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Exact mobility edges in the non-Hermitian t1-t2 model: Theory and possible
experimental realizations

Xu Xia ,1 Ke Huang ,2 Shubo Wang ,2 and Xiao Li 2,3,*

1Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
2Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China

3City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, Guangdong, China

(Received 4 June 2021; revised 1 January 2022; accepted 19 January 2022; published 31 January 2022)

Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility
edges, has attracted considerable interest recently. While much progress has been made, the available methods to
determine the ME in such models are still limited. In this work, we use a new method to find a new class of exact
mobility edges in 1D non-Hermitian quasiperiodic models with parity-time (PT ) symmetry. We illustrate our
method by studying a specific model. We first use our method to determine the energy-dependent mobility edge
as well as the spectrum for localized eigenstates in this model. We then demonstrate that the metal-insulator
transition must occur simultaneously with the spontaneous PT -symmetry breaking transition in this model.
Finally, we propose an experimental protocol based on a 1D photonic lattice to distinguish the extended and
localized single-particle states in our model. The results in our work can be applied to studying other non-
Hermitian quasiperiodic models.
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I. INTRODUCTION

Quantum localization in disordered media has been a cen-
tral topic in condensed matter physics since the seminal work
by P. W. Anderson in 1958 [1]. In particular, while an infinites-
imal amount of disorder will localize all eigenstates in 1D
and 2D systems, the full localization transition in 3D systems
will only occur at a finite disorder strength [2–4]. At weaker
disorders, however, localized and extended eigenstates in 3D
systems can coexist in the energy spectrum, leading to the
appearance of a mobility edge (ME).

Recently, quasiperiodic systems have emerged as a viable
alternative platform to study quantum localization in the ex-
periment, partly because they are much easier to realize than
those with random disorders. Importantly, they have been
widely used in the experimental investigation of many-body
localization (MBL) in 1D and 2D systems [5–11]. Moreover,
the existence of ME in 1D quasiperiodic systems has also been
studied extensively in theory [12–26]. Such efforts culminated
in the recent experimental observation of ME in various 1D
systems [27–32].

Meanwhile, Anderson localization in non-Hermitian sys-
tems [33–51], especially the existence of ME in such systems
[52–59], have attracted considerable interest recently. In par-
ticular, much attention has been devoted to systems with the
parity-time symmetry (PT symmetry). This symmetry allows
for an entirely real energy spectrum when the non-Hermitian
parameter λ is below a critical value λc; only when λ > λc

complex energies emerge in the spectrum [60–62]. In ad-
dition, several properties unique to non-Hermitian systems
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have also been identified, such as the non-Hermitian skin
effects and the existence of exceptional points. However, sev-
eral critical open questions still remain open in this field.
Notably, most existing work determines the exact ME in a
non-Hermitian model using self-duality relations, similar to
what has been done in their Hermitian counterparts. As a re-
sult, when we turn off the non-Hermitian parameter, the model
is still known to have an exact ME. Can we develop a new
method to determine the expression of ME in order to circum-
vent this limit? Crucially, is it possible that a non-Hermitian
quasiperiodic model carries an exact ME while its Hermitian
counterpart is not known to have one? Another critical ques-
tion is that the existence of ME in a non-Hermitian system
has not been experimentally established yet. This is partially
due to the fact that models with exact MEs are difficult to
construct, and thus they often involve a complicated hopping
structure or fine-tuned onsite potentials. Thus a non-Hermitian
model that can be easily implemented in the experiments is
highly desirable.

In this work we address the above questions by studying
the localization properties of a 1D non-Hermitian quasiperi-
odic model with PT symmetry [see Eq. (1)], which reduces
to the Hermitian t1-t2 model [17–20] when the non-Hermitian
parameter is turned off. We show that the ME in this model
can be determined analytically by the Sarnak method [63].
This result is remarkable, because the exact ME in the Her-
mitian t1-t2 model is not yet known. While the spectrum
of the Hermitian t1-t2 model contains a hierarchy of gaps,
that of the non-Hermitian t1-t2 model is gapless. In fact, the
Sarnak method can help us analytically determine the en-
tire spectrum of localized states. These two features make
the non-Hermitian t1-t2 model fundamentally different from
its Hermitian counterpart. Further, we demonstrate that the
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metal-insulator transition in this model must occur simultane-
ously with the spontaneous PT symmetry breaking transition.
Further, we are able to determine exactly the range of the
quasiperiodic potential Vc1 � V � Vc2 for which an ME exists
in the energy spectrum and also give the expressions for Vc1

and Vc2 analytically. Finally, we propose an experimental pro-
tocol based on a 1D photonic lattice to distinguish extended
and localized states in this model.

II. THE MODEL

To begin with, consider the following non-Hermitian
quasiperiodic model,

H =
∑

j

(t1c†
j c j+1 + t2c†

j c j+2 + H.c.) +
∑

j

Vjn j . (1)

In the above equation, c j annihilates a fermion on site j,
and n j = c†

j c j counts the particle number on site j. For con-
venience, we set the hopping strength t1 = 1 as the unit of
energy. In addition, we only consider the cases with t2 > 0,
as the t2 < 0 can be easily reduced to the t2 > 0 case (see
Appendix A for a detailed discussion). The potential energy in
Eq. (1) is given by Vj = Vei(2π jα+φ) with V > 0. Here we only
discuss the φ = 0 case. For results with a general φ, please
refer to Appendix A. Finally, we take α = (

√
5 − 1)/2, which

can be approximated by Fibonacci numbers Fn [64,65]: α =
limn→∞ Fn−1/Fn. Specifically, in our simulations we choose
a specific integer n so that the system size is L = Fn and
α = Fn−1/Fn. This choice ensures the PT symmetry in our
model, as shown in Appendix A.

