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We present a hybrid quantum-classical simulation of charge-polaron transport in conjugated polymers. The
charge, which couples to the angular rotations of the monomers, is modeled via the time-dependent Schrödinger
equation, while the monomers are treated classically via the Ehrenfest equations of motion. In addition, the
system is thermalized by assuming that the monomers are subject to Brownian fluctuations modeled by the
Langevin equation. Charge coupling to the monomer rotations localizes the particle into a Landau polaron,
while the thermal fluctuations of the monomers causes polaron dynamics. The emergent low-energy scale of the
model is the polaron reorganization energy, Er , and thus Tr = Er/kB is a convenient scale for the low-temperature
dynamics. We investigate two types of dynamics; both relevant for temperatures T < Tr . In the lower temperature
regime the system remains in the same quasidiabatic state, corresponding to activationless polaron diffusion as
the polaron crawls stochastically along the chain. As the temperature is raised, however, there is a cross-over
to an additional activated transfer process which corresponds to hopping between diabatic states. We show that
these processes exhibit Landau-Zener type dynamics. We note that as our model is general, it equally applies to
exciton-polaron (i.e., energy) transport in conjugated polymers, and to charge and exciton polaron transport in
quasi one-dimensional molecular stacks.

DOI: 10.1103/PhysRevB.105.014303

I. INTRODUCTION

Owing to the potential that π -conjugated polymer systems
present for cheap and easily producible photovoltaic and light
emitting devices, charge and energy (i.e., Frenkel exciton)
transport in these systems has been intensely investigated
for over 30 years [1]. Understanding intrachain charge and
exciton dynamics is complicated, because these particles are
self-trapped by both fast (i.e., vibrational) and slow (i.e., tor-
sional) degrees of freedom. The slow degrees of freedom also
self-localize the particle into a Landau polaron. In addition,
thermal fluctuations of the torsional degrees of freedom re-
sults in dynamical off-diagonal disorder which both Anderson
localizes the particle and causes polaron dynamics. The inter-
play between localization and thermally induced dynamics is
the subject of this work.

Prins et al. [2,3] studied charge transport in polymers with
static torsional disorder via the time-dependent Schrödinger
equation, showing that disorder causes initially ballistic trans-
port to become diffusive. Hultell and Strafström [4] also used
the time-dependent Schrödinger equation to model charge
mobility in polymer chains with static disorder, but in addition
they introduced polaronic effects via bond [4] and torsional
relaxation [5].

The role of thermally driven torsional fluctuations on
charge transport was studied by Albu and Yaron [6]. They
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considered the adiabatic regime (by assuming that the charge
remains in its ground state) and found polaronic, activation-
less, diffusive behavior. Fornari and Troisi [7] used the Fermi
Golden Rule formalism to investigate the role of both static
and dynamic torsional fluctuations on charge transport, while
also including polaronic effects via bond relaxation. This ap-
proach necessarily models nonadiabatic processes, with the
authors predicting both short-range and longer-range hops via
more delocalized states.

Poole et al. [8] made a link between Ref. [6] and Ref. [7]
by extending the work of Ref. [6] to include nonadiabatic
processes. The charge dynamics were simulated on the as-
sumption that at time (t + δt ) the new target state is the
eigenstate of Ĥ (t + δt ) with the largest overlap with the previ-
ous target state at time t . However, owing to trivial crossings,
this assumption was shown by Lee and Willard [9] to be
potentially problematic for nonadiabatic transport.

Tozer and Barford [10] used the approach of Poole
et al. [8] to model intrachain exciton (i.e., energy) trans-
port in poly(para-phenylene) chains. Again, activationless
exciton-polaron diffusion was predicted at low temperatures
and activated exciton-polaron hopping at higher tempera-
tures. A more sophisticated simulation of exciton motion
in poly(p-phenylene vinylene) and oligothiophenes chains
was performed by Burghardt and co-workers [11–14] where
high-frequency C-C bond stretches were also included, the
solvent was modeled by a set of harmonic oscillators with
an Ohmic spectral density, and the system was evolved
via the multilayer-multiconfiguration time-dependent Hartree
(MCTDH) method. Their results, however, are in quantitative
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agreement with those of Tozer and Barford in the low-
temperature limit, namely activationless exciton diffusion
with exciton diffusion coefficients close to experimental val-
ues. They did not observe thermally activated Marcus-like
processes.

