
PHYSICAL REVIEW B 105, 014304 (2022)

Finite-temperature phonon dispersion and vibrational dynamics of BaTiO3 from first-principles
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A systematic investigation of the finite-temperature phonon dispersion, including its smearing and temperature
effects, is carried out using autocorrelation function method together with first-principles molecular dynamics
method along the [001] direction of BaTiO3, as an illustrating example of entropy-stabilized structures. A unique
anharmonicity in the cubic phase mainly derived from the interactions between titanium and oxygen atoms
is revealed, which provides extremely strong damping and smearing to longitudinal optical phonons but no
discernible effect on the shift of phonon energies. The anharmonicity gives rise to a nearly constant density
distribution in a cubic region around the equilibrium position of the relative motion of titanium atoms with respect
to oxygen atoms. These results may help to gain a further insight into complex interactions in entropy-stabilized
structures and provide an essential benchmark reference to the development of the promising machine-learning
based molecular dynamics methods for the investigation of phonon properties.
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I. INTRODUCTION

Vibrational motion of ions is one of the fundamental prop-
erties of solids [1,2]. It not only accounts for basic thermal
and structural properties of solids such as thermal expan-
sion [3], heat capacity [4], phase transitions [2], bonding
length, and angles [4], but also has a close relation to a
variety of extraordinary phenomena, e.g., thermoelectricity
[5], superconductivity [6,7], and ferroelectricity [8]. Theoret-
ical prediction of the vibrational motion (usually viewed as a
superposition of its normal modes—phonons) for its various
aspects, e.g., dispersion relation and smearing of phonons
[9], infrared spectra [10], Raman spectra [11], and scattering
properties with respect to neutron [12] or x ray [13], is thus of
persisting interests to the related fields.

Considering the ionic motion as a small vibrational per-
turbation around the equilibrium position of ions is usually
taken as the starting point of present phonon theory [2], which
affords a sophisticate description to ionic motions under a
broad range of conditions [9]. Practical implementations of
this idea, e.g., the frozen-phonon method [14,15] and the den-
sity functional perturbation theory (DFPT) method [16,17],
have been successfully applied to metals [18,19], semicon-
ductors [20,21], and nanostructures [22,23]. As long as the
equilibrium position of ions is located inside a local well of the
potential energy hypersurface, ionic motions may well be de-
scribed through harmonic or quasiharmonic approximations
of phonon [2,4].

However, at relatively high temperatures, the phonon en-
ergy may be significantly shifted by anharmonic effects, as
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has been revealed in simple one-dimensional lattice models
[24], high-pressure phases of hydrogen [25,26], and a variety
of minerals in the crust of the earth [12,27]. More subtly,
when the phase is stabilized with the help of entropy, the
equilibrium position can even be located at a local maximum
point of the potential hypersurface at zero temperature. This
is a typical situation of ferroelectric materials such as BaTiO3

[28–30] and SrTiO3 [31,32] in their cubic paraelectric phases.
In particular, there have been a long-lasting discussion on the
coexistence of displacive and order-disorder transition from
the cubic to the tetragonal phases of BaTiO3 [33–35], which
is still an open question attracting recent attention [36–39].
It thus calls for methods of a better description for the ionic
motion at finite temperature.

A possible option is to extract the information of phonon
excitation from the autocorrelation function of ionic velocities
[40,41]. This approach connects the Fourier transform of ve-
locity autocorrelation function to the spectrum of one-phonon
energy intensity [40,41], which naturally contains the infor-
mation of phonon dispersion relation and smearing. Together
with the first-principles molecular dynamics (FPMD) method
[42–44], it is thus able to provide a phonon spectrum that
can be directly compared with inelastic neutron scattering
experiments.

However, because of the great computational costs, the
application of the autocorrelation method in conjunction with
the FPMD method is still in its early stage. Most of the
dispersion curves were calculated using classical models of
ionic interaction [41,45–48] or simplified models of electronic
structures [49,50]. There have been very limited reports [51]
on the calculation of dispersion relation along a certain di-
rection using the autocorrelation method based on FPMD
simulations even for simple structures, e.g., the common
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face-centered cubic structures. For more complex structures,
only phonon properties at a few high symmetric points of the
Brillouin zone have been studied in this way [52].