A. The localization transition and ME

As one of the key results in this work, we find that the
model in Eq. (1) possesses an energy-dependent ME, given
exactly by the following analytical expression:

V = 1
4

∣∣1 +
√

� +
√

(1 +
√

�)2 − 16t2
2

∣∣, (2)

where � = 1 + 4t2E + 8t2
2 , and E ∈ [2t2 − 2, 2t2 + 2] speci-

fies the range of energies at which an ME can exist.1 As we
show below, this ME marks the simultaneous metal-insulator
transition and the spontaneous PT -symmetry breaking tran-
sition in this model. In fact, we can use the Sarnak method
[63] (see Appendix A for a brief introduction to this method)
to derive an analytical condition for the spectrum of localized
states in this model, given by

ln |V | = G(E ), (3)

where G(E ) is defined as (see also Appendix A)

G(E ) = 1

2π

∫ 2π

0
ln |E − 2 cos θ − 2t2 cos 2θ |dθ. (4)

The ME condition in Eq. (2) can be viewed as a special case
of Eq. (3) when E ∈ [2t2 − 2, 2t2 + 2].

One convenient tool to identify localized states is the
inverse participation ratio (IPR), defined as IPR(m) =

1The energy spectrum is guaranteed to be real at the ME.

FIG. 1. (a) The fractal dimension � as a function of Re(E ) and
V in a lattice with size L = F14 = 610. The black line represents the
ME condition in Eq. (2). (b) and (c) plot the wave function for the
two states at V = (Vc1 + Vc2)/2, which has the smallest and largest
Re(E ), respectively. Here we choose t2 = 1/2 for all three figures.

∑
j |ψm, j |4 [4,27], where m labels the eigenstates and j labels

lattice sites. Based on this, we can further introduce the fractal
dimension of the wave function, � = − limL→∞ ln(IPR)

ln L . One
can show that for extended states � → 1, while for localized
states, � → 0. In Fig. 1(a), we plot the fractal dimension � of
each eigenstate as a function of Re(E ) and V . In addition, the
black line represents the ME condition in Eq. (2). As expected,
� approaches zero and one for energies on opposite sides of
the black line, respectively. This can be further confirmed by
the spatial density profile of the respective eigenstates, see
Figs. 1(b) and 1(c). In other words, a given eigenstate is local-
ized or extended depends on whether its eigenvalue satisfies
ln |V | � G(Re(E )) or ln |V | > G(Re(E )) (see Appendix A
for a proof).

We can thus identify three distinct regimes in Fig. 1(a):
for V < Vc1 (V > Vc2), the energy spectrum only contains
extended (localized) eigenstates, while for Vc1 � V � Vc2,
an energy-dependent ME emerges. We will thus denote the
regime Vc1 � V � Vc2 as the intermediate phase, since both
extended and localized states exist in the spectrum. More
importantly, we find that an intermediate phase always exists
when t2 �= 0, and that the exact expressions for Vc1 and Vc2 are
given by (see Appendix A for the derivation)

Vc1 =
{

t2, t2 � 1/4
1
2

(√
1 − 4t2 + 1 − 2t2

)
, 0 � t2 < 1/4.

,

Vc2 = 1

2
(
√

1 + 4t2 + 1 + 2t2), (5)

which are plotted in Fig. 2(a).
Interestingly, Fig. 2(a) shows a curious cusp in Vc1 at t2 =

1/4, which implies that t2 � 1/4 and t2 > 1/4 are two differ-
ent regimes. This conjecture is confirmed in Figs. 2(b)–2(c),
where we plot the ME for t2 = 1 and t2 = 1/4, respectively.
We find that when t2 > 1/4 [Fig. 2(b)], the number of local-
ized states suddenly becomes finite as V crosses Vc1. In con-
trast, when t2 � 1/4 [Fig. 2(c)], the number of the localized
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FIG. 2. (a) The boundaries of the intermediate phase as a func-
tion of t2. Vc1 and Vc2 denote the critical V at which the intermediate
phase starts and ends for a specific t2, see Eq. (5). [(b) and (c)] Fractal
dimension � of each eigenstate for t2 = 1 and t2 = 1/4, respectively.
The black lines represent the ME described by Eq. (2). Here the
system size is L = 610.

states increases continuously from zero as V crosses Vc1.
Therefore we conclude that the structure of the ME is qual-
itatively different when t2 � 1/4 and t2 > 1/4.

B. The PT -symmetry breaking transition

Apart from the metal-insulator transition described above,
another interesting property of a PT -symmetric non-
Hermitian model is that this symmetry can be spontaneously
broken when the non-Hermitian parameter V exceeds a crit-
ical value. Moreover, it is known that this phase transition is
accompanied by the transition from an entirely real spectrum
to a complex one [60–62]. To demonstrate this property in our
model, we keep t2 = 1/2 and plot in Fig. 3 the spectrum for
V around Vc1 and Vc2, respectively. The results show that the
analytical condition in Eq. (3) (shown as red lines in Fig. 3)
correctly captures the spectrum of localized states. In addition,
we can observe two different transitions. First, as V increases
beyond Vc1, complex energies start to emerge from a purely
real spectrum, which is accompanied by the appearance of
localized states. Second, as V further increases beyond Vc2,
the spectrum turns into a purely complex one and no extended
states exist anymore. The existence of a spontaneous PT
symmetry breaking transition may not be surprising on its
own right. What is particularly interesting about our model is
that the seemingly unrelated metal-insulator transition occurs
simultaneously with this spontaneous PT symmetry breaking
transition. In fact, we can prove this statement rigorously,
which is shown in Appendix A.

