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Anisotropic Dirac cone and slow edge states in a photonic Floquet lattice
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Dirac cones with isotropic and linear dispersion, as in graphene, exhibit ultrahigh carrier mobility and offer an
intriguing method to manipulate the behavior of particles. This concept has recently been extended to anisotropic
Dirac cones with anisotropic dispersion in condensed matter, but their photonic counterparts are yet to be
explored. Here, by introducing anisotropic coupling, we propose a Floquet lattice with a realistic photonic
scheme that supports anisotropic Dirac cones and abundant topological phases. Under the highly anisotropic
circumstances, the presence of anomalous Floquet insulators is demonstrated, where topological slow edge
states are found along a specific direction. The group velocity of the edge states can be tailored continuously by
adjusting the anisotropy of the lattice. These slow edge states are robust against disorders and can be harnessed
for developing intriguing applications such as anisotropic devices, topological delay lines, and optical nonlinear
devices.
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I. INTRODUCTION

Dirac semimetals with a linear energy dispersion at the
Fermi level are a novel class of condensed-matter systems
that exhibit unconventional transport properties such as bal-
listic charge transport and ultrahigh carrier mobility [1–4].
The discovery of the Dirac cones, which exist in single-layer
graphene [5], ignited intense research interests in Dirac ma-
terials in the past decade [6–16]. Consequently, the Dirac
cones in graphene have been theoretically extended to highly
anisotropic cases with anisotropic dispersion by applying
an external periodic potential [17–19]. Recently, anisotropic
Dirac cones have been experimentally demonstrated by using
high-resolution angle-resolved photoemission spectroscopy in
several materials including (Sr/Ca)MnBi2, χ3 borophene, and
B2S honeycomb monolayer [20–26]. These anisotropic Dirac
cone materials have attracted significant attention due to their
anisotropic carrier mobility, which leads to applications of
direction-dependent transport.

Inspired by the Dirac cone materials in condensed-matter
systems, several research groups have realized photonic Dirac
semimetals on several platforms [27–31]. For instance, a
honeycomb lattice composed of straight waveguides exhibits
Dirac cones in its photonic band structure [31], where the
waveguide array serves as the optical analog of graphene.
Those systems were studied based on a well-known static
Hamiltonian preserving “time”-reversal symmetry, where the
coordinate z along the propagation direction acts as “time.”
When a periodic drive is implemented (Floquet engineer-
ing) in waveguide arrays, the “time”-reversal symmetry can
be broken, leading to bosonic particles whose behavior is
profoundly distinct from that in a static system. It has
been demonstrated that the Floquet band structure can host
unpaired Dirac cones at critical points between different topo-
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logical phases [32]. More specifically, anomalous Floquet
insulators host topologically nontrivial edge states (ESs) in
spite of a zero Chern number for all bands [33–36]. While
several platforms host photonic Dirac cones and topological
insulators, a deterministic scheme of anisotropic Dirac cones
and the effect of anisotropy in topological insulators remain
largely unexplored.

In this work, we proposed a scheme for realizing
anisotropic Dirac cones in a photonic lattice composed of
evanescently coupled elliptic-helical waveguides. Due to the
periodicity along the propagation direction, the proposed
photonic lattice can be mapped into a Floquet model. Un-
like previous designs hosting isotropic Dirac cones [32],
our scheme hosts anisotropic Dirac cones due to the intro-
duced anisotropic coupling. We reshaped the Dirac cones to
anisotropic type by Floquet engineering, and these anisotropic
Dirac cones were numerically verified via conical diffrac-
tion. Furthermore, the topological transition between trivial
insulator (TI) and anomalous Floquet insulator (AFI) was
investigated. Generally, a topological transition can occur by
detuning isotropic coupling strength or sublattice asymmetry
[34,37,38]. Here, we found that lattice anisotropy also plays a
significant role in topological transitions and topological edge
states. Under high anisotropy, the edge modes at straight edges
exhibit diverse propagation behaviors. Interestingly, without
reducing the bulk band gap, the group velocity of the edge
states can be increased along one direction at the cost of
being decreased along its perpendicular direction. This unique
transport feature opens the way for engineering topologically
protected edge states, which enable new applications in broad-
band slow-light photonic systems.

