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We develop a truncated Hamiltonian method to investigate the dynamics of the (1 + 1)-dimensional φ4

theory following quantum quenches. The results are compared to two different semiclassical approaches, the
self-consistent Gaussian approximation and the truncated Wigner approximation, and used to determine the
range of validity of these widely used approaches. We show that the self-consistent approximation is strongly
limited in comparison to the truncated Hamiltonian method which for larger cutoffs is practically exact for the
parameter range studied. We find that the self-consistent approximation is only valid when the effective mass is
in the vicinity of the renormalized mass. Similarly to the self-consistent approximation, the truncated Wigner
approximation (TWA) is not able to capture the correct mass renormalization, and breaks down for strong enough
interactions where the bare mass becomes negative. We attribute the failure of TWA to the presence of a classical
symmetry-broken fixed point. Aside from establishing the truncated Hamiltonian approach as a powerful tool
for studying the dynamics of the φ4 model, our results on the limitation of semiclassical approximations are
expected to be relevant for modeling the dynamics of other quantum field theories.
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I. INTRODUCTION

Interacting quantum many-body systems are in the focus of
interest of contemporary physics. Due to the growing number
of experimental realizations of isolated quantum many-body
systems, particularly in cold-atomic experiments, the inter-
est in study of out-of-equilibrium dynamics of such systems
greatly increased [1–9]. A paradigmatic and experimentally
realistic protocol for initiating out-of-equilibrium dynamics is
the quantum quench. In this scenario the system is initially
in equilibrium, such as a thermal state or ground state of
some prequench Hamiltonian. At t = 0 some parameter of the
Hamiltonian is suddenly changed, pushing the system out of
equilibrium and leading to a nontrivial time evolution.

For interacting field theories, the time evolution gener-
ally can not be solved exactly, making necessary the use of
suitable approximation methods. In this work we consider
two important nonperturbative semiclassical approaches: The
(Gaussian) self-consistent approximation (SCA) [9–11], and
the truncated Wigner approximation (TWA) [12,13]. In the
SCA approach the interaction is taken into account in a mean-
field approximation, leading to a self-consistency condition.
For the φ4 theory it was first developed by Sotiriadis and
Cardy [9] to study the time evolution of the effective mass
and extract thermal characteristics of the system. The TWA
relies on the classical equations of motion to approximate the
dynamics, while the quantum fluctuations are incorporated

in the fluctuating initial state. Recently, perturbative meth-
ods have also been developed for quenches starting from
integrable prequench quantum field theories [14,15]; in this
work, however, we consider nonperturbative descriptions of
the quantum dynamics.

Both the SCA and TWA are valuable tools in study-
ing the dynamics of interacting field theories, however, they
are uncontrolled approximations, warranting careful testing
against other methods. The family of truncated Hamiltonian
approaches provides a more controlled way to investigate
nonequilibrium dynamics in quantum field theories, taking
into account the full quantum dynamics [16–22]. The first
application of Hamiltonian truncation to quantum field the-
ories was the truncated conformal space approach (TCSA)
to numerically study relevant perturbations of conformal field
theories, introduced by Yurov and Zamolodchikov [23]. Sev-
eral variants were subsequently developed to treat a larger
class of models [24–31], as well as boundary [32,33] and
defect problems [34]; for a recent review, cf. the paper by
James et al. [35]. Although applications of Hamiltonian trun-
cation are mostly dominated by (1+1)-dimensional [(1+1)D]
field theories, it is possible to extend the approach to higher
dimensions as well [28].

Here we use a truncated Hamiltonian approach (THA) built
upon a massive free boson [28–31], and develop it further
to describe out-of-equilibrium dynamics following quantum
quenches in the (1 + 1)D φ4 theory. We demonstrate its
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accuracy and efficiency, and then proceed to compare its re-
sults to those of the SCA and TWA approaches.

The structure of the paper is as follows. Section II intro-
duces the (1 + 1)-dimensional φ4 theory, and specifies the
family of quantum quenches and the observables considered.
In Sec. II we also present the truncated Hamiltonian approach
and demonstrate that for a large range of parameters it gives a
numerically very accurate result for the time evolution. We
then proceed to consider the semiclassical approximations:
Sec. III is devoted to the self-consistent while Sec. IV turns
to the truncated Wigner approximation, comparing their re-
sults to the one obtained from THA. Section V contains the
summary and discussion of the results.