III. EXPERIMENTAL REALIZATIONS

We now present a realistic experimental realization of the
non-Hermitian t1-t2 model in Eq. (1) using a photonic lattice.
Such photonic lattices have been routinely used to demon-
strate Anderson localization of light [66,67]. A schematic

FIG. 3. The complex energy spectrum for (a) V = Vc1 − 0.1,
(b) Vc1 + 0.3, (c) Vc2 − 0.1, and (d) Vc2 + 0.1. The color of the energy
spectrum represents the fractal dimension � of the eigenstates using
the same color scale as that in Fig. 1. In addition, the red lines in
(b) and (d) (which overlap almost exactly with the numerical results)
map out the spectrum of localized states for the corresponding V
[see Eq. (3)]. Here we fixed the system size to be L = 610, and keep
t2 = 1/2.

setup of our proposal is shown in Fig. 4(a). It is known that in
the paraxial limit the propagation of classical light in a waveg-
uide can be captured by a form of Maxwell equation that
formally resembles the Schrödinger equation in quantum me-
chanics [68] (see also Appendix B for a discussion). If we
further consider the limit in which the light is strongly con-
fined by the waveguides, one can adopt the tight-binding
approximation, and cast the continuum wave equation in the
following form [68],

i
dψ j

dz
= κ jψ j +

∑
l �= j

J j,lψl . (6)

Here the wave vector κ j is controlled by the refractive index
contrast of the jth waveguide and the background medium,
while the tunneling parameters Jj,l are determined by the
overlap between the evanescent tails of the eigenmodes in the
jth and lth waveguides [68].

Our model in Eq. (1) can be realized in such a coupled
waveguide system where the refractive index in the jth waveg-
uide plays the role of potential Vj and the temporal coordinate
t is replaced by the spatial coordinate z. In this work, we
choose a system of L = 21 coupled waveguides, see Fig. 4(a).
In particular, it is possible to engineer the refractive indices of
the waveguides so that their real and imaginary parts resemble
the complex potential as plotted in Fig. 4(b). We further set
Jj, j+1 = Jj, j−1 = t1, Jj, j+2 = Jj, j−2 = t2, and all other Jj,l =
0. Further, the waveguides are arranged in a zigzag shape, so
under an appropriate arrangement the nearest-neighbor cou-
pling t1 can be made larger than the next-nearest-neighbor
coupling t2. In this geometry the ratio t2/t1 can be tuned by the
angle θ of the zigzag chain, see the inset of Fig. 4(a). Finally,
periodic boundary conditions are preferred in the setup.

The localization property of this model can be probed by
studying the light propagation in this coupled waveguide sys-
tem. Here we choose to excite the waveguide at j = 0 at t = 0,
and study how the light spreads out during the propagation.
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FIG. 4. A realistic experimental realization of the non-Hermitian t1-t2 model in Eq. (1). (a) The schematic setup of a coupled waveguide
system consisting of L = 21 waveguides. The inset illustrates the coupling between them. Note that the ratio t2/t1 can be tuned by varying
the angle θ . The arrow indicates that the initial excitation occurs in the j = 0 waveguide. (b) A plot of the onsite potential Vj in this coupled
waveguide system. The red and blue bars illustrate the real and imaginary part of the potential, respectively. (c)–(f) show the quench dynamics
starting from an initial excitation in the j = 0 waveguide for V = Vc1 − 0.1, Vc1 + 0.3, Vc2 + 1, Vc2 + 2, respectively. In this plot we choose
α = 13/21 and t2/t1 = 1/2. The color bars in (c)–(f) plot the n̄ j (t ) defined in Eq. (8). The unit of time is τ = h̄/t1. The short-time behavior of
n̄ j (t ) can be found in Appendix B.

Effectively, we are evaluating

|ψ (t )〉 = e−iHt |ψ0〉 =
∑

j

e−iE jt c j |Ej〉, (7)

where |Ej〉 is the jth eigenstate of the Hamiltonian H in
Eq. (1) with an energy Ej , and {c j} are the superposition
coefficients. The spatial extent of the time evolved state |ψ (t )〉
can be quantified by

n̄ j (t ) ≡ |〈w j |ψ (t )〉|2
〈ψ (t )|ψ (t )〉 , (8)

where |w j〉 denotes the Wannier function localized within the
jth waveguide.

We first consider the V < Vc1 regime, when all eigenstates
in the system are extended. Consequently, we expect that
almost all n̄ j (t ) are nonzero at late times. In addition, because
the spectrum is completely real, all the phase factors e−iE jt

satisfy |e−iE jt | = 1 at all times. As a result, all eigenstates will
continue to contribute to the dynamics even when t is large.
Our expectations are verified by the results in Fig. 4(c), where
we numerically plot n̄ j (t ) when V = Vc1 − 0.1. In particular,
we find that within a short time the initial excitation spreads
out to other waveguides, and n̄ j (t ) is almost evenly distributed
among all waveguides.