In this work we simulate both charge and energy transport
in one-dimensional (1D) systems using the same generalized
model. This model describes particle (i.e., charge or Frenkel
exciton) delocalization along a 1D chain of lattice sites, where
a site can represent a monomer in a π -conjugated polymer or
a molecule in a 1D molecular stack. The particle couples to
local harmonic oscillators via a change in the bond transfer
integral caused by the relative displacement of the oscillators
across the bond. The harmonic oscillators can model linear
site displacements, in which case their relative displacement
corresponds to a change of bond length or intermolecular
spacing. Alternatively, as will be the example in this paper, the
oscillators can model angular rotations of monomers, in which
case their relative displacement corresponds to a change of the
dihedral (or torsional) angle. Crucially, unlike earlier work
[8,10], the full charge and exciton dynamics are determined
by the time-dependent Schrödinger equation, thus removing
ambiguities at energy-level crossings [9]. The dynamics of the
classical oscillators, however, are described by the Ehrenfest
equations of motion. We model system-bath interactions by
coupling the harmonic oscillators to the Brownian fluctuations
of the bath, specifically via the Langevin equation.

The decision to model the harmonic oscillators and the
bath classically, via the Ehrenfest and Langevin equations,
respectively, is an expediency motivated by the necessity of
simulating large systems (over 50 monomer sites), for long
times (over 50 ps), and to perform extensive ensemble averag-
ing. However, the limitations of the Ehrenfest approximation
are well-documented [15] and we discuss these in relation to
our results in Section IV.

This problem exhibits rich physical behavior, which we
discuss qualitatively here before quantifying these remarks
later in the paper. As stated above, from now on we assume
that the charge or exciton couples to torsional fluctuations via
angular rotations of the monomers in a conjugated polymer.
In the absence of system-bath interactions, i.e., at zero-
temperature, a classical treatment of the harmonic oscillators
implies that their coupling to the particle self-traps the particle
into a Landau polaron. That is, the particle digs a hole for itself
via local, static displacements of the oscillators and becomes
self-localized [16]. This only true in the adiabatic limit of slow
oscillators [17]. Here, we consider the large-polaron limit
where the spatial extent of the polaron extends over many
monomers.

As the temperature is raised, small thermally induced tor-
sional fluctuations cause the polaron to crawl diffusively along
the chain, remaining in the same quasidiabatic state with no
diabatic energy level crossings. In this activationless limit
the diffusion coefficient is proportional to temperature. As
the temperature is raised still further thermally activated pro-
cesses become more important. In particular, larger torsional
fluctuations cause the energy of the localized particle to match
those of neighboring localized states leading to diabatic en-
ergy level crossings and Landau-Zener type dynamics. This
manifests itself as Marcus-type hopping between quasidia-

batic states. Such behavior has been rigorously investigated
via instanton theory using model two-level systems [18,19].

At still higher temperatures the polaron becomes unbound
and the thermal fluctuations in angular displacements cause
temporally and spatially varying off-diagonal disorder that lo-
calizes the particle into Anderson polarons, i.e., single particle
states localized by disorder [20–22]. The transport in this limit
is quasi-band-like [23,24].

We simulate the first two of these processes by the general-
ized model introduced in Section II A with the methodologies
described in Sections II C and II D. We present our results in
Section III and conclude in Section IV. In this work we focus
on charge-polaron dynamics, although our results equally well
apply to excitons.

II. MODEL AND METHODOLOGY

A. Model Hamiltonian

As a concrete example of polaron transport in quasi-1D
systems, we consider charge motion in a conjugated polymer,
i.e., poly(para-phenylene) (PPP), where the phenyl rings un-
dergo simple harmonic motion. We assume that the oscillators
are independent and execute small angular displacements,
�φ, from equilibrium. Then, as shown in the Appendix, by in-
troducing dimensionless variables for the conjugate variables
φ and the monomer angular momentum, L, i.e.,

φ̃ = (K/h̄ω)1/2φ (1)

and

L̃ = (ω/h̄K )1/2L, (2)

the coarse-grained Hamiltonian for the system is

Ĥ =
N∑

n=1

[
J0

n − h̄ωAn(�φ̃n+1 − �φ̃n)
]
T̂n,n+1

+ h̄ω

2

N∑
n=1

(
(�φ̃n)2 + L̃2

n

)
. (3)

The site index, n, labels a monomer, N is the number of
monomers, ω = (K/I )1/2 is the rotational angular frequency,
K is the elastic force constant and I is the moment of inertia
of each monomer.