II. QUANTUM QUENCHES AND THE TRUNCATED
HAMILTONIAN METHOD

The (1 + 1)D φ4 model in finite volume L is given by the
Hamiltonian

H = Hm
KG + λ

4!
V4, (1)

where

Hm
KG =

∫ L

0
dx :

(
1

2
�2 + 1

2
(∂xφ)2 + m2

2
φ2

)
: (2)

is the Klein-Gordon Hamiltonian with mass m, the scalar
field φ and its conjugate momentum � satisfy the canonical
commutation relations

[φ(t, x),�(t, y)] = iδ(x − y) (3)

and

Vn =
∫ L

0
: φn : dx. (4)

We use periodic boundary conditions φ(t, x + L) = φ(t, x),
and the semicolons denote the normal ordering with respect to
the free-boson modes corresponding to the mass m. Through-
out this work we confine ourselves to the Z2-symmetric phase
m2 > 0. We use units in which m = 1, and so the volume
can be parametrized to the dimensionless parameter l = mL,
while the quartic coupling λ is measured in units of m2.

A general quantum quench in the φ4 theory corresponds to
changing m0 → m1 and λ0 → λ1 at the initial time t = 0, so
the Hamiltonian before the quench is

H0 = Hm0
KG + λ0

4!
V4, (5)

while the postquench is governed by

H1 = Hm1
KG + λ1

4!
V4. (6)

The initial state is taken to be the vacuum state of H0:
H0 |ψ0〉 = E0 |ψ0〉 with the minimum possible eigenvalue E0.
The t > 0 time evolution is unitary and governed by H1:

|ψ (t )〉 = e−iH1t |ψ0〉 . (7)

In this work we set the initial coupling λ0 = 0, which means
that the initial state can be constructed exactly since it is the
ground state of a free massive boson.

The time evolution of an observable O is given by

〈O〉 := 〈ψ (t )|O |ψ (t )〉 . (8)

In this work we focus on the two-point function C2(x, t ),

C2(x, t ) = 〈: φ(x, t )φ(0, t ) :〉 , (9)

and its Fourier components 〈: φk (t )φ−k (t ) :〉. When the
postquench coupling λ1 is also zero, the evaluation of the
time evolution becomes a simple exercise using the Bogoli-
ubov transformation relating the eigenmodes of the prequench
and postquench Hamiltonians. Due to the periodic bound-
ary conditions, the allowed Fourier modes are given as k =
2πn/l with n ∈ Z, and the normal ordering in Eq. (4) is
defined relative to the modes corresponding to the postquench
mass m1.

The finite volume formulation is a necessary requirement
for the truncated Hamiltonian method, and results in a discrete
spectrum. In the next step a UV energy cutoff is introduced
which restricts the Hilbert space to have a finite dimension,
where the Hamiltonian and the observables can be represented
as finite matrices. We remark that using light-cone quanti-
zation it is possible to formulate a truncated Hamiltonian
approach directly in infinite volume [36,37].

Here we work in the eigenbasis of the Klein-Gordon
Hamiltonian in a finite volume l = mL = 10, with units m =
1. In principle, this mass unit can be different from both the
prequench and postquench masses m0 and m1, but in practice
it is convenient to set m = m1. Since both the initial state
and the postquench Hamiltonian are translationally invariant,
the space of states can be restricted to the zero-momentum
subspace. Then the energy cutoff 	 can be parametrized as

	

m
= 4πnmax/l, (10)

where nmax is the quantum number of the maximum momen-
tum mode that can be excited in the limit of small m. Keeping
only the low-energy eigenstates as basis, the finite matrices
of Vn and eventually expectation values such as the Fourier
modes of the two-point function

C̃2(n, t ) = 〈φk (t )φ−k (t )〉 , k = 2πn

l
(11)

can be computed by simple algebra [30,31]. These results,
however, depend on the value of 	 and differ from the exact
values, with the deviation called the truncation error. For the
φ4 theory, since the quartic interaction is a relevant perturba-
tion of the Klein-Gordon field, the truncation error tends to
zero as the cutoff is taken to infinity. However, increasing the
cutoff can be computationally expensive, and so further proce-
dures might be necessary to reduce the truncation error. The
simplest prescription is leading-order renormalization group
(RG) improvement [29], which results in local counterterms
summing up the high-energy contributions and defining an
effective Hamiltonian which eliminates the dominant part of
the truncation effects. Using the notation introduced in Eq. (4),
the renormalized effective Hamiltonian is [29]

Heff = Hm
KG + g4V4 + κ0V0 + κ2V2 + κ4V4, (12)
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FIG. 1. Dependence of the gap of the spectrum on the scalar self-
coupling λ computed in l = 10 volume in the perturbative regime
using units m = 1, for different values of the cutoff parameter nmax,
including the leading-order RG improvement, Eq. (12). The seventh-
and eighth-order perturbative results [38] are shown with solid lines.

where the κi (to leading order) are given by [29]

κ0 = −
∫ ∞

	

dE

E − ε∗

[
g2

4μ440(E ) + g2
2μ220(E )

]
,

κ2 = −
∫ ∞

	

dE

E − ε∗

[
g2

4μ442(E ) + g2g4μ422(E )
]
,

κ4 = −
∫ ∞

	

dE

E − ε∗
g2

4μ444(E ),

(13)

where gn is the coupling of the Vn term at infinite cutoff in the
perturbation added to the free massive Hamiltonian Hm