In contrast, when the energy spectrum is complex, the
time evolution operator e−iHt is dominated by the eigenstate
whose energy eigenvalue has the largest imaginary part. For

convenience, we denote this special eigenvalue as Eamp and
the corresponding eigenstate as |Eamp〉. In order to avoid nu-
merical errors induced by the exponential amplifications in
the presence of a complex spectrum, we further replace the
original Hamiltonian H by H ′ = H − iγ in our simulations,
where γ ≡ Im(Eamp) > 0. As a result, the state |Eamp〉 still
dominates the quench dynamics, but its amplitude is preserved
throughout the dynamics. In contrast, the amplitude of all
the other eigenstates decays exponentially. Furthermore, since
in this model all states with a complex energy eigenvalue
are localized, we anticipate that the final state will be local-
ized whenever the spectrum contains complex energies. In
Fig. 4(d), we plot n̄ j (t ) for V = Vc1 + 0.3, when the system
is in the intermediate phase. We indeed find that the final
state is localized. However, in contrast to the quench dynamics
in a Hermitian system, the final state is not localized on the
original waveguide at j = 0, but collapses into the waveguide
at j = 7. Moreover, we find a curious “jumping process”
during the dynamics. Specifically, the initial excitation in the
j = 0 waveguide almost instantly jumps to a signal peaked at
the j = −1 waveguide, as shown in Appendix B. At around
t = 100, this signal jumps again to one localized in the j = 7
waveguide. During the entire quench dynamics, the maxi-
mum magnitude of n̄ j (t ) reaches about 0.4. We also find that
the localization length of the final steady state is still quite
large, as weak signals with n̄ j (t ) ∼ 0.2 can still be seen in
the neighboring waveguides at j = 4 and j = 10. The above
observations show that localization in a non-Hermitian system
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is qualitatively different from that in Hermitian systems, and
a similar behavior has been reported in a recent work [51]. In
particular, the jumping behavior can never occur in a Hermi-
tian system.

In addition, in Figs. 4(e) and 4(f), we plot n̄ j (t ) for two
different V > Vc2, when the system is in the localized phase.
We find that the qualitative features of Fig. 4(d), especially the
jumping behavior, are preserved. For example, in Fig. 4(e),
we find that the initial excitation in the j = 0 waveguide
quickly gives way to an excitation confined in the j = 2
waveguide, before eventually collapses into the waveguide
at j = −6. In comparison, in Fig. 4(f), we find that the
initial excitation in the j = 0 waveguide quickly collapses
into the waveguide at j = 2 and no additional jumps take
place afterwards. The main differences between the localized
regime and the intermediate regime seem to be quantitative.
For example, the localization length of the final steady state
is now reduced to just one lattice site. Moreover, the peak
value of n̄ j (t ) now reaches about 0.8 for Fig. 4(e) and about
0.9 for Fig. 4(f), respectively. It turns out that the curious
jumping behavior of n̄ j (t ) found in Figs. 4(d)–4(f) arise be-
cause there exist several eigenstates whose eigenvalues have
similar imaginary parts. In Appendix B, we show that the
jumping behavior is a result of the competitions between these
eigenstates.

IV. DISCUSSION AND OUTLOOK

Our work represents one of the first examples where the
ME in the non-Hermitian quasiperiodic model cannot be di-
rectly inferred from its Hermitian counterpart. Indeed, while
the exact ME in the Hermitian t1-t2 model is not yet known, we
are able to determine the exact ME in our model. In addition,
the method developed in this work is very general and can be
applied to a wide class of quasiperiodic models. For example,
an exact ME can still be obtained when t2 is complex or when
more remote hopping terms are included, which is analyzed
in Appendix C. Our work thus not only proposes a realistic
experimental scheme to demonstrate ME in a non-Hermitian
quasiperiodic model, but also presents a general framework
to study other 1D non-Hermitian quasiperiodic models. One
important open question is the effect of interactions on the
localization properties of this model [69,70]. In particular,
it is interesting to understand whether the interplay between
interactions and the ME can lead to a many-body intermediate
phase [71–73] in this non-Hermitian system.
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APPENDIX A: ADDITIONAL DETAILS OF THE ME

In this section, we provide additional details of the ME for
the model we discussed in the main text, which we reproduce
here:

H =
∑

j

(t1c†
j c j+1 + t2c†

j c j+2 + H.c.) +
∑

j

Vjn j, (A1)

where Vj = Vei(2π jα+φ) with V > 0.

1. The PT symmetry in this model

We first discuss how to ensure an exact PT symmetry in
this model. Note that the parity operator satisfies Pc jP = c− j ,
where the site index j is congruent modulo L. Meanwhile,
since we are working with a spinless model, the time reversal
operator is just taking complex conjugate. As a result, we have

PT
(

L−1∑
j=0

e2π iα jn j

)
(PT )−1

= n0 +
L−1∑
j=1

e−2π iα jnL− j = n0 + e−2π iαL
L−1∑
j=1

e2π iα jn j .

(A2)

To make assure an exact PT symmetry, we need αL to
be an integer, which is achieved by taking L = Fn and
α = Fn−1/Fn.

2. How does the sign of t2 affect the spectrum?

In the main text, we only consider the case of t2 > 0. We
now explain how the t2 < 0 case is connected to the t2 > 0
case. Equivalently, we can introduce

H−t2 =
∑

j

[(t1c†
j c j+1 − t2c†

j c j+2 + H.c.) + Vjn j], (A3)

where Vj = Vei(2π jα+φ) with V > 0. We just need to show
how the spectrum of H−t2 (φ) relates to that of H (φ) in
Eq. (A1). Note that we will explicitly display the global
phase φ of the potential Vj in each Hamiltonian in this
subsection.