In this work, we provide a systematic investigation of the
finite-temperature phonon dispersion, including its smearing
and temperature effects, along the [001] direction of BaTiO3

using the autocorrelation function of ionic velocities obtained
from FPMD simulations. The high-temperature cubic phase of
BaTiO3 has a perovskite structure, and it is a typical example
of entropy-stabilized complex structures. We find that BaTiO3

has a unique anharmonicity in the cubic phase. It provides
an extremely strong scattering mechanism to damp and smear
the longitudinal phonons along the [001] direction but no dis-
cernible effects on the shift of phonon energies, which is quite
unusual since damping of amplitude and shifting of phonon
energy generally occur together. The unique anharmonicity
mainly comes from the highly nonlinear interaction between
titanium (Ti) atoms and oxygen (O) atoms.

Density distribution of Ti atoms relative to O atoms
shows that there is an approximately cubic region around the
equilibrium position of the Ti-O relative motion in the high-
temperature cubic phase. Inside the cube, the average potential
hypersurface is quite flat. In addition, calculated acoustic
phonon dispersions are found to be in good agreement with
experimental measurements [53–55]. However, no transverse
optical soft modes are observed along the [001] direction in
our calculations, which supports the experimental findings of
Harada et al. [56] but differs from earlier measurements of
Shirane et al. [53].

These results may help us to gain further insight into
the unique phonon properties of entropy-stabilized materials
on one hand. On the other hand, they serve as an essential
benchmark reference for the evaluation of the validity and per-
formance of the machine-learning based molecular dynamics
method [57], which is to be employed for the investigation of
phonon properties in complex materials [58,59].

The paper is organized as follows. In Sec. II, the method-
ology and simulation details are presented. In Sec. III, we
show the results of calculated phonon spectra along the [001]
direction and density distributions of Ti with respect to barium
(Ba) and O atoms. Finally, a short concluding remark is given
in Sec. IV.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

A. Velocity autocorrelation method

An important application of autocorrelation function is to
identify repetitive signals [60]. When a physical event re-
peatedly occurs at a certain frequency or spatial interval with
background noises, its autocorrelation function, with respect
to time or space, can filter the noises out and highlight the
repeated signal. The Fourier transform of the autocorrelation
function then shows a corresponding sharp peak at that repeat-
ing frequency or wave number. In a thermal excited lattice
system, a phonon vibrational mode can be viewed as such a
repetitive physical event so that one can find its peak position
in the frequency-wave number plane using the autocorrelation
function method. The set of all peak positions, which defines
the relation between frequency and wave number for all the

phonon modes, then gives the phonon dispersion relation that
can be directly compared with experiments. In addition, the
width of the peaks at frequency, i.e., the smearing, is consid-
ered to be inversely proportional to the lifetime of the phonon
modes.

In lattice systems, one is free to choose physical quanti-
ties, e.g., velocity or displacement, to represent the repeated
physical event. Here, we follow the work of Thomas et al.
[41] using mass-weighted velocity in the calculation of auto-
correlation function, of which the Fourier transform is closely
related to the kinetic energy density distribution of the phonon
modes [41].

In a simulation system with N unit cells, the equilibrium
position of the bth atom at the nth unit cell is denoted as
r(n

b), determined as the average position of the atom during

the whole simulation time τ0. u(n
b; t ) is the displacement of

the atom from its equilibrium position at time t . The velocity
component of the atom in the αth direction is then written as
u̇α (n

b; t ). The Fourier transform of the weighted autocorrelation
function, which is also called the phonon density spectrum �,
can thus be expressed as
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where κ is the wave vector, and ω is the angular frequency.
The resolution of angular frequency is �ω = 2π

τ0
, and the

resolution of wave number along κ is �κ = ( 2π
a ) 1

N ′ , where
a is the length of a unit cell along that direction, and N ′ is the
number of repeated unit cells along the direction.