T̂n,n+1 = (â†
n+1ân + â†

nân+1) (4)

is the bond-order operator, where â†
n (ân) creates (destroys) a

charge (or Frenkel exciton) on monomer n.
J0

n is the transfer integral between monomers and An is the
dimensionless parameter that describes the coupling between
the charge (or exciton) and the harmonic oscillators. Evi-
dently, the angular fluctuations of the monomers, �φn, cause
torsional fluctuations (or bond rotations), �θn = (�φn+1 −
�φn), which couple to the bond-order operator. The last two
terms in Eq. (3) are the monomer elastic and kinetic energies.
Equation (3) is derived for charges in the Appendix and in
Ref. [25] for Frenkel excitons. The mapping from the PPP
atomic structure to a coarse-grained linear chain of sites is
illustrated in Fig. 1.
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θn−1

θn−1

θn

θn

n − 1 n n + 1

FIG. 1. The coarse-graining of PPP to a linear chain of sites. The
pz atomic amplitudes on the phenyl ring are 1/

√
3 for filled circles

and −1/
√

12 for unfilled circles. θn = (φn+1 − φn) is the torsional
angle of the nth bond, where φn is the rotational angle of the nth ring
with respect to the molecular axis.

The charge transfer integral is

J0
n = β0 cos θ0

n /3, (5)

where β0 is the Hückel resonance integral for neighboring
parallel pz orbitals, θ0

n is the equilibrium torsional angle of
bond n in the neutral state (or ground state for excitons) and

An = β0 sin θ0
n

3(h̄ωK )1/2
. (6)

Corresponding expressions for Frenkel excitons are given in
Section IV.

B. Landau polarons

The dimensionless torque on each monomer is

	n = −∂〈Ĥ/h̄ω〉
∂�φ̃n

= −�φ̃n + λn, (7)

where

λn = An−1〈T̂n−1,n〉 − An〈T̂n,n+1〉 (8)

is the torque exerted by the charge. Setting 	n = 0 gives the
equilibrium angular displacements in the charged state (or the
excited state for excitons) as

�φ̃eq
n = λn. (9)

For a polymer chain with staggered monomer displace-
ments in the neutral state (or ground state for excitons), i.e.,
θn+1 = −θn, the equilibrium displacement in the continuum
limit satisfies [25]

�φ̃eq
n ∼ ρn × (−1)n, (10)

where ρn, the charge (exciton) density, is

ρn =
(κ

2

)
sech2κ (n − n0) (11)

and

κ = A2h̄ω/4J. (12)

The large-polaron limit is κ−1 � 1, implying a sufficiently
small electron-phonon coupling. Thus, the particle is self-
trapped and self-localized as a Landau polaron with a
reorganization energy in the continuum limit [26–28],

Er = J

12

(
h̄ω

J

)2(A2

2

)2

. (13)

The polaron reorganization energy is the emergent low-energy
scale from Eq. (3), so Tr = Er/kB serves as a convenient
temperature scale for the low temperature dynamics.

We note that the classical, Landau polaron is rigorously
valid in the limit that h̄ω/J → 0, as then the oscillators re-
spond infinitesimally slowly to the charge dynamics so that
the polaron effective mass diverges [17]. The center of the
polaron, n0, is determined by disorder and as we see later, if
the disorder is dynamical n0 varies with time implying polaron
dynamics.

C. Quantum dynamics

The time-dependent Schrödinger equation is solved for the
charge (or exciton) via

|�(t + δt )〉 = exp(−iĤδt/h̄)|�(t )〉 (14)

using the TNT Library [29]. The TNT Library is a computer
package designed to simulate 1D quantum systems using the
matrix product state formalism. Dynamics are described by
the time-evolving block decimation (TEBD) scheme [30,31],
which is coupled with a classical evolution of the angular
displacements according to the Ehrenfest equations of motion.
Periodic boundary conditions were implemented in the TNT
library in this work, which is described in the Supplemental
Material [32] (see, also, Refs. [33–35], therein).

D. Ehrenfest and Langevin dynamics

The classical angular displacements, {�φ̃}, are subject to
the Ehrenfest equations of motion,

d�φ̃n

dt̃
= L̃n (15)

and

dL̃n

dt̃
= 	n − γ̃ L̃n + Rn(t ), (16)

where t̃ = ωt and γ̃ = γ /ω is a dimensionless friction coeffi-
cient.

To model the role of temperature we supplement the sys-
tematic torque on each monomer, 	n, with a dimensionless
random torque, Rn(t ). For a polymer in solution, the origin
of this torque is the Brownian fluctuations of the solvent
molecules. By the fluctuation-dissipation theorem, the random
torques satisfy

〈Rn(0)Rm(t )〉 = 2γ̃ kBT δmnδ(t̃ )/h̄ω. (17)

In addition to being both spatially and temporally uncorre-
lated, these torques are also assumed to be independent of the
angular velocity of the phenylene ring and independent of the
systematic torque, 	n. The stochastic torques then possess a
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TABLE I. Parameters [25,37] used in the simulations of charge-
polaron dynamics in PPP.