II. FLOQUET MODEL AND REALISTIC PHOTONIC
IMPLEMENTATION

Let us start our analysis by considering a simple Floquet
model as shown in Fig. 1(a). This bipartite square lattice is
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FIG. 1. Floquet system and photonic implementation. (a) Schematic representation of a reduced Floquet lattice composed of sublattice
A-type (red dots) and B-type (blue dots) atoms, where the black dashed lines enclose a unit cell. The coupling between neighboring waveguides
can be decomposed into four steps. In each step, the evolution of photons is governed by an evolution matrix Sj ( j = i, ii, iii, and iv). (b)
Corresponding Brillouin zone, where the red dots represent high-symmetry points and the blue solid lines enclose the first Brillouin zone. (c)
Schematic illustration of a bipartite square lattice composed of evanescently coupled elliptic-helical waveguides. This bipartite square lattice
is composed of A-type (red) and B-type (blue) sublattices, twisting counterclockwise along the propagation direction (z axis) with a relative
shift. (d) Cross sections of the waveguide lattice showing the coupling between neighboring waveguides in the four steps. In each step, the
coupling between the neighboring waveguides occurs only along a specific direction.

composed of two sublattices A and B, where the red (blue)
dots represent A-type (B-type) sites, and the bonds denote
modulated coupling between neighboring sites with a mod-
ulation period T. To simplify the Floquet model, we divide
one period into four steps: i, ii, iii, and iv. In each step, the
coupling along a specific bond is in effect, and those along
the other three bonds remain inactive. The active coupling
relation in step j (= i, ii, iii, and iv) is described by a scat-
tering matrix Sj , marked by bonds with different colors in
Fig. 1(a). Note that the coupling amplitudes are modulated
in a chiral way, and S j serves as the evolution operator over a
quarter period, S jψ(t ) = ψ(t + T/4), where ψ = (ψA, ψB) is
the wave function, and ψA (ψB) represents the tight-binding
amplitude of sublattice A (B). The evolution of particles over
one period is governed by Uψ(t ) = ψ(t + T ), where U is
the Floquet evolution operator expressed as U = SivSiiiSiiSi.
The lattice basis vectors are a1 = (a, a) and a2 = (a,−a),
where a is the spacing between the sublattices A and B. As
a consequence of the spatial translation symmetry, the crystal
momenta k = (kx, ky) are good quantum numbers. Figure 1(b)
depicts the Brillouin zone associated with the bipartite square
lattice, where the blue solid lines enclose the first Brillion
zone. The general scattering matrix S0, which contains the
coupling relations, can be expressed as

S0 =
(

ei�t −iei�κ

−ie−i�κ e−i�t

)
, (1)

where κ ∈ [0, 1] is the coupling coefficient, t ∈ [0, 1] is the
transmission coefficient, and � is the phase shift arising from
the difference of on-site energy between sublattices A and B.

Considering the Bloch phase factors in each step, we de-
rived the complete coupling relations:

S0

(
ai

bieik·x

)
=

(
aii

biieik·x

)
, (2)

S0

(
aii

biie−ik·y

)
=

(
aiii

biiie−ik·y

)
, (3)

S0

(
aiii

biiie−ik·x

)
=

(
aiv

bive−ik·x

)
, (4)

S0

(
aiv

biveik·y

)
=

(
ai

bieik·y

)
, (5)

where a j and b j represent the amplitude of the sublattice A
and B, respectively, in step j. With the unit vectors x = (a, 0)
and y = (0, a), the Bloch phase factors are determined. The
general evolution matrix Sj in each step can be expressed in
forms of the Bloch waves:

S j (k · d) =
(

ei�t j −iei(�+k·d)κ j

−ie−i(�+k·d)κ j e−i�t j

)
, (6)

where d is x, −y, −x, and y for steps i, ii, iii, and iv, respec-
tively. As a result, the entire Floquet evolution operator U(k)
can be expressed as a product of the four evolution matrices:

U (k) = Siv(kya)Siii (−kxa)Sii (−kya)Si(kxa). (7)

Under the assumption of no scattering loss in each step
(κ2

j + t2
j = 1), the eigenvalues of the entire Floquet evolu-

tion operator U have the form of eiβ(k), where β(k) is the
quasienergy of the Floquet band structure. Note that the cou-
pling coefficient κ j can be different in each step, which is
important for obtaining anisotropic Dirac cones. In a sim-
plified model, we assume Si = Siii and Sii = Siv so that we
can define κx = κi,iii and κy = κii,iv as direction-dependent
coupling coefficients. Since the coupling coefficients κx and
κy serve as the modulation amplitudes of coupling strength,
introducing anisotropic coupling (κx �= κy) can be regarded as
Floquet engineering.

