible

pairs of AB,CD. However, if
−→
AB · �α = q

−→
CD · �α �= 0 and q is

irrational, the two inner products
−→
AB · �α and

−→
CD · �α cannot

both be integers. And in the special case of
−→
AB · �α = 0, the

rotational symmetry guarantees that we can always find a
different pair of diagonals (edge) A′B′, C′D′ from a different

angle to satisfy
−−→
A′B′ · �α = q

−−→
C′D′ · �α �= 0.

Therefore, with a given N , U1 cannot be strictly periodical
as long as a regular N polygon contains any pair of parallel
diagonals (edge) whose lengths are incommensurable.

Finally, the length of the second shortest diagonal that
is parallel to an edge of length d0 is given by d2 =
(1 + 2 cos 2π

N )d0. Niven’s theorem [57] states that, with
sin θ = x, only if x = 0,± 1

2 ,±1, can both θ and x be a
rational number. It then follows that d0 and d2 are incom-
mensurable for N = 5 or any N > 6, which is therefore the
sufficient condition to the nonperiodicity of U1.

APPENDIX B: LACK OF PERIODICITY OF U (t, 0)

In the following, we examine iteratively the necessary
condition to propagator periodicity beyond nearest-neighbor
coupling in the limit of N → ∞.

Beginning with a lattice of up to an arbitrary Mth nearest-
neighbor coupling, its periodicity requires

∃PM �= 0,w ∈ R : �M
n=1Un( �Rn) = Ie−iw, (B1)

in which complex vector PM ≡ {Pn}n=1,...M , with Pn = �Rn ·
(x̂ + iŷ), characterizes each �Rn up to n = M. Similar to
Eq. (A2), the proposition above entails an equal phase shift
for each Bloch momentum k, which is straightforwardly char-
acterized by

∀k : �rMk · �RM = Ck −
M−1∑
n=1

�rnk · �Rn, (B2)

∀k, k′ : Ck − Ck′ ∈ R. (B3)
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In the limit of N → ∞, it is safe to consider every point of
rational angle on the unit circle as a valid �rnk and �rnk as a
continuous function of k. Equation (B3) thereby gives ∂Ck

∂k = 0,
i.e., Ck ≡ C.

PM−1 �= 0 is then guaranteed whether �RM = 0 or not: If
�RM = 0, then PM �= 0 entails at least one nonzero �Rn for n <

M; and if �RM �= 0, then the left-hand side of the equation being
dependent on k would demand the same for the right-hand
side.

We then consider an arbitrary pair of k, k′ that satisfies
M
N (k − k′) = 1

2 , which gives not only �rMk + �rMk′ = 0 but also
�rnk + �rnk′ �= 0 for any integer n < M. It thereby follows that

(�rMk + �rMk′ ) · �RM = 2C −
M−1∑
n=1

(�rnk + �rnk′ ) · �Rn = 0. (B4)

By denoting s = 1
2 (k + k′), �R′

n ≡ |�rnk + �rnk′ | �Rn and consider-
ing �rnk + �rnk′ = |�rnk + �rnk′ |�rns �= 0, we have

M−1∑
n=1

�rns · �R′
n = 2C. (B5)

In other words,

∃PM−1 �= 0,w ∈ R : �M−1
n=1 Un

( �Rn
) = Ie−iw. (B6)

It is thereby shown that Eq. (B1) is the sufficient condition
to Eq. (B6) in the limit of N → ∞, which eventually leads
to U1 being periodical as a necessary condition to the whole
propagator being periodical.

APPENDIX C: TIME SCALING

Here, we address the case where the simulator is unable to
guarantee Q0 = T .

We first explain the challenge in guaranteeing Q0 = T .
Suppose the lattice it simulates is given by time-independent
∂
∂t

�R′
m, during a small period of time T , we have

∂

∂t
�R′

mT · (x̂ + iŷ) = Jm

π
Qm. (C1)

For the simulator, the time required to navigate to Q ≡ {Qm}
is then given by Q0. If a simulator lattice were to match the
evolution of the lattice it simulates in real time, Q0 = T is
a necessary requirement, but recall that there is a limit to its
value: time intervals between pulses can only be a positive real
number, i.e., τl > 0, which is easier to ensure if the couplings
in the simulator lattice are much greater than those in the
lattice it simulates. Stronger coupling is therefore preferred
in a simulator lattice. Otherwise, Q0 > T may be required,
which necessitates a time scaling of the simulation.