Roton energy h̄ω 0.02 eV
Charge transfer integral J −0.689 eV
Charge-roton coupling constant A 1.87
Ground state torsional angle φ0 ±10◦

Dissipation coefficient γ 1012 s−1

Total simulation time 300 τ

Rotational period τ = 2π/ω 0.2 ps
Charge-polaron reorganization temperature Tr = Er/kB ∼400 K
Quantum dynamics time step 1.6 × 10−5 τ

Classical dynamics time step 1.6 × 10−3 τ

Gaussian distribution with a standard deviation of

σR = (2γ̃ kBT/h̄ω�t̃ )
1
2 . (18)

In the absence of polaronic coupling, the Brownian fluctua-
tions cause a random distribution of angular displacements,
whose variance satisfies the principle of equipartition, i.e.,

〈�φ̃2〉 = kBT

h̄ω
. (19)

As may be seen from Eq. (3), these fluctuations cause off-
diagonal disorder in the particle hopping and for temperatures
T > Tr = Er/kB induce Anderson localization of the particle
wave function.

We implement the Langevin dynamics using the algorithm
described by Grønbech-Jensen and Farago [36], a position-
Verlet integration scheme.

E. Simulation parameters

The parameters used in the simulations of charge-polaron
dynamics in PPP are listed in Table I. The simulations were
performed on chains of N = 50 sites (i.e., 50 coarse-grained
monomers) with periodic boundary conditions and ensem-
ble averaging over at least 25 different trajectories at each
temperature. The dynamics in each instance are initiated in
a localized polaron state, obtained via a Hellmann-Feynman
(HF) minimization routine. This solver iteratively finds the
equilibrium angular displacements via the torque expression
in Eq. (7) using the equilibrium condition of 	

eq
n = 0. The

shape of this localized polaron state is shown in the t = 0
snapshot in Fig. 2 and satisifes Eq. (11). The polaron reor-
ganization energy is obtained numerically via the HF iterator.
The simulation time for each trajectory is ∼7 ± 3 days.
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FIG. 2. Polaron density as a function of time at T = 0.024 Tr . τ is the monomer rotational period. The center of mass is shown as the red
vertical line.
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0 50 100 150 200 250 300

t/τ

8

10

12

14
P

N
T = 0.012 Tr

T = 0.024 Tr

T = 0.036 Tr

FIG. 3. Participation number (i.e., localization length) of the
evolving state, |�(t )〉, as a function of time in the lowest temperature
regime, T 	 Tr . The curves are smoothed for better legibility.

III. RESULTS

A. Low temperature polaronic crawling

The dynamics in the low temperature regime, defined as
T 	 Tr , follows a quasidiabatic evolution in the lowest en-
ergy diabatic state. This leads to a crawling displacement
of the polaron along the polymer chain, and therefore to a
net migration of charge (or energy). The displacement of the
polaron is determined by tracking the center of mass, i.e.,
n̄(t ) = ∑

n nρn(t ), over time. Snapshots of the evolution of
the polaron density as a function of time, illustrated in Fig. 2,
show that at low temperatures the polaron moves along the full
length of the chain and freely across the periodic boundaries,
retaining its shape at all times. The localization length, defined
by the participation number, PN, as

PN = 1∑
n |�n|4

, (20)

where �n denotes the evolving wave-function amplitude on
site n, remains small throughout the simulations, as shown in
Fig. 3. The diabatic nature of the evolution is also demon-
strated by the absence of energy crossovers between the
lowest instantaneous eigenstates of the Hamiltonian (shown in

0 50 100 150 200 250 300

t/τ

1.30

1.35

1.40

1.45

1.50

E
i/

J i = 1
i = 2
i = 3

FIG. 4. Energies of the lowest instantaneous eigenstates as a
function of time at T = 0.024 Tr .
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0.8

1.0

ψ
i|Ψ

(t
)

2

i = 1
i = 2
i = 3

FIG. 5. Probabilities that the evolving state, |�(t )〉, occupies an
instantaneous adiabatic state, |ψi〉, as a function of time at T =
0.024 Tr .

Fig. 4), and by considering the overlap of the evolving wave
function with these adiabatic eigenstates, shown in Fig. 5.