KG, i.e.,

g2 = 0, g4 = λ

4!
, (14)

and the functions determining the renormalization group run-
ning of the couplings are

μ220(E ) = 1

πE2
, μ422 = 12

πE2
, μ444(E ) = 36

πE2
,

μ440(E ) = 1

E2

[
18

π3
(log E/m)2 − 3

2π

]
,

μ442(E ) = 72 log E/m

π2E2
,

(15)

while ε∗ is a reference energy [29], which we set to zero.
The accuracy of the spectrum of the renormalized Hamilto-

nian can be tested by comparing the mass gap obtained from
THA to perturbative results [38], as shown in Fig. 1. These
results also illustrate the efficiency of the leading-order RG
improvement (12) to eliminate cutoff dependence [29].

For the time evolution we use the postquench mass m1

to define our units, i.e., we set m = m1. The initial state
can be represented using its exact expression in terms of the
free-bosonic modes with the postquench mass by means of
Bogoliubov transformation. However, its normalization must
be changed from the exact value to ensure that the initial
vector has unit norm on the truncated Hilbert space.

The cutoff dependence of the THA evolution is shown
in Fig. 2. Note that even for relatively large quenches the
cutoff dependence is negligible. The results obtained using the
renormalized Hamiltonian essentially coincide with the ones
at the highest cutoff nmax = 21. As a result, the THA results
for the time evolution can be considered essentially exact for
the quenches used in Secs. III and IV. Therefore, using them
as a basis for comparison gives a direct test of the applicability
and accuracy of semiclassical methods.

We also note that the time evolution for t � L is expected
to deviate from the result in infinite volume due to finite-size
effects resulting from excitations traveling around the spatial
circle. Therefore, we restrict all our simulations to times t �
L; although obtaining results for larger times is not a problem
per se, they would differ from the dynamics in thermodynamic
limit and be affected by the periodic boundary conditions.

FIG. 2. Time evolution of the zero mode of the two-point function C̃2(n = 0, t ) for (a) a relatively small quench, and (b) a much larger
quench, each for different values of the cutoff as computed by THA. Different values of nmax correspond to different colors: nmax = 8, 14, 17,
and 21 corresponding to truncated state spaces of dimension cc. 400, 16 000, 90 000, and 700 000 states, respectively. The volume parameter
was set to l = mL = 10.
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III. SELF-CONSISTENT APPROXIMATION VS
TRUNCATED HAMILTONIAN APPROACH

A simple method for approximating (9) is the self-
consistent (i.e., mean-field) approximation which was de-
veloped by Cardy and Sotiriadis [9]. In the self-consistent
approximation the quartic coupling in (6) is replaced with a
mean-field approximation:

φ4 → 6 〈φ2〉 φ2 − 3 〈φ2〉2
, (16)

which is equivalent to dropping the fully connected part of
the quartic interaction term : φ4 :. Since the second term is
just a constant shift in the energy, it does not affect the time
evolution and therefore it can also be dropped. The first term
corresponds to a shift in the particle mass and therefore the
dynamics is essentially governed Klein-Gordon Hamiltonian
with a time-dependent mass. The mass itself can be computed
from the two-point correlation function in a self-consistent
way. Naively, the time-dependent effective mass meff(t ) can
be defined by the relation

m2
eff(t ) = m2

1 + λ

2

∑
k

〈φk (t )φ−k (t )〉 . (17)

Since the effective mass also appears in 〈φ2(t )〉 the right-hand
side also depends on meff(t ), Eq. (17) is a self-consistency
condition determining meff(t ). However, due to ultraviolet
divergences the actual value of the effective mass must be
defined through a renormalization procedure, resulting in the
gap equation

m2
eff(t ) = m2

1 + λ

2

∑
k

(
〈φk (t )φ−k (t )〉 − 1

2ωk

)
, (18)

where ωk =
√

m2
1 + k2 . This renormalization prescription is

equivalent to normal ordering the product φkφ−k with respect
to m1, and matches the normal ordering used in the truncated
Hamiltonian approach. In our explicit calculations we also
set the mass scale m which defines our units equal to the
postquench mass m1, which results in conventions matching
those in the THA approach, making the comparison between
the results of the THA and SCA straightforward.