B. Simulation details

Phonon dispersions of BaTiO3 at several temperatures
across the ferroelectric transition temperature T0, 393 K as
determined by experiments [28], are calculated in our inves-
tigations, including the dispersions along the [001] direction
at 290 K, 473 K, and 758 K. BaTiO3 has different structures
across the transition temperature [28]. At 290 K, it is in the
ferroelectric phase with a tetragonal primitive cell. But at
473 K and 758 K, it is in the paraelectric phase and has a
cubic primitive cell.

The extended calculation cell is constructed as a square
prism by repeating the primitive cells. The direction of interest
[001] is set along the z axis of the Cartesian coordinates, as
displayed in Fig. 1. In order to obtain sufficient resolution
in the wave-number space while keeping the computational
cost within a affordable range, the number of primitive units
along the direction of interest is set to be 12 or more de-
pending on the length of wave vector from the center to the
boundary of the Brillouin zone. But the number of repetitive
units perpendicular to the calculated direction is kept to a min-
imum. Note that, because of the periodic boundary conditions
employed in the calculation, transverse dynamic correlation
effect [61] is significant and may lead to artificial results when
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FIG. 1. Schematic illustration of the primitive unit cell of
BaTiO3 used in FPMD simulations, where green balls represent Ba,
blue ball represents Ti, and red ones are O. The [001] direction in the
phonon dispersion calculation is along the z axis of the coordinate
system.

the number of repeated units perpendicular to the direction
of q is too small. So, in the calculation of dispersions along
the [001] direction, the number of repeated primitive cells in
the perpendicular direction is set to be 2 along each axis. It
turns out to be the minimum requirement to remove dynamic
correlation between adjacent primitive cells, as learned from
separate trial simulations.

Velocities and displacements of ions used in the velocity
autocorrelation method are obtained from the FPMD simu-
lations, carried out using the QUANTUM ESPRESSO package
[62]. The electron-ion interaction is represented by pseudopo-
tentials in the projector augmented-wave format [63] with a
plane-wave kinetic energy cutoff of 40 Ry. The local density
approximation (LDA) [64] functional is employed for the
exchange-correlation potential. The time step of simulations
is 1.0 fs at 290 K and 473 K and is 0.5 fs at 758 K. The
system is first equilibrated at target temperature in a NVT
ensemble for 5 ps. Then it is put into a NVE ensemble for at
least 60 ps to collect data of atomic velocities and displace-
ments. The long simulation time guarantees the resolution
of angular frequency no larger than 0.5 cm−1. All other pa-
rameters used in the FPMD simulations are summarized in
Table I.

For comparison purposes, we also calculate phonon dis-
persions for the cubic and tetragonal phases with the DFPT
method. The DFPT calculations are performed using the
PHonon module [16] in the QUANTUM ESPRESSO package.
In the calculation of the cubic phase, the lattice constant
is relaxed to 3.9463 Å while the crystal structure remains
the Pm3m symmetry. The lattice constants are relaxed to
a = 3.9905 Å and c = 4.1758 Å in the tetragonal phase. The
coupling between phonons and macroscopic electric fields in

the long-wavelength limit is included and crystal acoustic sum
rule is enforced.

III. RESULTS AND DISCUSSION

A. Phonon spectra crossing the phase transition

Figure 2 displays phonon spectra in the low-temperature
tetragonal phase and high-temperature cubic phase along the
[001] direction, where Fig. 2(a) shows phonon spectra of the
tetragonal phase at 290 K, and Figs. 2(b) and 2(c) show those
of the cubic phase at 473 K and 758 K, respectively. Cal-
culated phonon spectra are plotted as colored contour maps,
where the warm color represents high phonon density while
the cold color denotes low phonon density. Each phonon
branch is given a label according to its polarization and long
wavelength behavior in the figure, such as longitudinal (L)
acoustic (A), transverse (T) optical (O), LO, and TA phonons.
The stair steps observed at the bottom of each spectrum are
caused by relatively small size of the calculation cell, which
results in a finite resolution along q. As a comparison, the
dispersions obtained from DFPT calculations are plotted in
Fig. 2 as dashed lines, and results of inelastic neutron scatter-
ing experiments [53–55] are displayed as dots. In particular,
soft-mode measurements [53] are highlighted with red circles.