The displacement of the center of mass positions leads
to a net diffusion of the polaron. This is visualised via the
mean-squared displacement plots in Fig. 6. Keeping track of
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〈X
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T = 0.012 Tr

T = 0.024 Tr

T = 0.036 Tr
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T = 0.048 Tr

T = 0.060 Tr

T = 0.073 Tr

T = 0.085 Tr
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T = 0.109 Tr

T = 0.121 Tr

(a)

(b)

FIG. 6. Polaron mean-square-displacement as a function of time
in (a) the lowest temperature regime, T 	 Tr , and (b) the interme-
diate temperature regime, T < Tr . In both cases the dashed lines are
linear fits to the data (in solid) taken after an equilibration time of
100τ .
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0.00 0.01 0.02 0.03
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τ
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FIG. 7. Diffusion constant, D, as a function of temperature in
the lowest temperature regime, T 	 Tr , indicating an activationless
process.

the center of mass positions across periodic boundaries is
achieved by centering the chain indices around the center of
mass position at each time step, and calculating displacements
relative to this position. As displacements between consecu-
tive discrete time steps are expected to be small, this approach
avoids artificial and unphysically large jumps that would re-
sult from the center of mass crossing the periodic boundary
in real space. The mean-squared displacement, 〈X 2(t )〉, is
calculated as

〈X 2(t )〉 =
Nt =t/�t∑

k=1

{n̄[k�t] − n̄[(k − 1)�t]}2, (21)

where �t is chosen so that small fluctuations around the same
physical position on the chain are averaged out. �t ∼ τ was
found to give good results. Across all temperature values it is
diffusive behavior, i.e., a linear change in the mean-squared
displacement over time is achieved after an initial equilibra-
tion period of ∼100τ .

0 50 100 150 200 250 300

t/τ

5
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15

20

25

30

35

P
N

T = 0.048 Tr

T = 0.060 Tr

T = 0.073 Tr

FIG. 8. Participation number (i.e., localization length) of the
evolving state, |�(t )〉, as a function of time at different temperatures.
Note the increase in PN when T = 0.073 Tr at t ∼ 170τ correspond-
ing to the Landau-Zener transition shown in Fig. 11. The curves are
smoothed for better legibility.
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FIG. 9. Energies of the lowest instantaneous eigenstates as a
function of time at T = 0.073 Tr . Note the avoided crossing at t ∼
170τ corresponding to the Landau-Zener transition shown in Fig. 11.

The gradient of the diffusion plots, taken after the initial
equilibration, gives an estimate of the diffusion constant, D, as

D = 1

2d
lim

t→∞
d〈X 2(t )〉

dt
, (22)

where d is the dimensionality of the system, so d = 1 in the
case of quasi-1D systems such as the model under investiga-
tion. The diffusion constant is expected to be proportional to
the temperature for activationless processes, and this is what
is observed in the low temperature regime, as shown in Fig. 7.
These results are in agreement with previous work [6,8,10,11].

B. Intermediate temperature polaronic hopping

As the temperature is increased the larger torsional fluctu-
ations lead to a characteristically different type of dynamics.
The evolving state, |�(t )〉, is no longer localized at all times
(as shown by the PN in Fig. 8), the energies of the in-
stantaneous adiabatic eigenstates exhibit (avoided) crossovers
(as shown in Fig. 9), and the probability of occupying
higher-lying eigenstates increases considerably at various
times (as shown in Fig. 10).
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2
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FIG. 10. Probabilities that the evolving state, |�〉, occupies an
instantaneous adiabatic state, |ψi〉, as a function of time at T =
0.073 Tr . Note that the probabilities of occupying |ψ1〉 and |ψ2〉
become almost equal at t ∼ 170τ corresponding to the Landau-Zener
transition shown in Fig. 11.
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FIG. 11. Evolution of the evolving state represented by |�〉 (black) and the two lowest adiabatic states (|ψ1〉 (blue) and |ψ2〉 (green))
during a Landau-Zener transition when t ∼ 170τ at T = 0.073 Tr . The curves represent the probability densities. Note that |�n|2 = ρn ∼
�φ̃eq

n × (−1)n. The occupation probabilities of |ψ1〉 and |ψ2〉 are shown in the legends, showing that during the transition the system remains
predominately in the lower adiabatic state. As described in the text, the transition occurs between panels (b) and (c).