The time evolution of the correlator 〈φkφ−k〉 is obtained
by solving the equation of motion for the field φ in the
mean-field approximation (16), which is complemented by
the self-consistent evaluation of the effective mass from (18).
This procedure can be implemented by discretizing the (t, k)
space and solving the equations by iterative application of the
following steps [9]:

1. Construct a time-dependent mode frequency function
k (t ) for every mode k from

̈k

2k
− 3

4

(
̇k

k

)2

+ 2
k = ωk (t )2 (19)

with the initial condition

k (0) = ωk (0), ̇k (0) = 0, (20)

where

ωk (t ) =
√

m2
eff(t ) + k2. (21)

2. Compute 〈φk (t )φ−k (t )〉 for every k from

〈φk (t )φ−k (t )〉 = 1

k (t )

[
ωk (0)2 + ω2

0k

2ωk (0)ω0k

+ ωk (0)2 − ω2
0k

2ωk (0)ω0k
cos

(
2

∫ t

0
dt ′k (t ′)

)]
,

(22)

where ω2
0k = m2

0 + k2.
3. Obtain m2

eff(t ) from the gap equation

m2
eff(t ) = m2

1 + λ1

2

∑
k

(
〈φk (t )φ−k (t )〉 − 1

2ωk (0)

)
. (23)

4. Move to the next time step t → t + dt .
Since we compare the results to THA evolution in a finite

volume L (with l = mL = 10), the momentum is naturally
discretized as k = 2πn/L with n ∈ Z, and the set of momenta
for which the time evolution of 〈φkφ−k〉 is constructed is
made finite by introducing an upper cutoff |n| � Nmax. The nu-
merical results converge fast when increasing Nmax; however,
choosing it excessively large makes the procedure unstable
and must be avoided. An additional parameter is the time
step dt which must be set small enough so that the results
become independent of its choice. The numerical procedures
were validated by simulating mass quenches with λ1 = 0 for
which the mean-field approximation is exact, and the trun-
cated Hamiltonian approach was found to yield practically
exact results.

The results for interacting quenches are illustrated in Fig. 3,
in which we fixed the change in the mass parameter and
varied the postquench coupling λ1. We show the zero wave-
number component C̃2(0, t ) and also a higher wave-number
component C̃2(4, t ) for the correlator. The results show that
the self-consistent approximation becomes progressively less
reliable as the coupling increases. Looking at the component
C̃2(0, t ), it is clear that a main source of the discrepancy is
that the SCA does not reproduce the frequencies present in
the time evolution and this discrepancy increases with the
coupling. There is clearly a discrepancy in the amplitudes as
well: Eq. (22) implies that this is linked to the discrepancy in
the frequencies.

The data at the strongest coupling in Fig. 3(c) also show
that for higher modes [illustrated by C̃2(4, t )] the frequencies
of the two methods match well, suggesting that the disagree-
ment stems from the difference in the relevant mass scale of
the two approaches. This follows from the simple observation
that for an effective mass meff , the frequency associated with
number k is

k ∼
√

m2
eff + k2. (24)

The mass scale meff thus determines the low-frequency part
of the spectrum, but the frequencies of higher modes are
dominated by the contribution of the wave number k, so using
the precise scale meff becomes less important. Indeed, the two
approaches lead to a different effective mass meff . For the
THA, meff can be determined by substituting the numerically
evaluated correlations into (23), while for the SCA it is ob-
tained using (23) as part of the self-consistent time evolution.
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FIG. 3. Time evolution of the n = 0 and n = 4 mode of C̃2 for quenches with the mass changed from 0.8 to 1, with different post-
quench interactions. The dots denote the numerical data from the truncated Hamiltonian approach at the cutoff nmax = 21 computed using the
renormalization improvement (12), while the solid line is the result of the self-consistent approximation. The volume parameter was set to
l = mL = 10 for both methods.

As shown in Fig. 4, the two effective masses agree well for
small coupling, while they show a strong discrepancy for
larger coupling. This leads to a pronounced difference in the
frequencies of low-energy modes, whereas the temporal fre-
quencies of higher are expected to agree better, in accordance
with Fig. 3(c).

Note that despite the good agreement of the temporal fre-
quencies for higher modes there is still a discrepancy in the
amplitudes of the postquench oscillations. One possible origin
for that could be truncation errors from THA since the method
is expected to give poorer results for quantities with higher

frequencies, closer to the truncation energy 	. However, this
can be safely excluded by examining the cutoff dependence
of C̃2(4, t ), shown in Fig. 5, confirming that the cutoff depen-
dence of THA is clearly insufficient to explain the discrepancy
between the THA and SCA. This leaves us with the only
possibility that the discrepancy stems from the mode-mode
correlations neglected in the mean-field approximation (16).

The attribution of the failure of the SCA at strong cou-
pling is further confirmed by considering a quench with a
larger change in mass, shown in Fig. 6. Note that a larger
change in mass leads to a larger quench in the sense that the
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FIG. 4. The effective mass in the THA and SCA approximations. The markers denote the truncated Hamiltonian results, while the solid
line shows the self-consistent solution corresponding to the largest value of nmax is shown. For the smaller quench (a) with the coupling in
the perturbative regime, the agreement between the results is clear. We can also see that the effective mass is in the close vicinity of 1 (top).
The difference for the larger quench (b) is much bigger, which can be understood as the effective mass getting further from 1. The volume
parameter was set to l = mL = 10 for both methods.

postquench energy density is higher, which in principle makes
truncated Hamiltonian methods less precise [16]. However,
for the quenches shown in Fig. 6 the results for the highest
truncation can still be considered identical to the exact quan-
tum time evolution as discussed in Sec. II. We recall that the
SCA is exact for pure mass quenches λ0 = λ1 = 0, and we
also see that the discrepancy follows the same pattern in terms
of the postquench interaction parameter λ1 as for the smaller
quenches shown in Fig. 3.