A significant feature displayed by the finite-temperature
phonon spectra is the strong damping of the LO3 branch
across the phase transition. Compared with the LO3 branch
in the tetragonal phase in Fig. 2(a), the branches in the cubic
phase in Figs. 2(b) and 2(c) appear a remarkable smearing,
and the phonon density is much lower than that in the tetrag-
onal phase, indicating a strong scattering. A consequence of
this feature is that the LO3 branch is difficult to measure in
experiments at high temperatures, as also noticed in previous
experiments [55]. Furthermore, the LO1 and LO2 branches
display similar trends of damping and smearing as well.
However, owing to the influence of nearby TO branches, the
features of LO1 and LO2 are not as significant as that of LO3.

There are several common features shared among these
three (LO1, LO2, and LO3) phonon branches. First of all,
they are all longitudinal optical phonon modes, which are
confirmed by decomposing ionic motions into phonon modes
(using the methods described in the Appendix) and direct
DFPT calculation of the modes at zero temperature. Secondly,
the damping and smearing of the three phonon branches
across the transition temperature take place at all transfer
momentums in the [001] direction, indicating that the scat-
tering induces global fluctuations over the entire Brillouin
zone. However, the energies of these phonons in the cubic

TABLE I. Parameters of BaTiO3 in the tetragonal and cubic phases used in the FPMD simulations.

Phase Tetragonal Cubic

T (K) 290 473 758
Latt. param. (Å) (a) 3.9925 (c) 4.0365 [65] 4.004 [66] 4.0258 [67]
Cell size 2 × 2 × 12 2 × 2 × 12 2 × 2 × 12
k mesh 2 × 2 × 1 2 × 2 × 1 2 × 2 × 1
Time step (fs) 1.0 1.0 0.5
Simulation time (ps) 84 65 80
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FIG. 2. Phonon spectra at (a) 290 K in the tetragonal phase, (b) 473 K and (c) 758 K in the cubic phase along the [001] direction of the
Brillouin zone. Colored maps are finite-temperature phonon spectra calculated using the autocorrelation method, and dashed lines are DFPT
results. Inelastic neutron scattering measurements are displayed as dots, where diamonds are taken from the experiment of Shirane et al. [53]
in 1967, circular dots come from the experiment of Bouillot et al. [54] in 1979, and pentagonal dots are the results of the experiment of
Jannot et al. [55] in 1984.

phase, determined by the peak positions, remain almost the
same as those in the low-temperature tetragonal phase. Global
fluctuations in phonon modes were considered to be closely
associated with order-disorder phase transitions, as pointed
out by Zhong et al. [68,69]. However, our calculation of dy-
namical local structures presented in the next subsection show
that such global fluctuations are resulted from strong anhar-
monic effects between ions, which are not necessary coming
from double-well interaction potentials. Therefore, the global
fluctuation feature may only be a necessary condition for the
order-disorder phase transition.

The low-frequency acoustic branches in Fig. 2, featured
with clear peaks of high phonon densities, are in good agree-
ment with the experimental results and DFPT calculations.
Such agreement effectively verifies the accuracy of phonon
spectrum calculations for BaTiO3 using the autocorrelation
function method, since the acoustic phonons (with the lowest
frequencies) take the longest FPMD trajectory to guarantee
the convergence of the results. Below the acoustic branches,
there are no clear peaks of soft modes observed in our cal-
culations. These findings are consistent with experimental
results of Harada et al. [56] but distinct from the soft-mode
measurements of Shirane et al. [53]. They are also in line
with the DFPT calculations, showing that all soft modes have
imaginary frequencies, i.e., they are strongly damped phonon
modes. To confirm that the imaginary-frequency modes ob-
tained in the DFPT calculation are not stabilized, i.e., the
frequency of the mode does not become real, by finite-
temperature anharmonic effects in the cubic phase, we project

the velocities at 758 K on the eigenvector of the imaginary
mode at the X point of the Brillouin zone following the
method of Zhang et al. [47]. It shows that the autocorrelation
function of the projected velocities does decay exponentially
without oscillation.