At the points of energetic (avoided) crossings, Landau-
Zener transitions [38–42] are observed. An example of this
is shown in a series of snapshots in Fig. 11 taken at t ∼ 170τ

(see also Figs. 8, 9, and 10). Fig. 11 shows the probability
densities of the evolving state, |�(t )〉, and the two lowest in-
stantaneous adiabatic eigenstates, |ψ1〉 and |ψ2〉. Figure 11(a)
shows that |�(t )〉 is a linear combination of |ψ1〉 and |ψ2〉,
but predominately composed of |ψ1〉. At this time the adi-
abatic states |ψ1〉 and |ψ2〉 are predominately composed of
separate quasidiabatic states localized at n ∼ 15 and n ∼ 28,
respectively. Passing through the transition [(b) and (c)], we
observe that the adiabatic states become linear combinations
of the diabatic states, and similarly for |�(t )〉. The transition
occurs between (b) and (c), as in (b) |ψ1〉 is predominately the
left-hand diabatic state, while in (c) it is predominately the
right-hand diabatic state. In (d) the adiabatic states are again
predominately composed of separate quasidiabatic states lo-
calized at n ∼ 5 and n ∼ 33, respectively. Throughout, |�(t )〉
is predominately composed of |ψ1〉, i.e., it remains on the
lower adiabatic energy surface. This avoided-crossing event
thus corresponds to a transition between quasidiabatic states,
or a hop between polaron states.

This transition occurs because the thermally induced fluc-
tuations in the monomer conformations, φ, cause the polaron
to be less stable than its zero-temperature configuration, thus
raising its energy (as shown by the blue curve at t = 170τ in
Fig. 9) and to increase its size (as shown by the blue curves
in Figs. 11(a) and 11(b). Simultaneously, the conformational
fluctuations cause the energy of a neighboring diabatic state
to decrease, causing a Landau-Zener type transition. Indeed,
since the charge density, ρn, (given by the black curve) and the
angular displacements, �φ̃

eq
n , satisfy Eq. (10), Fig. 11(b) and

11(c) show that angular displacements of each diabatic state
are essentially identical, thus exhibiting a classic Marcus-type
transition.

The transfer of population probability between two qua-
sidiabatic states that are localized on different sections of the
polymer chain leads to a net displacement of the center of
mass on a faster timescale than that of the crawling diffu-
sion described in the low temperature regime in the previous
section. This is observed in the diffusion constants calculated
from the 〈X 2(t )〉 plots, where the diffusion parameters deviate
from the linear T behavior observed at low temperatures. This
is shown in Fig. 12, where the linear fit to the low temperature

014303-7



BERENCEI, BARFORD, AND CLARK PHYSICAL REVIEW B 105, 014303 (2022)

0.000 0.025 0.050 0.075 0.100 0.125

T/Tr

0

5

10

15

20

25

30

D
/

τ
−1

linear fit to T Tr

diffusion data

FIG. 12. Diffusion constant, D, as a function temperature, in-
dicating a crossover to activated hopping processes at higher
temperatures.

data points can be seen to underestimate the diffusion in the
higher temperature regime due to the additional displacement
from hopping transport.

To quantify this behavior, hopping transition rates were
calculated by assuming that the deviation from the linear tem-
perature dependence of D(T ) (shown in Fig. 12) is attributed
to hopping transport. Assuming a mean displacement 〈�r〉 =
10 when such a transition occurs (as this value is consistent
with a PN = 10 as well as to the hop distance illustrated in
Fig. 11), the transition rate for the process is calculated as

khop ∝ Dhop

〈�r〉2
, (23)

with the results plotted in Fig. 13.

0.06 0.08 0.10 0.12

T/Tr

0.0

0.1

0.2
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0.4

0.5

k
/τ

−1

khop

kNA

FIG. 13. Hopping transition rates calculated via Eq. (23) using
a mean displacement, 〈�r〉 = 10 sites. The rate for nonadiabatic
processes, kNA, is defined as the rate at which the probability of the
system occupying the lowest adiabatic state |ψ1〉 becomes less than
0.5.

IV. DISCUSSION AND CONCLUDING REMARKS

This paper has described our simulations of charge-polaron
transport in conjugated polymers, valid in the large-polaron
limit. However, as the model is general it equally applies to
exciton-polaron (i.e., energy) transport. For example, Eq. (3)
is derived for Frenkel excitons in Ref. [25], with the exciton
transfer integral J0

n = JDD + JSE cos2 θ0
n , where JDD and JSE

are the through-space and through-bond transfer integrals,
respectively, and the exciton-roton coupling constant is An =
JSE sin 2θ0