Our proposed Floquet lattice can be implemented in a
realistic photonic system, such as femtosecond-laser-written
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waveguides in fused silica [39]. In a coupled-waveguide ar-
ray, the guided light propagates mainly along the longitudinal
direction and spreads slowly along the transverse direction as
Floquet-Bloch modes, which makes it an ideal platform for
experimental verification of the Floquet theory [30,35,36,40–
43]. To that end, we proposed a flexible photonic structure
corresponding to the bipartite square Floquet lattice as shown
in Fig. 1(c). The red (blue) single-mode waveguides form an
array aligned along the longitudinal direction z. Under the
paraxial approximation and weak-guidance approximation,
the light propagating along the z axis in the waveguide array
can be described by E (x, y, z) = �(x, y, z)exp(ik0z−iωt ) (see
the Supplemental Material [44]), and the paraxial optical field
�(x, y, z) is governed by the Schrödinger-like equation

i∂z�(x, y, z) = − 1

2k0

(
∂2

x + ∂2
y

)
�(x, y, z)

− k0�n(x, y, z)

n0
�(x, y, z), (8)

where n0 = 1.508 is the refractive index of the ambi-
ent medium, λ = 633 nm is the operating wavelength, ω =
2πc/λ is the corresponding optical frequency, c is the
speed of light, k0 = 2πn0/λ is the wave number, and
�n(x, y, z) is the refractive index profile of the elliptic-
helical waveguides with a helix period of Z. In the
cross sections, the centers of the red waveguides move
clockwise following elliptic helices according to x0(z) =
Rxcos(2πz/Z ) and y0(z) = −Rysin(2πz/Z ), where Rx and
Ry are the semiminor and semimajor axes, respectively
(Rx � Ry). The transverse centers of the blue waveguides
move along the z axis similarly but with an additional
π phase shift, thus following x0(z) = −Rxcos(2πz/Z ) and
y0(z) = Rysin(2πz/Z ). The refractive index profile of each
waveguide follows a hyper-Gaussian function �n(x, y, z) =
�nmaxexp(−[(x − x0)2/σ 2 + (y − y0)2/σ 2]

3
), with �nmax =

2 × 10−3 and σ = 2.5 μm. The average separation of the
nearest waveguide is a, which serves as the spacing between
the sublattices A and B in the original Floquet lattice. We
numerically simulated and designed the proposed photonic
structure by following the theory and simulation for the
femtosecond-laser-written photonic structures [39]. By solv-
ing Eq. (8) with a finite-difference beam-propagation method,
we obtained the numerical results for our designed photonic
structure. In the simulation, we chose a to be 20 μm and
Z to be 1 cm to ensure minimal waveguide loss. Since the
waveguide spacing is varied along the z axis, we assume that
the coupling between the neighboring waveguides occurs in
four steps [as shown in Fig. 1(d)], acting equivalently as mod-
ulation of coupling. The symmetry in our designed structure
guarantees Si = Siii and Sii = Siv, where the corresponding
coupling coefficients κi,iii and κii,iv can be determined in sim-
ulation. With fixed a and Z, the direction-dependent coupling
coefficients κx and κy depend on Rx and Ry respectively, and
thus can be engineered by adjusting Rx and Ry. As a result, this
photonic implementation can be mapped into the proposed
Floquet lattice with the time coordinate t replaced with the
propagation distance z.
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FIG. 2. Schematic illustrations of the Dirac cones and phase
diagram. (a) Schematic illustration of an isotropic two-dimensional
Dirac cone with symmetric effective velocities (wx = wy). (b)
Schematic illustration of an anisotropic two-dimensional Dirac cone
with asymmetric effective velocities (wx �= wy). (c) Phase diagram
of the Floquet lattice in the case of zero phase shift � = 0. TI, trivial
insulator; AFI, anomalous Floquet insulator.