Anharmonic effects of energy shift at very high temper-
ature, e.g., 758 K, are observed in the transverse optical
TO1 branch. The anharmonic shift takes place at the right
half of the branch close to the X point of the Brillouin zone.
The largest shift is about 30 cm−1 at the X point compared
with the DFPT dispersion curve. However, it should be noted
that, because ions in the FPMD calculation are classical
with no nuclear quantum effects included, the temperature at
which significant anharmonic shift is observed in experiments
should be higher than that predicted by our calculations. For
example, at the experimental temperature 473 K, thermal
energy is 328 cm−1 or 0.0408 eV, which is comparable to
the phonon energy about 200 cm−1. Considering a phonon
having a Bose-Einstein distribution, this suggests that mea-
sured phonon dispersion of the TO1 branch [55], displayed
in Fig. 2(b) as dots, at this temperature be closer to the one
calculated using the DFPT method at zero temperature, as
dashed lines in Fig. 2(b), than that predicted using the velocity
autocorrelation method.

In the branches LO2 and TO2 near 470 cm−1, signifi-
cant differences between calculated spectra and experimental
measurements are observed. The phonon energy calculated
using the autocorrelation method is generally lower by
about 50 cm−1 than experimental results. In addition, the
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FIG. 3. Instantaneous polarization of BaTiO3 in the ferroelectric
phase, 290 K, and in the paraelectric phase, 758 K.

DFPT calculation shows the same underestimation as the
autocorrelation function method does, suggesting that the
underestimation is not induced by anharmonic effects at fi-
nite temperature. This underestimation turns out to be quite
general in the density functional theory based calculations
[70]. For example, DFPT calculations using Perdew-Burke-
Ernzerhof exchange-correlation functional [71] and strongly
constrained appropriately normed functional (SCAN) [72]
display similar underestimations, as reported in the system-
atic work of Zhang et al. [70]. So, the differences may
possibly come from the inaccuracy of exchange-correlation
functionals, which has not been addressed by recent devel-
opments of exchange-correlation functional models, e.g., the
SCAN functional. It will thus be interesting for future ex-
periments to revisit the measurements of phonon modes near
470 cm−1, which should help to gain further insight into
the subtle feature of exchange-correlation interaction and the
finite-temperature phonon property in systems with complex
interaction.

B. Dynamical local structures

We first show that the transition from the high-temperature
cubic phase to the low-temperature tetragonal phase is a fer-
roelectric phase transition by computing the polarization of
BaTiO3 at 290 K and 758 K, respectively, along the FPMD
trajectories. We choose 20 configurations every 0.5 ps along
the trajectories to calculate the dipole moment using the
maximally localized Wannier function method [73,74]. The
polarization of each configuration is displayed in Fig. 3. At
290 K, the polarization fluctuates between 20–30 μC/cm2

with time, implying a ferroelectric phase of BaTiO3. The
average of polarization at 290 K is 23.8 μC/cm2, consistent
with the experimental value 26 μC/cm2 [75]. When the tem-
perature is raised to 758 K, the polarization vibrates near zero,
which indicates a typical feature of paraelectric phase.

To further reveal the origin of the damping and smearing in
the longitudinal optical branches, atomic density distributions
of Ti projected along the [001] direction are plotted in Fig. 4
with respect to the position of Ba or O1 atoms. The distribu-
tions are extracted from the same FPMD trajectories used to
calculate the phonon spectra in Fig. 2. In previous investiga-

FIG. 4. Density distribution of Ti with respect to Ba and O1
atoms along the [001] direction. (a), (b), and (c) are distributions of
Ti relative to Ba. (d), (e), and (f) are distributions of Ti relative to O1.

tions, they were often used to illustrate the anharmonicity of
the interaction [30,36,76,77]. In each time step, we compute
the distance of Ti relative to Ba and O1 along the [001]
direction and present the statistics of the distance in Fig. 4.