First of all, we mention that according to the Sarnak’s
method, the spectrum of H (φ) in Eq. (A1) is exactly the
same as that of −H−t2 (φ) in Eq. (A3) in the L → ∞
limit. To see this, we just need to consider the character-
istic functions G+(E ) for H (φ) and G−(E ) for H−t2 (φ),
as each function completely determines the respective spec-
trum. Their explicit expressions are given by [see Eq. (A9)
below]

G+(E ) = 1

2π

∫ 2π

0
ln |E − 2 cos θ − 2t2 cos 2θd|θ,

G−(E ) = 1

2π

∫ 2π

0
ln |E − 2 cos θ + 2t2 cos 2θ |dθ.
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Hence, we have

G+(−E ) = 1

2π

∫ 2π

0
ln |E + 2 cos θ + 2t2 cos 2θ |dθ

= 1

2π

∫ 2π

0
ln |E + 2 cos(θ + π )

+ 2t2 cos(2θ + 2π )|dθ

= 1

2π

∫ 2π

0
ln |E − 2 cos θ + 2t2 cos 2θ |dθ

= G−(E ), (A4)

which proves that the spectrum of H (φ) and that of H−t2 (φ)
just differ by a minus sign.

In a finite system, however, the spectrum of H and H−t2 are
connected in a more subtle way. To show this, we introduce
the chirality operator C, which satisfies Cc jC−1 = (−1) jc j . As
a result, we have

CH−t2 (φ)C−1 =
∑

j

[
(−t1c†

j c j+1 − t2c†
j c j+2 + H.c.) + Vei(2πα j+φ)n j

]

= −
∑

j

[
(t1c†

j c j+1 + t2c†
j c j+2 + H.c.) + Vei(2πα j+φ+π )n j

] = −H (φ + π ), (A5)

This means that chirality transformation maps H−t2 (φ) to
−H (φ + π ).2 Therefore, even in a finite system, the t2 < 0
case can always be reduced to the t2 > 0 case. This justifies
our choice of t2 > 0 in the main text. Notably, the above result
in Eq. (A5) also indicates that the ground state of H−t2 (φ)
will map to the highest-energy state of H (φ + π ) and vice
versa. As a result, if the ground state of H (φ) is localized
while the highest-energy state is extended [that is, when an
ME is present in the spectrum of H (φ)], this transformation
(which amounts to flipping the sign of t2 while keeping t1
invariant) will turn a localized ground state into an extended
one. The fact that the sign of t2 (the next-nearest-neighbor
hopping) can alter the localization property of the ground state
of a frustrated lattice model is a well-known effect in the
literature [29,74].

The remaining question is, how can we reconcile the finite
system result in Eq. (A5) with the infinite-system result in
Eq. (A4)? It turns out that for any 0 < θ < 2π the spectral dif-
ference between H (φ) and H (φ + θ ) vanishes in the L → ∞
limit. To show this, note that we can advance the phase of the
potential by 2παm through a translation of the system by m
sites (since we are dealing with periodic boundary conditions).
Moreover, since α is irrational, for any phase difference θ

in the potential, there is always an integer 0 < m < L that
satisfies 2παm − θ = O(1/L) mod 2π . Consequently, if Tm

denotes the operator that translates the system by m sites, we
have

∥∥TmH (φ)T −1
m − H (φ + θ )

∥∥
=

∥∥∥∥∥(e2παim − eiθ )
∑

j

Ve2παi jn j

∥∥∥∥∥ = O(V/L). (A6)

2This transformation is always exact under an open boundary con-
dition (OBC). Under a periodic boundary condition (PBC), however,
the above transformation is only exact for an even L. For an odd L
with PBC, the mapping has an error of O(1/L).

Therefore the difference between the spectral norm of H (φ)
and that of H (φ + θ ) is on the order of O(V/L), which van-
ishes in the L → ∞ limit.

3. More details on the G(E ) function

In order to derive the exact ME in our model, we first
introduce the following function:

f (θ ) =
∑
j∈Z

ψ je
i jθ ∈ L2(T ). (A7)

After Fourier transform, which is multiplying Eq. (A1) by ei jθ

and then summing over j, we get the operator

Veiφ f (θ + 2πα) = [E − 2 cos θ − 2t2 cos 2θ ] f (θ ), (A8)

It has been proved that the spectrum of such a system can be
captured by a characteristic function defined as [63]

G(E ) = 1

2π

∫ 2π

0
ln |E − 2 cos θ − 2t2 cos 2θ |dθ. (A9)

Note that we always have G(E ) � G(Re(E )), because for any
g(θ ) ∈ R, we have

ln |E − g(θ )| ≡ ln |Re(E ) + iIm(E ) − g(θ )|
� ln |Re(E ) − g(θ )|.

As a result, if we take g(θ ) = 2 cos θ + 2t2 cos 2θ , we have

G(E ) = 1

2π

∫ 2π

0
ln |E − g(θ )|dθ

� 1

2π

∫ 2π

0
ln |Re(E ) − g(θ )|dθ ≡ G(Re(E )).

The Sarnak method [63] then states that the spectrum is de-
termined by the relation between G(E ) and ln |Veiφ| = ln V :
(1) there is no spectrum within G(E ) < ln V ; (2) G(E ) = ln V
has a dense localized spectrum; and (3) extended states belong
to {G(E ) > ln V } ∩ UE , where UE is the set of energies that
satisfy E = 2 cos(θ ) + 2t2 cos(2θ ) for some θ .
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In particular, we can write

UE =
{

[−1/(4t2) − 2t2, 2t2 + 2], t2 � 1/4
[2t2 − 2, 2t2 + 2], 0 � t2 < 1/4 .