III. FLOQUET BAND STRUCTURE AND UNPAIRED
DIRAC CONES

With the established Floquet model, we next show how
to tune the Floquet lattice into different topological phases
and obtain the anisotropic Dirac cones by engineering the
coupling coefficients in each step. First, we briefly introduce
the anisotropic Dirac cones. Generally, the linearized Dirac
Hamiltonian near the Dirac point Q can be expressed as

HD(p) = w0 · pI + wx pxσx + wy pyσy, (9)

where p = k − Q = (px, py) is the momentum vector rela-
tive to the Dirac point Q, and the effective velocity terms
are w0 = (w0x,w0y), wx, and wy. Here the Dirac cones are
not tilted with preserved inversion symmetry, and thus the
corresponding effective velocity term w0 is equal to (0, 0).
Figures 2(a) and 2(b) show isotropic and anisotropic Dirac
cones, respectively. For isotropic Dirac cones, the effective
velocity terms wx and wy are equal, so the group velocity
does not depend on direction. For anisotropic Dirac cones, the
effective velocity terms wx and wy are unequal, so the group
velocity depends on direction.

To obtain anisotropic Dirac cones in our proposed model,
we solved for the Floquet band structure β(k) and then
searched for band crossing which is associated with a topo-
logical phase transition [45]. The topological characteristics
of our proposed lattice are introduced as follows. In two-
dimensional (2D) Floquet systems, zone-edge singularities
allow for change of the Chern number of the bands without
closing the interzone band gap, which violates the static bulk-
edge correspondence. This implies that the Chern number
cannot fully characterize the topological properties of Flo-
quet systems [34]. The winding number Wβ is suggested as
the topological invariant, which characterizes the number of
chiral edge modes nedge of an arbitrary Floquet operator U in
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a band gap at the quasienergy β:

nedge(β ) = Wβ. (10)

Wβ can be expressed as

Wβ = 1

8π2

∫
dz dkxdkyTr

(
Uβ

−1∂zUβ

× [
Uβ

−1∂xUβ, Uβ
−1∂yUβ

])
, (11)

with Uβ (k, z) = U (k, z)exp[−iHeff (k)z], where Heff (k) is
defined as Heff (k) = i ln[U (k, Z )]/Z . Based on the Chern
number C and winding number Wβ , the Floquet systems can
be classified into three types: trivial insulators (C = 0 and
Wβ = 0), Chern insulators (C �= 0 and Wβ = 0), and anoma-
lous Floquet insulators (C = 0 and Wβ �= 0).

To simplify the model, we set zero phase shift � = 0 and
plot the phase diagram of the Floquet lattice as shown in
Fig. 2(c). It is clear that the Floquet system is divided into
two topological phases by the critical-phase-transition curve
arcsin(κx ) + arcsin(κy) = π/2. The direction-dependent cou-
pling coefficients κx and κy play an important role in
classification of the topological phases. When the isotropic
condition (κx = κy) is satisfied, the Floquet lattice reduces into
the model in Ref. [32]. The systems are classified into trivial
insulators for arcsin(κx ) + arcsin(κy) < π/2 and anomalous
Floquet insulators for arcsin(κx ) + arcsin(κy) > π/2. Figure
3 plots the Floquet band structures β(k) solved from the
Floquet evolution operator U(k) for several cases. In Fig. 3(a)
the system is a trivial insulator with a trivial band gap cor-
responding to the case marked with 1© in Fig. 2(c), while
in Fig. 3(b) the system is an anomalous Floquet insulator
with a nontrivial band gap corresponding to the case marked
with 2© in Fig. 2(c). M denotes the quasienergy difference of
the two eigenstates at the � point, so the size of the band
gap is |M|. At the phase transition point (κx = κy = √

2/2)
marked with 3© in Fig. 2(c), the system hosts an unpaired
Dirac cone at the � point in the first Brillouin zone, with the
corresponding Floquet band structure shown in Fig. 3(c). On
the other hand, under the anisotropic condition (κx �= κy), this
system hosts an anisotropic Dirac cone on the critical-phase-
transition curve despite high coupling anisotropy. Without
loss of generality, Fig. 3(d) plots the anisotropic Dirac cone
for the specific phase transition point [arcsin(κx ) = 0.15π and
arcsin(κy) = 0.35π ], which is marked with 4© in Fig. 2(c). Ex-
panding the Floquet evolution operator near the � point U ≈
exp[−i(H−π )], we derived an effective Hamiltonian H(p):