IV. TRUNCATED WIGNER APPROXIMATION VS
TRUNCATED HAMILTONIAN APPROACH

Aside from the self-consistent approximation discussed
above, other semiclassical approaches can be applied to de-
scribe quantum quenches in interacting many-body systems
[12,13,39]. In particular, the truncated Wigner approximation

FIG. 5. Cutoff dependence of C̃2(4, t ) for the quench (m0, λ0) =
(0.8, 0) → (m1, λ1) = (1, 8). The dots of various colors show the
THA results with different truncations parametrized by nmax (using
the renormalization improvement), while the continuous line is the
SCA result. We set the volume to l = mL = 10 for both methods.

(TWA) was argued to provide valuable insight into the dynam-
ics of interacting field theories, such as the sine-Gordon model
[21]. However, the accuracy of the TWA is hard to control,
warranting a careful validation of the approximation when it is
applied to a different Hamiltonian or quench procedure. Here
we test TWA against THA for quenches in the φ4 model. First
in Sec. IV A we rewrite the φ4 theory as a lattice regularized
model that serves as a convenient starting point for the TWA.
Then, in Sec. IV B we review the details of TWA, and pro-
ceed to present the numerical results for mass and coupling
quenches in Sec. IV C.

A. Lattice regularization

In order to formulate TWA it is convenient to pass to the
lattice regularized version of the φ4 model:

Hlatt =
Ns∑
j=1

(
�2

j + (φ j − φ j−1)2

2a
+ m2a

2
φ2

j + λa

4!
: φ4

j :

)
.

(25)
Here Ns denotes the number of lattice sites, a = L/Ns is the
lattice constant, � j = ∂tφ j/a, and the operators φ j and � j

satisfy the canonical commutation relation

[� j, φ j′] = −iδ j j′. (26)

As above, : φ4
j : Stands for the normal ordered operator

with respect to the postquench mass. The spectrum of the
quadratic part of Hlatt can be obtained by setting λ = 0, and
diagonalizing the Hamiltonian via the Fourier transform

φk = 1√
Ns

∑
j

e−i jakφ j, �k = 1√
Ns

∑
j

e−i jak� j . (27)

The resulting lattice dispersion

ωlatt
k =

√(
2

a
sin

ka

2

)2

+ m2 (28)
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FIG. 6. Time evolution of the n = 0 and 4 modes of C̃2 for quenches with the mass changed from 0.4 to 1, with different post-quench
interactions. The dots denote the numerical data from the truncated Hamiltonian approach at the cutoff nmax = 21 computed using the
renormalization improvement (12), while the solid line is the result of the self-consistent approximation. The volume parameter was set to
l = mL = 10 for both methods.

reduces to the continuum relation ωk = √
k2 + m2 in the limit

of small wave numbers k � 1/a. The vacuum correlators of
the operators φ and � are given by

〈φkφk′〉vac = δk,−k′
1

2a ωlatt
k

,

〈�k�k′〉vac = δk,−k′
a ωlatt

k

2
. (29)

The semiclassical TWA is written in terms of operators that
are not normal ordered. Therefore, to treat Hlatt semiclassi-
cally, : φ4

j : Must be rewritten as

: φ4
j := φ4

j − φ2
j

λa

4Ns

∑
k

1

2a ωlatt
k

+ const,

with the sum running over the wave numbers k = 2nπ/L, n =
0,±1,±2, . . . , Ns/2, and the second term accounting for the
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vacuum expectation value 〈φkφ−k〉vac. Defining the bare mass

m2
bare = m2 − λ

4Nsa

∑
k

1

ωlatt
k

, (30)

the Hamiltonian (25) can be recast as

Hlatt =
Ns∑
j=1

(
�2

j + (φ j − φ j−1)2

2a
+ m2

barea

2
φ2

j + λa

4!
φ4

j

)
.

(31)

B. Truncated Wigner approximation

The semiclassical TWA approximates out-of-equilibrium
expectation values and correlations as phase space averages
over random classical trajectories [12,13]. It is closely related
to the standard mean-field approximation; both approaches
approximate the time evolution by solving the classical equa-
tions of motion for the phase-space coordinates {φ j,� j}.
However, TWA goes significantly beyond the mean-field ap-
proximation by incorporating the quantum fluctuations of the
initial state. This is achieved by sampling random phase-space
coordinates {φ(0)

j ,�
(0)
j }, at time t = 0, and by determining the

classical trajectories for these fluctuating initial conditions.
More formally, TWA can be constructed through a systematic
expansion of the Keldysh path integral [12,13].