After some algebra, we find that

G(E ) = ln t2 + ln
∣∣z1 sgn(Rez1) +

√
z2

1 − 1
∣∣

+ ln
∣∣z2 sgn(Rez2) +

√
z2

2 − 1
∣∣, (A10)

where sgn(x) is the sign of the real number x,
√

z is the
square root of z with non-negative real part. In addition, z1 =

1
4t2

(1 + √
�), z2 = 1

4t2
(1 − √

�), with � = 1 + 4t2E + 8t2
2 .

As a result, G(E ) always reaches its minimum value at E =
2t2 − 2, which belongs to UE . Likewise, G(E ) always reaches
its maximum value in UE at E = 2t2 + 2.

4. The expression for Vc1 and Vc2

From the above results, we can determine the structure of
the metal-insulator transition in this model, which is accom-
panied by a PT symmetry breaking transition in the energy
spectrum. In particular, we can introduce two critical points to
describe this transition:

Vc1 = eG(2t2−2) (A11)

=
{

t2, t2 � 1/4
1
2

(√
1 − 4t2 + 1 − 2t2

)
, 0 � t2 < 1/4.

,

Vc2 = eG(2t2+2) = 1

2
[2t2 + 1 +

√
4t2 + 1]. (A12)

These two points divide the phase diagram into three regimes.
For V < Vc1, all eigenstates are extended. Meanwhile, the
energy spectrum resides in UE and is thus entirely real. For
Vc1 < V < Vc2, an ME appears in the energy spectrum, in-
dicating that extended and localized eigenstates coexist in the
energy spectrum. Meanwhile, we observe that the spectrum
contains both real and complex eigenvalues. Finally, when
V > Vc2, we have G(E ) < ln |V | for all E ∈ UE , and thus the
entire spectrum is localized and complex in general.

5. Localization transition and the PT symmetry
breaking transition

In fact, we can prove rigorously that in our model
[Eq. (A1)] the PT symmetry breaking transition (which
is signaled by the real-complex transition in the energy
spectrum) and the localization transition must occur simulta-
neously. First we note that extended spectrum must be real,
since UE ⊂ R. Therefore we just need to prove localized
states must have complex energy eigenvalues. However, there
is a subtlety here, as few localized states still have real energy
eigenvalues. In particular, the following localized states are
known to have real eigenvalues: (1) all eigenstates on the ME
(marked by the solid black line in Fig. 5) and (2) eigenstates
at the boundary of the spectrum (marked by dashed black
lines in Fig. 5). However, given that they are all located at
the boundary of the spectrum of localized states, they do not
affect our claim that the PT symmetry transition must be
accompanied by the metal-insulator transition in this model.

FIG. 5. (a) and (b) show the fractal dimension � of each eigen-
state for the model in Eq. (A1) for t2 = 1/2 and 1/4, respectively.
The system size is L = 610. The solid black line highlights eigen-
states on the ME (which are localized states with a real energy
eigenvalue), while the dashed black lines highlight additional local-
ized states with a real energy eigenvalue.

We now show that apart from those marked by the solid and
the dashed black lines in Fig. 5, all other localized eigenstates
(which occur for V > Vc1) have complex energy eigenvalues.
To start, consider the real part of the complex spectrum

M = {Re(E ) : G(E ) = ln V & Im(E ) �= 0}.
As we pointed out below Eq. (A9), G(E ) � G(Re(E )) for all
E . As a result, we must have M ⊂ M′, where

M′ = {x ∈ R : G(x) < ln V }.
We can see clearly that M′ is a nonempty open set in R,
since at least 2t2 − 2 ∈ M′. To see this, note that we are
considering V > Vc1, and hence ln V > ln Vc1 = G(2t2 − 2),
leading to 2t2 − 2 ∈ R. We further note that G(E ) → +∞ as
|E | → +∞. Therefore, due to the continuity of G(E ), for any
real number E ∈ M′, there always exists a complex number
E ′ that satisfies the following conditions:

Re(E ′) = E & G(E ′) = ln V.

Consequently, we obtain M = M′. Therefore the real local-
ized spectrum is just the boundary of the open set M′, while
every point inside M′ corresponds to at least one complex
localized state, which proves our statement.

Besides, from the above analysis, we know that if E is an
eigenvalue, then the statement that the state |E〉 is extended is
equivalent to G(Re(E )) > ln V . Similarly, the statement that
|E〉 is localized is equivalent to the condition that G(Re(E )) �
ln V .

6. The t2 transition

Additionally, another property of G(E ) is that G(E ) is a
constant function on the interval [−1/(4t2) − 2t2, 2]. which
implies that when t2 � 1/4 there are a bunch of E reach-
ing the minimum of G(E ). As a result, multiple eigenstates
will be localized simultaneously as ln(V ) reaches Vc1. This
property explains the difference between panels (b) and (c)
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FIG. 6. (a) and (b) plot G(E ) in Eq. (A9) with t2 = 0.1 and
t2 = 0.5 on UE , respectively. The set of energies on these two curves
satisfying G(E ) > ln V belongs to extended states.

in Fig. 2 in the main text. One such example is shown in
Fig. 6, which plots G(E ) on UE for two different values
of t2. In particular, for a given V , all points on the curve
satisfying G(E ) > ln V correspond to extended states in the
system. Specifically, when 0 < t2 < 1/4 the G(E ) ∩ UE is a
monotonic curve, and hence the number of localized states in-
creases continuously from zero at V = Vc1. In contrast, when
t2 > 1/4 the G(E ) ∩ UE has a plateau. As a result, the number
of localized states is already finite at V = Vc1.