Heff (p) = 2κy pxσx + 2κx pyσy + M

2
σz, (12)

where the effective velocity terms are wx = 2κy, wy = 2κx,
and M takes the value of 4arcsin(κx ) + 4arcsin(κy) − 2π . The
effective Hamiltonian Heff (p) reduces to a Dirac Hamiltonian
for M = 0. Therefore, the critical-phase-transition curve
[arcsin(κx ) + arcsin(κy) = π/2] can also be identified based
on the vanishing M. Note that the difference in κx and κy

induces the anisotropic Dirac cone with different group
velocities along the x and y directions. The group velocity
of the Dirac cone can be enhanced along one direction at
the cost of being reduced along its perpendicular direction.
Figures 3(e) and 3(f) plot the equifrequency surfaces of
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FIG. 3. Floquet band structures for different topological phases
and equifrequency contours for the corresponding Dirac cones.
(a) Band structure of a trivial insulator [arcsin(κx ) = arcsin(κy ) =
0.2π , |M| = 0.2π ] with a trivial band gap. (b) Band structure of
an anomalous Floquet insulator [arcsin(κx ) = 0.25π , arcsin(κy ) =
0.35π , |M| = 0.2π ] with a nontrivial band gap. (c) Band structure of
a critical-phase-transition point (κx = κy = √

2/2), which hosts an
isotropic Dirac cone under the isotropic condition. (d) Band struc-
ture of another critical-phase-transition point [arcsin(κx ) = 0.15π

and arcsin(κy ) = 0.35π ], which hosts an anisotropic Dirac cone
under the anisotropic condition. (e) Equifrequency contours for the
isotropic Dirac cone, which exhibits a circular shape at the Dirac
point �. (f) Equifrequency contours for the anisotropic Dirac cone,
which exhibits an elliptic shape at the Dirac point �.

the isotropic and anisotropic 2D Dirac cones, respectively.
For the isotropic Dirac cone in Fig. 3(c), the equifrequency
surfaces are composed of a set of circles whose radii decrease
linearly until reaching zero at the Dirac point �. By contrast,
for an anisotropic Dirac cone in Fig. 3(d), the equifrequency
surfaces are composed of a set of ellipses whose semimajor
and semiminor axes decrease linearly until reaching zero at
the Dirac point �.

IV. PROPAGATION BEHAVIOR OF AN ANISOTROPIC
DIRAC CONE

With the anisotropic Dirac cone obtained in the photonic
lattice, we next investigated the unique propagation behavior
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FIG. 4. Comparison of conical diffraction between isotropic and
anisotropic Dirac cones. (a),(b) Initial excitation by a Gaussian
beam (a) and single-unit-cell beam (b). (c),(e) Numerically simulated
output intensity profile |�(x, y, L)|2 of the Floquet lattice for an
isotropic Dirac cone (c) and for an anisotropic Dirac cone (e) under
initial excitation of a Gaussian beam. (d),(f) Numerically simulated
output intensity profile |�(x, y, L)|2 of the Floquet lattice for an
isotropic Dirac cone (d) and for an anisotropic Dirac cone (f) under
initial excitation of a single-unit-cell beam. Both lattices contain 12
× 12 unit cells, and the propagation distance is L = 5Z .

of these Dirac cones. Conical diffraction can prove the ex-
istence of a Dirac cone [46]. When an initial wave packet
of a Dirac cone state is excited, it will evolve into a ring
shape under linear relativistic dispersion, which is known as
conical diffraction. For honeycomb lattices with two Dirac
cones located at K and K′, a spatially structured input beam is
needed to selectively excite one cone to show conical diffrac-
tion [41]. With the unpaired Dirac cones at the � point, a
conical diffraction pattern can be generated by a normally
incident unstructured Gaussian beam. Figure 4 presents the
numerically simulated results of conical diffraction in our
proposed scheme by solving the paraxial equation [Eq. (8)].
To demonstrate the conical diffraction, we excited a broad
Gaussian beam as shown in Fig. 4(a) as the input profile.
Note that the Floquet eigenmodes in the longitudinal (z) di-

rection are equivalent to the Bloch modes in the transverse
(x−y) plane, which is simply a superposition of a set of
single-waveguide excitations. The corresponding output pro-
files for the isotropic and anisotropic Dirac cone are displayed
in Figs. 4(c) and 4(e), respectively. For the isotropic Dirac
cone (κx = κy = √