In this section we summarize the TWA for Hamiltonian
(31). First we describe the general formulas allowing to cal-
culate the time-dependent expectation value 〈O〉(t ) of an
arbitrary operator O for an initial state given by a density
matrix ρ0, and then we turn to formulating the TWA approxi-
mation for the quenches discussed in the previous sections.

Focusing on the lattice Hamiltonian (31), it is convenient to
introduce the notations |φ〉 j and |�〉 j for the eigenstates of the
operators φ j and � j , which satisfy the completeness relations

Ij =
∫

d�

2π
|�〉 j j〈�| =

∫
dφ |φ〉 j j〈φ| (32)

at any site j, while their overlap is given by

j〈φ|�〉 j = eiφ�. (33)

We introduce a more compact vector notation

φ = {φ j | j = 1, . . . , Ns} (34)

for the full set of eigenvalues, with analogous notation for the
eigenvalues of the canonical conjugate operators � j .

The initial state characterized by the density matrix ρ0 can
be described by a quasiprobability distribution in phase space,
given by the Wigner function

W (φ,�) = 1

(2π )2Ns

∫
dφ′ 〈φ + φ′/2| ρ0 |φ − φ′/2〉 e−iφ′�.

(35)
Similarly, an arbitrary operator O can be represented as a
function over the phase-space coordinates, by its Wigner
transform defined as

OW (φ,�) =
∫

dφ′ 〈φ − φ′/2|O |φ + φ′/2〉 eiφ′�. (36)

The TWA can then be formulated in terms of the phase-space
distribution W and phase-space functions OW . The quantum

fluctuations of the initial state are incorporated by sampling
random initial conditions (φ(0),�(0) ) from the Wigner qua-
sidistribution. The time evolution is then obtained by solving
the classical equations of motion

∂t� j = −1

a
(φ j+1 + φ j−1 − 2φ j ) − m2

barea φ j − λa

6
φ3

j ,

∂tφ j = 1

a
� j, (37)

with the bare mass m2
bare defined in Eq. (30). Given the trajec-

tory (φ(t ),�(t )), its contribution to the operator expectation
value 〈O〉 can be evaluated by substituting the fields φ(t )
and �(t ) into the Wigner transform OW . Finally, the TWA
expectation value 〈O〉TW is obtained by averaging over a
large number of different initial conditions (φ(0),�(0) ). The
procedure outlined above can be summarized in a compact
form as

〈O〉TW(t ) =
∫∫

dφ(0)d�(0) W (φ(0),�(0) ) OW (φ(t ),�(t )),

(38)

expressing the operator expectation value as a phase-space av-
erage over random classical trajectories, weighted according
to the Wigner quasidistribution of the initial state.

For the quenches under consideration the initial state is the
ground state of a free-boson model with λ = 0, described by
a simple Gaussian Wigner function

W =
∏

k=0,π/a

1

π
exp

(
− φ2

k

2σ 2
k

− 2σ 2
k �2

k

)

×
∏

0<k<π/a

4

π2
exp

(
−φk φ−k

σ 2
k

− 4σ 2
k �k �−k

)
. (39)

Here σk denotes the variance extracted from Eq. (29),

σk = 1

2 a ωlatt
k,0

,

where ωlatt
k,0 is given by Eq. (28), calculated with the initial

renormalized mass m0.
We focus on the time evolution of the correlation function

C̃2(k, t ) = a〈: φk (t )φ−k (t ) :〉 = a〈φk (t )φ−k (t )〉 − 1

2 ωlatt
k,1

,

with ωlatt
k,1 given by Eq. (28) at the postquench renormalized

mass m1. Here the lattice constant a is inserted to match the
normalization of the lattice model and the continuum theory.
Since C̃2 only depends on the phase φ, the Wigner transform
(36) becomes trivial, and amounts to substituting operators
with classical variables:

C̃2,W (k, t ) = a φk (t )φ−k (t ) − 1

2 ωlatt
k,1

. (40)

The TWA simulations proceed as follows. We generate the
initial conditions (φ(0),�(0) ) from the Gaussian distribution
(39), then calculate the time evolution from (37). The contri-
bution of a given trajectory to the correlator C̃2 is evaluated
from Eq. (40). Finally, we perform an averaging over the
initial conditions. Our findings are presented in the next sub-
section.
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FIG. 7. Time evolution of the correlator C̃2(k = 0, t ), calculated from TWA (solid line) and THA (dots), for a quenches to weak [(a),(b)],
intermediate [(c),(d)], and strong [(e),(f)] interactions, with two different values for the mass shift for each case. We used Ns = 400 in TWA,
and cutoff nmax = 21 (including the leading RG improvement) in THA. The volume parameter was set to l = mL = 10 for both methods.
The insets compare the THA potential (dotted black line), the TWA potential (dashed red line), and the energy density injected by the quench
(green solid line) computed as �E = (〈ψ0|H1|ψ0〉 − E (1)

0 )/L where E (1)
0 is the vacuum energy of H1.