Figures 4(a)–4(c) and 4(d)–4(f) are the density distribu-
tions of Ti with respect to the position of Ba and O1 atoms,
respectively, at different temperatures. The origin point of
the abscissa is the center of two nearest neighbor Ba and
O1 atoms in the [001] direction. For the distribution of Ti rela-
tive to Ba, all figures show a single-peaked distribution. In the
low-temperature ferroelectric phase, as displayed in Fig. 4(a),
Ti atoms tend to stay at one side and the peak deviates from
the center by about 0.05 Å. However, as shown in Figs. 4(b)
and 4(c) the distribution becomes symmetric with respect to
the center when the temperature rises above the transition
point. The distributions of Ti relative to O1 atoms are quite
similar to those relative to Ba atoms, except that the tops of
the peaks are flatter, as shown in Figs. 4(d)–4(f). Compared
with the results of perturbative calculation [30] and molecular
dynamics simulations based on model interactions [77], which
yielded a double-peak distribution of Ti with respect to O
atoms in the cubic phase, the FPMD results in Figs. 4(d)–4(f)
show that the anharmonicity in the interaction between Ti and
O atoms may be much smaller than previously estimated.

The anharmonicity in the interaction is illustrated by
comparing the density distribution with a standard Gaussian
distribution. Note that, when interactions between ions are all
harmonic, the density distribution of an ion around its equi-
librium position can be proved to be a Gaussian distribution
[78]. Dotted lines in Fig. 4 represent the best Gaussian fit to
the calculated Ti distribution. It shows that at all temperatures,
the distributions of Ti relative to Ba almost coincide with
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FIG. 5. Density distribution profiles of Ti in selected planes. (a), (b), and (c) are the distribution profile of Ti relative to O at 290 K,
473 K, and 758 K, respectively. (d), (e), and (f) are the Ti distribution relative to Ba at 290 K, 473 K, and 758 K, respectively. The first row is
distributions in the x − y plane, and the second row is those in the x − z plane. Note that at 290 K, the x − y plane for Ti-Ba distribution is at
z = 0.05 Å. and the x − y plane for Ti-O distribution is at z = 0.12 Å.

Gaussian distributions, suggesting that the anharmonicity in
the Ti-Ba interaction is quite small and may be neglected in fu-
ture Ti-Ba interaction models. In contrast, the distributions of
Ti relative to O1 atoms at 473 K and 758 K display observable
deviations from the Gaussian distributions, indicating non-
negligible anharmonic interactions between Ti and O atoms
in the cubic phase.

Details of the anharmonicity in the Ti-O interaction are
further revealed in three-dimensional density distributions of
Ti with respect to O atoms. As defined in Fig. 1, the [001]
direction of BaTiO3 is set along the z axis, and the perpendicu-
lar plane is the x − y plane. Figures 5(a)–5(c) show the density
distributions of Ti relative to the O octahedron in the x − y and
x − z planes at selected temperatures, where the origin point
of the coordinates system is the center of the octahedron. As a
comparison, the density distributions of Ti with respect to the
Ba cube in the same planes are displayed in Figs. 5(d)–5(f),
where the origin point is placed at the center of the Ba cube.

In the BaTiO3 cubic phase at 758 K and 473 K, as shown in
Figs. 4(a) and 4(b), the distributions of Ti relative to the center
of O octahedron in the x − y and y − z planes approximately
have a square shape, while the distributions of Ti with respect
to Ba cubic center are isotropic circular, as shown in Figs. 4(d)
and 4(e). In addition, there is a squarelike region (which is
the intersection of an approximately cubic region in three
dimensions) near the center, inside which the distributions of
Ti with respect to O are quite flat. This is very similar to the
experimental result of Levin et al. [79].

In the cubic phase, the distributions of Ti with respect to Ba
are well described by two-dimensional Gaussian distributions
with negligible deviations, as revealed by a two-dimensional
Gaussian fitting to the distributions, while the deviation in
the distributions of Ti with respect to O from Gaussian dis-
tributions is easy to see from the squarelike shape and their
flat distributions near the center. In the tetragonal phase, the
distribution of Ti relative to O in the x − z plane shows that
Ti deviates from the center to one side in the [001] direction,

and its motion is constrained in a narrow long region near
z = 0.12 Å, as shown in Fig. 5(c). However, the distribution
of Ti relative to O in the x − y plane at z = 0.12 Å shows that
the square shape is still retained in the plane.