2/2, Rx = Ry = 6.45 μm), a conventional
conical diffraction pattern can be observed after a propagation
distance L = 5Z . When the isotropic Dirac cone is excited,
the conical diffraction takes the shape of a circular ring with
a constant thickness during propagation. By contrast, for
the anisotropic Dirac cone, the conical diffraction pattern is
no longer a circular ring because of the direction-dependent
group velocity vg = −dβ/dk. Note that for the case of 2κx =
κy (2vxg = vyg, Rx = 6.0 μm, Ry = 6.8 μm), the transverse
displacement of the wave packet along the +y (−y) direction
is twice that along the +x (−x) direction, thus exhibiting
an elliptic profile, which indicates that the group velocity is
locked to the propagation direction.

Additionally, if the input beam size is comparable to
the period a of the discrete system (narrow-beam cases),
the well-known discrete propagation patterns arise, which
are profoundly different from those in continuous systems.
An extreme case of narrow-beam excitation is displayed in
Fig. 4(b), where only a single unit cell was excited. The
corresponding output discrete conical-like diffraction patterns
for the isotropic and anisotropic Dirac cone are displayed
in Figs. 4(d) and 4(f), respectively, which reveal the unique
propagation behavior of the Floquet Dirac cones (see Sup-
plementary Video 1). These discrete conical-like diffraction
patterns exhibit a dark central spot, indicating that the group
velocity is nonzero almost everywhere. For the isotropic Dirac
cone (κx = κy), a discrete diffraction pattern arises because
the Floquet spectrum is periodic along the quasienergy β

axis and there is no flat band edge [32]. For the anisotropic
Dirac cone (κx �= κy), although a flat band edge arises at the
high-symmetry M points, the single-unit-cell beam mainly
excited modes near the Dirac point (i.e., the � point), so
the discrete conical-like diffraction pattern is preserved. The
dynamic propagation behaviors of conical diffraction for both
broad and narrow excitations are displayed in Supplementary
Video 1.

V. TOPOLOGICAL TRANSITION AND SLOW
EDGE STATES

In this section, we demonstrate topological transition and
manipulation of group velocity of the chiral edge states by
adjusting the direction-dependent coupling coefficients. As
discussed above, the coupling coefficients along the x and y
directions determine the topological phases of the proposed
lattice, and the chiral edge states are preserved despite high
anisotropy of coupling coefficients. Next, we will investigate
how these chiral edge states are influenced by the degree of
anisotropy.

To characterize the topological feature of our proposed
model, we first considered a stripe structure that is periodic in
the x direction and terminates at a straight edge, as shown in
Fig. 5(a). This stripe structure can be regarded as a supercell
of N unit cells. To obtain the Floquet band diagram of this
stripe structure, we derived a Floquet evolution operator Usc
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FIG. 5. Topological transition and edge-state band structures. (a) Schematic representation of a stripe structure composed of seven unit
cells, where the orange dashed lines represent the periodic boundary. (b)–(d) Edge-state band structures β(k) along the x (red) and y (blue)
directions with fixed arcsin(κx ) = 0.15π (Rx = 6.0 μm), for a trivial insulator with arcsin(κy ) = 0.25π and |M| = 0.4π (Ry = 6.45 μm) (b),
for a critical phase with arcsin(κy ) = 0.35π and |M| = 0 (Ry = 6.80 μm) (c), and for an anomalous Floquet insulator with arcsin(κy ) = 0.45π

and |M| = 0.4π (Ry = 7.10 μm) (d). In (d) the yellow (green) dots plot the fast (slow) edge states with a larger (smaller) group velocity. (e)–(g)
Numerically simulated output intensity profile |�(x, y, L)|2 for different topological phases. The blue dashed boxes represent the boundary of
the lattice, and the white dashed box indicates the initial excitation distribution for (e)–(g). With the majority of edge states excited initially
around ky = 0, the output intensity profiles exhibit diverse propagation behaviors. Note that the fast edge states along the y direction convert
adiabatically into the slow edge states along the x direction around the corner.