C. Quenches in the φ4 theory: TWA vs THA

Here we present our numerical results for the mass and
interaction quenches of the φ4 theory. For each parame-
ter set (m0, λ0) → (m1, λ1), we obtain the TWA prediction
by averaging over NMC = 106 classical trajectories, resulting
in a sufficiently small residual Monte Carlo error scaling
as ∼1/

√
NMC. We compare these results to THA simula-

tions, which can be considered to reflect the exact quantum
time evolution due to their high precision, as discussed in
Sec. II.

Importantly, for pure mass quenches with λ ≡ 0, TWA
reproduces the exact time evolution, similarly to the SCA
discussed in Sec. III. As shown in Fig. 7(a), displaying the
C̃2 correlator for mode 0 for a small quench m0 = 0.8, λ0 =
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FIG. 8. Time-averaged correlator 〈C̃2(k = 0, t )〉t , calculated from TWA (blue circles) and THA (red squares), for (a) a smaller and (b) a
larger quench in the mass, with different interactions λ1, plotted as a function of the bare mass m2

bare (30). The TWA and THA results show a
good agreement for m2

bare > 0, but start to deviate when it becomes negative with increasing λ1, with TWA predicting a considerably higher
average. We used Ns = 400 in TWA, and cutoff nmax = 21 (including the leading RG improvement) in THA, setting the volume parameter to
l = mL = 10 for both methods.

0 → m1 = 1, λ1 = 1, we continue to find a good agreement
between TWA and THA slightly away from the free-boson
limit, therefore, TWA remains valid for quenches into the
interacting φ4 theory for small enough interaction strength λ.
However, for larger λ significant deviations develop between
TWA and THA, pointing to the failure of TWA. In contrast
to the more reliable THA, TWA predicts strongly damped
oscillations in C̃2, and the correlator for mode 0 relaxes to a
finite stationary value. The relaxation rate, as well as the sta-
tionary limit of C̃2, increases with λ, as illustrated in Figs. 7(c)
and 7(e).

We find a similar behavior for larger mass quenches m0 =
0.4, λ0 = 0 → m1 = 1, λ1, as shown in Figs. 7(b), 7(d), and
7(f), displaying C̃2 for mode 0 for postquench interaction
strengths λ1 = 1, 4, and 7, respectively. The TWA systemati-
cally overestimates the damping rate of oscillations, and this
effect becomes more pronounced as the interaction strength
λ1 increases.

The failure of TWA at large interactions λ1 can be at-
tributed to sensitivity of the time evolution to the mass
renormalization. Note that instead of working directly with
the renormalized mass m1, TWA is formulated in terms of the
bare mass m2

bare, given by Eq. (30). For large enough λ1, m2
bare

becomes negative, corresponding to a symmetry-broken clas-
sical steady state with φ2

j ≡ −6 m2
bare/λ1, as can be seen in the

insets of Fig. 7. The classical equations of motion, Eq. (37),
then predict a fast relaxation to a finite value for the correlator
C̃2. In contrast, the exact renormalized mass entering THA
remains positive, giving rise to a much weaker damping of
oscillations. We note that a similar inaccuracy in TWA results
has been demonstrated for quenches in single-particle systems
from positive to negative bare mass [13]. Aside from the cou-
pling λ1, the failure of the TWA also depends on the energy
density �E injected in the quench, which can be controlled
varying the prequench mass m0 while keeping the postquench
parameters m1 and λ1 determining the shapes of the THA

and TWA potentials fixed. As shown in the insets of Fig. 7,
the damping in the TWA and the deviation from THA is
exacerbated by smaller values of �E (corresponding to the
larger values of m0 on the left) since it makes the classical tra-
jectories contributing to the TWA more strongly constrained
in the neighborhood of the “fake” symmetry-breaking minima
of the THA potential. Note, however, that increasing the
size of the quench as measured by the energy density only
improves the time average in the TWA, while it leaves the
unphysical “premature” relaxation observed in the TWA un-
affected.