7. The IPR and NPR in this model

One of the most widely used tools to diagnose the existence
of ME is to plot the averaged inverse participation ratio (IPR)
and normalized participation ratio (NPR) of all eigenstates
[23,27]. In particular, these two quantities are defined as

IPR(i) =
∑

n

∣∣u(i)
n

∣∣4
, NPR(i) =

[
L

∑
n

∣∣u(i)
n

∣∣4

]−1

.

In the above equation, L is the size of the one-dimensional
system, the index i labels different eigenstates, while the index
n labels different lattice sites. We will use IPR and NPR
to denote the averaged IPR and NPR over all single-particle
eigenstates, respectively.

It is known that when the spectrum contains only extended
states, we have IPR ∼ L−1 while NPR is finite. In contrast,
when the spectrum contains only localized states we have
NPR ∼ L−1 while IPR is finite. Only when the spectrum con-
tains both extended and localized states, both IPR and NPR
are finite.

A plot of IPR and NPR for t2 = 1/2 is shown in Fig. 7. We
can see that the intermediate phase indeed appears for Vc1 <

V < Vc2, where Vc1 = 1/2 and Vc2 = 1 + √
3/2 for t2 = 1/2.

It is interesting to note that the IPR is almost constant in the
extended phase (0 < V < Vc1) for this non-Hermitian model,
indicating that the localization length of the eigenstates does
not decrease much when V is increased from 0 to Vc1. In
contrast, for a Hermitian quasiperiodic model, there is a clear
decrease of IPR in the extended phase as V increases from 0
to Vc1 [23,27]. However, currently we do not fully understand
the reason behind this difference.

FIG. 7. IPR and NPR for the model in Eq. (A1) with t2 = 1/2.
The yellow background highlights the region when both extended
and localized states appear in the energy spectrum.

APPENDIX B: FURTHER DETAILS ON THE
EXPERIMENTAL PROPOSAL

In this section, we provide additional details on the experi-
mental proposal in Fig. 4 in the main text.

1. The long-time dynamics

We first focus on the long-time behavior of the system, and
discuss the switching behavior observed in Fig. 4 in the main
text.

We first discuss panel (e) of Fig. 4 in the main text, which
corresponds to V = Vc2 + 1. In this case the state |Eamp〉
is localized around the j = −6 waveguide. Meanwhile, the
eigenvalue of the state localized around the j = 2 waveguide
has an imaginary part that is only slightly smaller. Such a
result can be seen in Fig. 8(a). Consequently, the waveguide
at j = 2 quickly takes over the initial excitation, because it
is much closer to the initially excited waveguide (at j = 0)
than the waveguide at j = −6. However, the state |Eamp〉
eventually dominates the dynamics at long times, and the
excitation finally collapses onto the waveguide at j = −6.

FIG. 8. The two eigenstates with the largest imaginary energies
in an L = 21 system for the model in Eq. (A1). In particular, the
blue line corresponds to the state |Eamp〉 defined in the text. (a) and
(b) show the results with V = Vc2 + 1 and V = Vc2 + 2, respectively.
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FIG. 9. Short-time behavior of the experimental protocol shown
in Fig. 4(a) in the main text. The system consists of L = 21 waveg-
uides, which are described by the model in Eq. (A1). (a)–(d) show
the quench dynamics starting from an initial excitation in the middle
j = 0 waveguide for V = Vc1 − 0.1, Vc1 + 0.3, Vc2 + 1, and Vc2 + 2,
respectively. The unit of time is τ = h̄/t1 in all figures.

In contrast, when V = Vc2 + 2, which corresponds to panel
(f) of Fig. 4, the state |Eamp〉 now resides in the waveguide at
j = 2, as shown in Fig. 8(b). As a result, the initial excitation
quickly collapses onto the waveguide at j = 2, and will not
switch to other waveguides afterwards. It is also worth noting
that the strong localization limit of V = Vc2 + 2 can be un-
derstood directly from the potential distribution in Fig. 4(b) in
the main text, because all eigenstates are well approximated
by the Wannier functions in this limit, and the eigenvalues are
also close to the potential energies in each waveguide. As we
can see from Fig. 4(b) in the main text, Im(Vj=2) is indeed the
largest among all, while Im(Vj=−6) is a close second. This
is the fundamental reason why the dynamics in the strong
localization limit is dominated by these two waveguides.

2. The short-time dynamics

Having understood the long-time dynamics, we now dis-
cuss the short-time behavior of the quench dynamics, which
is shown in Fig. 9. First, we observe that the initial excitation
at j = 0 was only retained in the system for less than t = τ

in all four cases, where τ = h̄/t1 is a natural unit of time
in our model. Second, in the presence of extended states
(V < Vc2), the signal quickly spreads out to all waveguides.
In particular, a light-cone-like structure is clearly visible, as
shown in Figs. 9(a) and 9(b). In contrast, when the spectrum
contains localized states only (V > Vc2), the light-cone-like
structure is gone. Instead, the initial excitation switches be-
tween different waveguides during the time evolution, and
the exact dynamical process depends on the structure of the
energy spectrum. For example, in Fig. 9(c), when τ < t < 2τ

the light propagates in the form of a state with appreciable

amplitudes on the j = −3, j = −1, and j = 2 waveguides.
However, when t > 2τ the amplitudes in the j = −3 and
j = −1 waveguides gradually die off, and only the j = 2
waveguide has an appreciable amplitude. The behavior in
Fig. 9(d) is similar to that in (c), although the amplitude in
the j = 2 waveguide is much stronger when t > 2τ .