for this supercell. Let the wave amplitude vector be |ψ〉 =
(a j,1, b j,1, . . . , a j,n, b j,n, . . . , a j,N , b j,N ) for the supercell in
step j, where n is the serial number of the sites. When the
serial number n is odd, the coupling relations can be expressed
as

S0

(
ai,n

bi,n

)
=

(
aii,n

bii,n

)
, (13)

S0

(
aii,n

bii,n+y

)
=

(
aiii,n

biii,n+y

)
, (14)

S0

(
aiii,n

biii,n+x

)
=

(
aiv,n

biv,n+x

)
, (15)

S0

(
aiv,n

biv,n−y

)
=

(
ai,n

bi,n−y

)
. (16)

When the serial number n is even, the coupling relations can
be expressed as

S0

(
ai,n

bi,n−x

)
=

(
aii,n

bii,n−x

)
, (17)

S0

(
aii,n

bii,n+y

)
=

(
aiii,n

biii,n+y

)
, (18)

S0

(
aiii,n

biii,n

)
=

(
aiv,n

biv,n

)
, (19)

S0

(
aiv,n

biv,n−y

)
=

(
ai,n

bi,n−y

)
. (20)

On the stripe’s straight edges, the boundary conditions
are ei�aii,N = aiii,N , e−i�bii,1 = biii,1, ei�aiv,1 = ai,1, and
e−i�biv,N = bi,N . Due to the translational invariance of the
lattice in the x direction, these coupling relations can be re-
ordered to obtain a Bloch-form evolution operator Usc(kx ) for
the supercell, which produces the Floquet edge band struc-
tures β(k) in Figs. 5(b)–5(d).

The Floquet edge band structures β(k) along the x (red) and
y (blue) directions are plotted under several special cases as
shown in Figs. 5(b)–5(d), with their parameters corresponding
to the states marked with 5©, 4©, and 6© in Fig. 2(c), respec-
tively. With fixed κx and increasing κy, Figs. 5(b)–5(d) show
that the lattice undergoes a transition from a trivial insulator to
an anomalous Floquet insulator accompanied by closing and
reopening of the band gap. In Fig. 5(b), the lattice is a trivial
insulator with a small value of κy, where no chiral edge state
exists in the band gap. Increasing the value of κy induces the
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emergence of the chiral edge states [green and yellow curves
in Fig. 5(d)] in a single band gap, implying that the lattice
has turned into an anomalous Floquet insulator. The topo-
logical transition can be verified experimentally from beam
propagation characterization. Here, we numerically simulated
the topological transition in our proposed scheme by solving
the paraxial equation [Eq. (8)], with the results shown in
Figs. 5(e)–5(g) and Supplementary Video 2. To avoid the
excitation beam being scattered into the bulk, we excited the
edge states at the center of the edge band structure (β ≈ π )
within a complete band gap. By using a broad beam with
initial excitation along the edge [in the area enclosed by the
white dashed box in Fig. 5(e)], we could excite the states
mainly at the specific momentum ky = 0 in the band structure.
With a small Ry, the lattice is in the trivial phase, and thus the
excitation spreads directly into the bulk as shown in Fig. 5(e).
With a larger Ry (or increased κy), as shown in Fig. 5(g), the
beam propagates unidirectionally along the edge, indicating a
topological transition.

Next, we investigated the effect of anisotropy on the
anomalous topological edge states. For an isotropic lattice
(κx = κy), the edge states exhibit identical propagation behav-
iors along the x and y directions due to the lattice invariance
under the C4 transformation, where a π /2 rotation is per-
formed around the z axis. Interestingly, under the highly
anisotropic condition (κx 	 κy), the chiral edge states along
the x (green dots) and y (yellow dots) directions exhibit
diverse propagation behaviors, with a tradeoff between the
transverse group velocities of the edge states along the two
orthogonal directions, as shown in Fig. 5(d). Note that the
zigzag edges in Refs. [32,43] can be regarded as a mixture
of straight edges along the two orthogonal directions in our
proposal. As a result, the edge states on zigzag edges exhibit
isotropic group velocity even under an anisotropic condition
(κx �= κy). Additionally, compared with the tightly confined
edge states with a high group velocity, those with a low
group velocity exhibit broad spatial distributions in the bulk.
Despite significant difference between the chiral edge states
along the two orthogonal directions, the edge states along
the y direction convert adiabatically into those along the x
direction around the corner. With increased lattice anisotropy
and fixed bulk band gap as determined by |M|, the transverse
group velocity of the chiral edge states along the direction
with a smaller (larger) coupling coefficient becomes lower
(higher). To compare the transverse group velocities of the
fast (slow) edge states along the two orthogonal directions, we
excited the corresponding edge states as shown in the upper
panels of Figs. 6(a) and 6(b). The lower panels of Figs. 6(a)
and 6(b) display the output profiles of the edge states after a
propagation distance L = 4Z (see Supplementary Video 3).
The transverse displacement of the slow edge states is ap-
proximately half that of the fast edge states, implying that the
group velocity is effectively reduced. Additionally, the group
velocity of these slow edge states can be tailored continuously
by tuning the anisotropic coupling coefficients κx and κy (see
the Supplemental Material [44]). Note that under the highly
anisotropic condition (κx 	 κy), our slow edge states exhibit
an even lower group velocity than those in Ref. [36].