n /(h̄ωK )1/2.
Charge or exciton coupling to the monomer rotations

localizes the particle into a Landau polaron, while the ther-
mal fluctuations of the monomers cause polaron dynamics.
The emergent low-energy scale of our model is the polaron
reorganization energy, Er , which corresponds to a reorgani-
zation temperature Tr ∼ 400 K for charges and Tr ∼ 1500 K
for excitons [10]. We investigated two types of dynamics–
both relevant for temperatures T < Tr = Er/kB. As found
before [6,8,10,11], in the lower temperature regime the sys-
tem remains in the same quasidiabatic state, corresponding to
activationless polaron diffusion as the polaron crawls stochas-
tically along the chain, with D(T ) ∝ T . As the temperature is
raised, however, there is a crossover to an additional activated
transfer process between diabatic states. We showed that these
hopping processes exhibit Landau-Zener dynamics whose ori-
gin is the fluctuation of torsional angles causing a temporary
degeneracy of the energy levels of neighboring diabatic states,
as described in the Marcus theory of charge transfer.

Our hybrid quantum-classical simulations treat the charge
or exciton dynamics fully quantum mechanically. However, as
explained in the Introduction, to simulate large systems over
long times, we model the nuclear (i.e., monomeric) degrees
of freedom via the Ehrenfest approximation and the solvent
via the Langevin equation. The assumptions of the Ehrenfest
approximation, namely that the nuclear degrees of freedom
are treated classically and the total wave function is a product
of the electronic and nuclear wave functions, is known to lead
to a number of incorrect theoretical predictions [15,43]. In
particular, a simple product wave function implies that the
nuclei move in a mean potential determined by the electrons.
This means that a splitting of the nuclear wave packet when
passing through a conical intersection or an avoided crossing
does not occur. In addition, there is an incorrect description
of energy transfer between the electronic and nuclear degrees
of freedom, meaning that detailed balance is not necessarily
satisfied.

Burghardt et al. [14] showed that an Ehrenfest simulation
was qualitatively consistent with a fully quantum mechanical
approach on small systems, arguing that this is because the
dynamics was quasiadiabatic. We have attempted to deter-
mine whether or not our hopping transitions are quasiadiabatic
by estimating the rate for nonadiabatic events, kNA. This is
defined as the rate at which the probability of the system
described by |�(t )〉 occupying the lowest adiabatic state |ψ1〉
becomes less than 0.5. This is shown in Fig. 13. For the
lowest temperature data points we see that kNA ≈ khop, but that
kNA exceeds khop as the temperature increases. Assuming that
khop is a measure of the rate for quasiadiabatic events (i.e.,
Landau-Zener transitions that predominately stay on the lower
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TABLE II. The equivalence of Eq. (3) for linear nuclear degrees
of freedom.

Angular Linear

Angular displacement, �φ Linear displacement, u
Angular momentum, L Linear momentum, p

Torque, 	 = −∂〈Ĥ〉/∂�φ Force, f = −∂〈Ĥ〉/∂u
Inertia, I Mass, m

K (energy rad−2) K (energy length−2)

surface and hence cause a diabatic transition), these results
imply that our observed Landau-Zener transitions are never
happening under a fully quasiadiabatic regime, and indeed
nonadiabatic events dominate as the temperature increases.
This observation does not necessarily imply that the Ehrenfest
approximation is failing and that there is anomalous heating,
however, because as shown in Fig. 6 after the equilibration pe-
riod of ∼100τ the gradient of the mean-square displacement
versus time is constant for a fixed temperature.

Our simulations become difficult to interpret as T ap-
proaches Tr , so we have not been able to fit an Arrhenius or
Marcus expression to our rate constant in the activated regime.
However, our simulations do show conclusive evidence of
Landau-Zener type transitions driven by thermal fluctuations
in a realistic model.

Qualitatively, we expect that at T ∼ Tr , because of the
large density of states of higher-lying eigenstates, the polaron
becomes unbound. Then the charge or exciton exhibits quasi-
band-like transport via the quasiextended (albeit Anderson
localized) particle wave functions [21,22,44].

Another assumption of treating the oscillators and bath
classically is that they obey the principle of equipartition.
A quantum mechanical treatment of both would freeze-out
degrees of freedom at low temperatures, thus suppressing
monomer rotations. In the quantum limit, although polaron
crawling will still occur, the diffusion constant will be smaller
than its classical prediction.

In principle, our model could be adapted by including
surface hopping (see, e.g., Ref. [24]). Alternatively, within
the TNT Library we could quantize the harmonic oscillators
and introduce Lindblad jump operators to model relaxation
through conical intersections, thus describing both the high
and low temperature limits [45]. However, both schemes re-
quire considerably more computational effort.