In the case of time scaling, Eqs. (28) and (29) must be re-
placed by U (lQ0) = U ′(lT ) and U (t ) → U ′(t ′), respectively,
with t = Q0

T t ′, l ∈ Z. Note that symbols with prime notation
are the counterparts in the lattice being simulated. Moreover,
in the presence of additional influence, Eq. (31) has to be
replaced by

H = H (t ) ⊗ IE + B(t ), (C2)

H′ = H ′(t ′) ⊗ IE + B′(t ′), (C3)

B′(t ′) = Q0

T
B(t ), (C4)

B(t ) ≡ IS ⊗ HE + Hd (t ) ⊗ IE + HI , (C5)

B′(t ) ≡ IS ⊗ H ′
E + H ′

d (t ) ⊗ IE + H ′
I . (C6)

Apparently, the additional influence on the lattice it simulates
is no longer identical, but scaled. Also, HE �= H ′

E , so they can
no longer be a part of A(t ), A′(t ). Nevertheless, in the limit
of high kicking frequency, by using UA(t ) = U (t ) ⊗ IE and
U ′

A(t ) = U ′(t ) ⊗ IE , one can still show that

B̃′(t ′) → Q0

T
B̃(t ). (C7)

In other words, the amplitude of the effective additional influ-
ence is tunable, which could be useful.

APPENDIX D: STANDARD OF HIGH FREQUENCY

Here, we estimate the sequence frequency condition for
all-time high fidelity of lattice simulation. We employ the
same definition of fidelity given in Eq. (30) as well as the same
initial state c†

j |vac〉 chosen in Appendix E. Also considering
Eq. (18), the fidelity between U (t ) and U ′(t ) is then given by

〈ψ |ψ ′〉 = 〈vac|c jU
†U ′c†

j |vac〉

= 〈vac|c j

{∏
m

Um(� �Rm)

}
c†

j |vac〉, (D1)

� �Rm ≡ �R′
m(t ) − �Rm(t ), (D2)

where �Rm(t ) and �R′
m(t ) are from the simulator and the lattice

it simulates, respectively. Equations (7) and (13) thereby give

〈ψ |ψ ′〉 =
∏

m

{
1

N

∑
k

e−i[2π�rmk ·� �Rm]

}
. (D3)

With l ∈ Z, we have �Rm(lT ) = �R′
m(lT ). Also considering that

�Rm(t ) moves at a fixed speed Jm
π

, it is therefore guaranteed that

|� �Rm(t )| <
Jm

π

T

2
, (D4)

Since T is assumed to be small, the Taylor expansions
of exponentials are only kept to their second order. Also
considering |�rmk · � �Rm| < |�rmk| · |� �Rm| and

∑
k �rmk = 0, we

have

〈ψ |ψ ′〉 ≈ 1 − (2π )2

2N

∑
k,m

[�rmk · � �Rm]2

> 1 − 1

2

∑
m

|2π� �Rm|2, (D5)

Recalling Eq. (D4), for 〈ψ |ψ ′〉 → 1, we simply need∑
m

|2π� �Rm|2 <
∑

m

J2
mT 2 � 1, (D6)

which straightforwardly leads to the condition in Eq. (29).
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APPENDIX E: CHOICE OF INITIAL STATE

To better reflect the behavior of the propagator, the choice
of initial state in the numerical simulation involves the follow-
ing considerations.

In the absence of electron-electron interaction, the multi-
electron propagator has one-to-one correspondence with the
propagator within the single-electron regime. And within
the single-electron regime, we assume there is an initial
wave function |ψ0〉 that ensures {εn(0)|ψ0〉|n ∈ Z} to be a
complete basis of the single-electron Hilbert space. Equa-
tion (4) guarantees [εn(φ),U (t )] = 0 for arbitrary propagator

U (t ). Therefore, U (t )|ψ0〉 = U ′(t )|ψ0〉 is then sufficient to
guarantee

∀n ∈ Z : U (t )εn(0)|ψ0〉 = U ′(t )εn(0)|ψ0〉. (E1)

The completeness of {εn(0)|ψ0〉|n ∈ Z} would then give
U (t ) = U ′(t ). In other words, starting from |ψ0〉, the lattice
cannot evolve into the same quantum state unless the propa-
gators are identical.

A particularly convenient |ψ0〉 that ensures the complete-
ness of {εn(0)|ψ0〉|n ∈ Z} is simply the wave function of an
electron perfectly localized to an arbitrary single lattice site.
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