Further support for the responsibility of the negative bare
mass for the enhanced damping in TWA compared to THA
can be obtained by considering the time-averaged correlator

〈C̃2(k, t )〉t = 1

T

∫ T

0
dt C̃2(k, t ), (41)

where T is chosen as the time of the first three full oscillations.
We calculated 〈C̃2(k = 0)〉t both with TWA and THA for
quenches with fixed m0 and m1, varying λ1, with the results
shown in Fig. 8 as a function of m2

bare, determined from λ1

through Eq. (30). We find a good agreement between TWA
and THA as long as m2

bare stays positive. However, for m2
bare <

0 TWA deviates from THA, and predicts an average 〈C̃2(k =
0)〉t that increases rapidly with decreasing m2

bare. For the larger
quenches Fig. 8(b), the deviation is somewhat larger between
THA and TWA even in the region m2

bare � 0. However, in
this case TWA and THA even predict opposite tendencies
for 〈C̃2(k = 0)〉t when m2

bare is negative: In TWA, the average
correlator crosses over to a rapid increase with decreasing
m2

bare, whereas the THA result continues to decrease even
further. These results strongly support the argument that TWA
fails for strong interaction λ1 due to the negative bare mass
entering the classical equations of motion, and that the strong
damping in the TWA time evolution is an artifact originating
from the mass renormalization.
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V. CONCLUSIONS

In this paper we studied the dynamics following com-
posite quenches in the gap and interaction coupling in the
Z2-symmetric phase of the (1 + 1)D φ4 theory using three
different approximations: The truncated Hamiltonian ap-
proach (THA), the self-consistent approximation (SCA), and
the truncated Wigner approximation (TWA). The quenches
considered start from the ground state of a free massive boson,
which is then evolved by a Hamiltonian with a different mass
and nonzero self-interaction.

The THA used here was built upon the Hilbert space of
a free massive boson with a mass equal to the postquench
value. We used a large range of cutoff values together with
renormalization group improvement. However, the method
turned out to be so convergent that the results showed very
little dependence on the cutoff, and for the time window of the
simulation could be taken to reflect the exact quantum time
evolution. We also note that the system showed a very slow
relaxation, consistent with an observation made by Durnin
et al. [40] that the φ4 interaction belongs to the class of
perturbations with weak integrability breaking [40,41].

The self-consistent approximation (SCA) to the nonequi-
librium dynamics for the φ4 model was developed by
Sotiriadis and Cardy [9], and more recently applied to the
dynamics of sine-Gordon quantum field theory [10] and
tunnel-coupled one-dimensional Bose gases [42]. It consists
in a mean-field approximation to the interaction term, which
reduces it to a time-dependent effective mass which can be
self-consistently determined from a gap equation. It is ex-
pected to fail as the value of the self-interaction λ increases
since it neglects the connected part of the four-point correla-
tions which become more important. This is indeed what is
observed in our calculations, with the only slight surprise that
it happens for relatively small values of λ. The failure of the
SCA shows up both in temporal frequencies for which the de-
viation is smaller for modes with larger wave numbers (faster
spatial variation), and also in the amplitudes for which the
deviation does not show any obvious dependence on the wave
number k. These observations may be relevant in the light
of recent applications of the self-consistent approximation
[10,42] mentioned above, albeit these works treated models
different from the φ4 QFT considered here.

The truncated Wigner approach approximates out-of-
equilibrium dynamics by solving the classical equations of
motion with the quantum fluctuations incorporated in the ini-
tial state [12,13]. The method, formulated for the dynamics of
the lattice regularization of the theory, contains the bare mass
in its Hamiltonian which is renormalized by quantum fluctu-
ations to become the physical mass. Comparison to the THA
reveals that the TWA fails to reproduce the quantum time evo-
lution whenever the bare mass becomes negative, giving rise

to a symmetry-broken steady state in the classical equations
of motion. This effect can lead to a strong overestimation
of the relaxation rate. This limitation of TWA is expected
to be relevant for other models with a symmetry-broken
phase.

The TWA has also been applied to the sine-Gordon model
[43], and more recently [21] its results were cross-checked
against the truncated conformal space approach. It is interest-
ing that for the sine-Gordon theory the problem with TWA
observed here is entirely absent. The reason is that renormal-
ization in the sine-Gordon case works very differently from
the case of the φ4 model. The sine-Gordon Hamiltonian is
given by

HsG =
∫

dx

(
1

2
�2 + 1

2
(∂xφ)2 − λ : cos βφ :

)
(42)

and renormalization results from the normal ordering :: with
respect to the modes of the massless boson described by the
first two terms, which leads to a multiplicative renormaliza-
tion of the coupling λ [21], instead of the additive mass shift
(30) present in the φ4 model. As a result, the sign of the mass
terms is never changed and the TWA is stable against the
effects of renormalization.

In contrast to the two semiclassical approaches, the THA
performs well even in the strongly interacting regime, show-
ing little truncation effects and yielding practically exact
results for large enough values of the cutoff. Therefore, the
THA is a very powerful and highly accurate method for study-
ing time evolution following quantum quenches in interacting
field theories with relevant perturbations, especially the φ4

model.
We close by mentioning that since the self-consistent ap-

proximation is formulated as a semiclassical approximation
in quantum field theory [39], a natural improvement is taking
into account quantum effects using an approach such as the
2PI effective action [44,45], which is a promising direction
for future investigations, for which the THA developed here
provides an efficient source of validation.
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