Our results have qualitative relevance for other theory
[18,19] and to experimental observations of charge dynamics
in conjugated polymers. In particular, our demonstration of
Landau-Zener type charge hopping provides qualitative nu-
merical justification for the fluctuating-bridges mechanism of
charge transfer [7,46,47]. This mechanism leads to a corrected
Marcus theory of unimolecular charge transport which was
employed by Berencei et al. to simulate charge transport in
conjugated polymer systems [37].

In this paper we have motivated charge and exciton polaron
transport in 1D systems by considering intrachain motion in
conjugated polymers driven by the thermal angular fluctua-
tions of the monomers. However, our model is rather general.
As shown in Table II, by replacing the angular variables by

linear variables, Eq. (3) becomes essentially equivalent to
the Su-Schrieffer-Heeger model [48]. Charge mobility was
investigated in 1D molecular stacks using this model by Troisi
and Orlandi [23] and by Wang et al. [24] At high temperatures
both sets of authors observed quasi-band-like behavior, where
the mobility μ ∼ T −α . We predict that this transport occurs at
temperatures T ∼ Tr = Er/kB. At lower temperatures Wang
et al. [24] observed Marcus-hopping transport, although qua-
sidiabatic polaron crawling was not observed by them at even
lower temperatures. Our future goal is to model all three
regimes within the same simulation.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: DERIVATION OF EQ. (3) FOR CHARGES

Equation 3 describes a coarse-grained charge-roton model
for the PPP polymer chain. As shown in our earlier work [37],
the model can be derived starting from the atomic Hückel
model. In the atomic basis of pz orbitals, the Hamiltonian can
be written as

Ĥ atomic
Hückel =

∑
j

β j (ĉ
†
j ĉ j+1 + ĉ†

j+1ĉ j ), (A1)

where β j is the transfer integral between nearest neighbor
atomic orbitals, and ĉ†

j (ĉ j ) creates (destroys) an electron in
orbital j. There are no on-site terms as the pz orbitals are
degenerate. Coarse graining the polymer into a chain of sites
(illustrated in Fig. 1) reduces the degrees of freedom in the
model. In the coarse-grained model, the atomic orbital basis
{| j〉} is replaced by the site basis {|n〉}, leading to redefined
creation (destruction) operators:

| j〉 = ĉ†
j |0〉 ⇒ |n〉 = â†

n|0〉, (A2)

resulting in the coarse-grained Hückel model,

Ĥ cg
Hückel =

∑
n

εâ†
nân +

∑
n

JnT̂n,n+1, (A3)

where ε represents the uniform monomeric LUMO energy,
and

T̂n,n+1 = (â†
nân+1 + â†

n+1ân) (A4)

is the symmetric jump operator in the coarse-grained ba-
sis. The sum over n is over sites, i.e., the coarse-grained
monomers.

The transfer term is

Jn = 1
3β0 cos θn, (A5)
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where β0 is the Hückel resonance integral between parallel
pz orbitals. The factor of 1/3 arises as the product of orbital
coefficients on the carbon atoms linking the two sites, as
shown in Fig. 1. Jn is expressed as a function of the torsional
angle, θn, across bond n, where θn is defined as the difference
between the rotational angles on neighboring monomers,

θn = φn+1 − φn. (A6)

Adding the rotational potential and kinetic energy terms,
the coarse-grained charge-roton Hamiltonian for the PPP
model system reads [37],

Ĥ =
N∑

n=1

(εâ†
nân + JnT̂n,n+1) +

N∑
n=1

(
K

2
(�φn)2 + L2

n

2I

)
.

(A7)

Assuming small angular displacements from equilibrium
in the neutral state, φ0

n ,

Jn � β0 cos θ0
n /3 − β0 sin θ0

n × (�φn+1 − �φn)/3. (A8)

Finally, introducing dimensionless variables

φ̃ = (K/h̄ω)1/2φ, (A9)

L̃ = (ω/h̄K )1/2L, (A10)

using Eq. (A8) and ignoring the uniform on-site energy terms,
Eq. (A7) becomes

Ĥ =
N−1∑
n=1

[
J0

n − h̄ωAn(�φ̃n+1 − �φ̃n)
]
T̂n,n+1

+ h̄ω

2

N∑
n=1

(
(�φ̃n)2 + L̃2

n

)
, (A11)

where

J0
n = β0 cos θ0

n /3 (A12)

and

An = β0 sin θ0
n

3(h̄ωK )1/2
(A13)

is the dimensionless charge-roton coupling constant.
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