Flat-top distribution was interpreted as the superposition
of a Gaussian distribution at the center and a multipeaked
distribution by Qi et al. [36], and considered as a feature
of the coexistence of displacive and order-disorder phase
transition. However, a more straightforward interpretation
is that it is a multidimensional super-Gaussian distribution
[80]. In one dimension, the super-Gaussian function has
a form of exp[−(|r|/a)n], where r is the position, a is a
scaling constant, and n is a number greater than 2. The
flat-top distributions in Figs. 5(a) and 5(b) are thus well
represented by a two-dimensional super-Gaussian function
exp[−(|x1|/a)n] exp[−(|x2|/a)n], with x1 and x2 two dif-
ferent coordinate components. In general, a distribution of
an equilibrium system in coordinate space is proportional
to exp[−U (r)/kBT ] following the Boltzmann distribution,
where U (r) is the effective potential at a given point r, kB

is the Boltzmann constant, and T is the temperature. So, a
super-Gaussian distribution suggests that the harmonic term in
the potential is vanishing or very small. In addition, Fig. 5 also
shows that the flat-top feature is essentially not affected by
the temperature, implying that the vanishing of the harmonic
interaction between Ti and O atoms is an intrinsic property of
the cubic phase. Since the vanishing of harmonic interactions
(not only near the transition point but all through the cubic
phase) is quite unusual in a second-order phase transition,
these findings may suggest an alternative mechanism in ad-
dition to the displacive and order-disorder types.

IV. SUMMARY

In summary, we have applied the full version of autocorre-
lation function method, i.e., the one together with the FPMD
methods, to compute phonon dispersion of BaTiO3 along
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the [001] direction, as a typical example to illustrate sub-
tle finite-temperature effects of phonons in entropy-stabilized
structures. We show that the anharmonicity which leads to
the strong smearing and damping of the longitudinal optical
phonons mainly originates from the interaction between Ti
and O atoms, as illustrated by the nearly constant density
distribution of Ti relative to O atoms in a cubic region around
the equilibrium position.

Our results suggest a further examination in future ex-
periments for the theoretical results of the strong damping
and smearing in the longitudinal optical modes and the
temperature-dependent shift of the transverse optical modes in
the TO1 branch. This may help to provide an improved theo-
retical model of ionic motion for entropy-stabilized structures.
In addition, the subtle and rich phonon features caused by
strong anharmonicity afford an important and critical bench-
mark reference for the upcoming machine-learning based
molecular dynamics method used for the investigation of
phonon properties.
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APPENDIX: VIBRATIONAL MODES DECOMPOSITION

Vibrational motion can be analyzed using two decomposi-
tion methods. When the polarization vector of a given mode is
known a priori or calculated using the DFPT method, one can
project atomic displacements or velocities on the polarization
vector following the method of Zhang et al. [47], which gives
the information of energy and lifetime of the given mode. In
parallel, the vibrational pattern can also be extracted using
a filtering technique without the knowledge of polarization
vectors.

The process to get atomic motions in a small frequency
interval centered at ω0 is as follows. Fourier transform of
the time sequence of displacements is first conducted for
each atom. Following that, the selected frequency is extracted
through an ideal-(square)band-pass filter with a small fre-
quency window, e.g., 1 THz as we used, and then the selected
frequency sequence is transformed back to the time zone.
Finally, add the obtained displacement to the equilibrium po-
sition of each atom to get the time sequence of trajectories,
which can be displayed or used for further analyses.

It is relatively simple to get atomic motions associated
to a given wave vector q. First, the atomic motion in the
supercell is projected into the small primitive cell following
ū(

1
b
; t ) = 1

N

∑
n u(

n
b
; t ) exp[−iq · r(

n
0)]. Then, it is recovered as ũ(

n
b
; t ) =

ū(
1
b
; t ) exp[iq · r(

n
0)]. Combining the filters in the frequency and

wave vector spaces, the motion of given modes can be
obtained.
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