The topological slow light offers distinct advantages over
the traditional slow-light systems [47]. In traditional slow-

8a

L = 0

4a

(b)L = 0(a)

L = 4ZL = 4Z

L = 0(c) L = 0(d)

Defect

L = 6Z

Defect

L = 10Z

(e)

Arbitrary edge

L = 14Z
Input profile

Fast ESs Slow ESs

Fast ESs Slow ESs

FIG. 6. Numerically simulated dynamic propagation of the edge
states. (a),(b) Dynamic propagation of the edge states with a larger
group velocity (a) and a smaller group velocity (b). The unit scale
of the ruler is 2a, and the blue dashed lines represent the boundary.
(c),(d) Dynamic propagation of the edge states with a larger group
velocity (c) and a smaller group velocity (d) when a defect is intro-
duced on the edge. (e) Dynamic propagation of the edge states along
an arbitrary edge.

light systems, reduction of group velocity usually comes at
the expense of bandwidth. In our proposed scheme, by en-
gineering the lattice anisotropy, the group velocity of the
edge states along a specific direction can be reduced with-
out reducing the bandwidth, thereby generating broadband
topological slow-light states. Another well-known challenge
in traditional slow-light systems is the enhanced disorder-
induced backscattering, loss, and localization. The topological
slow-light system has additional advantages in dynamic prop-
agation of edge states when an edge defect is introduced by
removing a single waveguide. Figures 6(c) and 6(d) show that
both types of edge states along the two orthogonal directions
have unobstructed propagation through the edge defect under
the highly anisotropic condition, implying that the topological
edge states are robust against defects (see Supplementary
Videos 4 and 5). Note that the edge defect forms a small
zigzag edge termination, which supports topological edge
states, and an arbitrary edge is a mixture of straight and
zigzag edges. Figure 6(e) and Supplementary Video 6 show
the dynamic propagation of the edge states along an arbitrary
edge, which demonstrates their topological robustness.

VI. DISCUSSION AND CONCLUSION

In conclusion, we have proposed a Floquet lattice and
a realistic photonic scheme to investigate anisotropic Dirac
cones in the bosonic domain by introducing anisotropy. With
appropriately designed lattice anisotropy, the slope of the
Dirac cone along a specific direction can be engineered con-
tinuously. Consequently, one can tune the isotropic Dirac cone
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into an anisotropic type. We have demonstrated the existence
of the isotropic and anisotropic Dirac cones in our proposed
Floquet model via conical diffraction. Additionally, the lattice
anisotropy also plays an important role in topological tran-
sitions and topological edge states. Under specific settings,
light can propagate unidirectionally along edges, which in-
dicates the presence of anomalous Floquet insulators. The
dynamic propagation behaviors show that the transverse group
velocities of these edge states can be reduced effectively,
thereby generating broadband topological slow light. Since
the coupled-waveguide array in our proposed scheme is theo-
retically equivalent to a microring lattice [48], our results may
inspire applications in optical delay lines as well as enhanced
light–matter interactions and optical nonlinearities. Compared

with traditional slow-light systems, the topological edge states
in this proposal are more reliable because of their high robust-
ness against local perturbations. These findings may also offer
new insights into dispersion engineering for future studies
concerning continuous media and hyperbolic metamaterials
[49–54].
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