APPENDIX C: THE CASE OF COMPLEX
HOPPING PARAMETERS

In order to illustrate the versatility of our method, in this
section, we show that we can derive the exact ME condition
even when both t1 and t2 are complex. This extension also has
direct experimental applications because in photonic lattices
it is possible to generate complex hoppings between neigh-
boring waveguides. Specifically, we consider the following
Hamiltonian,

H =
∑

j

(t1eiφ1 c†
j c j+1 + t2eiφ2 c†

j c j+2 + H.c.) +
∑

j

Vjn j .

In the above equation, the two phases can be reduced to one
independent parameter φ2 − 2φ1 by the substitution c†

j →
e−iφ1 jc†

j . As a result, we shall consider the following Hamilto-
nian instead

H̃ =
∑

j

(c†
j c j+1 + t̃2c†

j c j+2 + Vjn j + H.c.), (C1)

where we have defined t̃2 = t2eiφ with φ = φ2 − 2φ1. Note
that we again set t1 = 1 and t2 > 0, in accordance with our
convention in the main text.

To proceed, we now apply the Fourier transformation in
Eq. (A7) to rewrite Eq. (C1) in terms of f (θ ) as

V f (θ + α) = [E − 2 cos θ − 2t2 cos(2θ − φ)] f (θ ).

Correspondingly, the function G(E ) and the set UE are defined
respectively as

G(E ) = 1

2π

∫ 2π

0
ln |E − g(θ )|dθ, (C2)

UE = {E : ∃ θ, s.t. E = g(θ )}, (C3)

where g(θ ) ≡ 2 cos θ + 2t2 cos(2θ − φ).

1. An exact expression for G(E )

For the present model, we can still derive an analytic ex-
pression for G(E ):

G(E ) = 1

2π

∫ 2π

0
ln |E − 2 cos θ − 2t2 cos(2θ − φ)|dθ

= 1

2π

∮
|z|=1

ln
∣∣z + 1/z + t̃2z2 + t̃∗

2 /z2 − E
∣∣dz

iz

= 1

2π

∮
|z|=1

ln
∣∣t̃2z4 + z3 − Ez2 + z + t̃∗

2

∣∣dz

iz

= ln t2 +
4∑

k=1

1

2π

∮
|z|=1

ln |z − zk|dz

iz
, (C4)
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FIG. 10. (a) plots the two transition points Vc1,Vc2 with respect
to t2 obtained numerically. (b) and (c) plot t2 = 0.7 and t2 = 0.3
respectively. The color of (b) and (c) represents the fractal dimension
of the eigenstates and the black lines are derived numerically from
G(E ) = ln |V |. Finally, φ2 − 2φ1 = π/4 in all three figures and the
system size is L = 610.

where zk are the four roots of the following equation:

t̃2z4 + z3 − Ez2 + z + t̃∗
2 = 0. (C5)

If we further note that

1

2π

∮
|z|=1

ln |z − z′|dz

iz
=

{
ln |z′|, |z′| � 1
0, |z′| < 1 , (C6)

we find that

eG(E ) = t2

4∏
k=1

max(|zk|, 1), (C7)

which satisfies eG(E ) � t2. Because zk are just the roots of a
quartic equation, they can still be written in closed forms.
Besides, when φ = 0, we can substantially simplify zk by the
following relation

0 = z + 1/z + t2z2 + t2/z2 − E

= (z + 1/z) + t2(z + 1/z)2 − (E + 2t2), (C8)

which can be used to derive Eq. (A10).
In Figs. 10(b) and 10(c), we compare the predicted ME in

Eq. (C7) with the single-particle spectrum in a finite system.

In particular, we choose φ = π/4 and study two cases with
t2 = 0.7 and t2 = 0.3, respectively. We find that our theoreti-
cal predictions of the ME (black solid line) agrees well with
the numerical results.

2. An exact expression for t (c)
2

Another interesting observation from Fig. 10(a) is that the
structure of the ME is again different for small t2 and large t2,
although the critical point now shifts to t2 ≈ 0.45 instead of
1/4 for the φ = 0 case. We now show that this critical t (c)

2 can
again be determined analytically. This can be done without
writing down zk explicitly.

To begin with, note from Eq. (C5) that we have z1z2z3z4 =
t̃∗
2 /t̃2, which implies that

4∑
k=1

ln |zk| = ln |t̃∗
2 /t̃2| = 0. (C9)

As a result, we note from Eq. (C7) that

G(E ) =
4∑

k=1

max (ln |zk|, 0) + ln t2 (C10)

= 1

2

4∑
k=1

|ln |zk|| + ln t2 � ln t2. (C11)

Hence, the last equality holds if and only if all four roots
satisfy |zk| = 1.

We know that Vc1 = min eG(E ), so if there exists an energy
E that allows such four roots, then Vc1 = t2, independent of φ.
Besides, if there are more than one such E , they all turn into
localized states at once as V passes t2. Hence, to determine
the critical t2, we need to check whether Eq. (C5) allows four
roots on |z| = 1 for some E . Equivalently, we can ask whether
the equation E = 2 cos θ + 2t2 cos(2θ − φ) allows four roots
in a period for some E . This condition amounts to ask whether
2 sin θ + 2t2 sin(2θ − φ) = 0 has four roots. Based on this
observation, we can derive the expression for the critical point
t (c)
2 as follows:

t (c)
2 (φ) = 1

4

[∣∣∣∣sin
φ

2

∣∣∣∣
2/3

+
∣∣∣∣cos

φ

2

∣∣∣∣
2/3]3/2

. (C12)

In particular, when φ = π/4, we have t (c)
2 ≈ 0.448, in agree-

ment with the observation in Fig. 10(a).
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