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Spectral crossovers and universality in quantum spin chains coupled to random fields
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We study the spectral properties of and spectral crossovers between different random matrix ensembles
[Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE)] in correlated spin-chain
systems, in the presence of random magnetic fields, and the scalar spin-chirality term, competing with the
usual isotropic and time-reversal invariant Heisenberg term. We have investigated these crossovers in the
context of the level-spacing distribution and the level-spacing ratio distribution. We use random matrix theory
(RMT) analytical results to fit the observed Poissonian-to-GOE and GOE-to-GUE crossovers, and examine the
relationship between the RMT crossover parameter λ and scaled physical parameters of the spin-chain systems
in terms of a scaling exponent. We find that the crossover behavior exhibits universality, in the sense that, it
becomes independent of lattice size in the large Hamiltonian matrix dimension limit. Moreover, the scaling
exponent obtained from such a finite size scaling analysis, seems to be quite robust and independent of the type
of crossover considered or the specific spectral correlation measure used.
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I. INTRODUCTION

The Hubbard model and some of its generalizations [1–4]
are prototypical models for interacting electrons moving in a
highly correlated manner, on a lattice. It is well known that
under certain conditions like large local (onsite) Coulomb
repulsion and for an integer number of electrons per lat-
tice site, the charge degrees of freedom are frozen out (no
net number and hence charge fluctuations at sites, to a first
approximation) while the spin and the orbital degrees of free-
dom remain active via relative change in intrasite spin-orbital
occupancies. This results in effective spin-orbital intersite ex-
change interactions leading to Anderson superexchange [5–7]
and Kugel-Khomskii–like [8,9] physics. For the single-band
Hubbard model, or for multiband models with very large
Hund’s coupling, orbital fluctuations are irrelevant and this
leads to a variety of spin-only Hamiltonians, the most ba-
sic of which is the isotropic Heisenberg model. While the
parent fermionic models are difficult or impossible to solve
exactly, especially in higher dimensions, even the effective
spin Hamiltonians embody very rich physics and often do
not yield to exact solutions, especially in the presence of
spin-orbit coupling and magnetic-field-induced anisotropies
[10–16]. Numerical solutions become very important in these
circumstances.

Another central paradigm of modern condensed matter
physics is the presence of disorder. While the problem of
disorder (random site and bond energies mimicking impuri-
ties in real solids) in absence of interactions was addressed
a long time ago by Anderson and coworkers [17–20], the
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generic problem of disorder in the presence of electron cor-
relations is a very difficult one and only limited success has
been achieved [21–24]. In this regime one has to depend
even more on numerical methods, which are further compli-
cated by an exponentially growing basis size and the need to
perform some kind of averaging over numerous disordered
configurations.

One of the techniques that can be used to study the physics
of such systems is random matrix theory (RMT) [25–29],
which deals with the statistical properties of eigenvalues and
eigenfunctions of matrices, with random-valued elements.
Since the Hamiltonians for disordered, interacting systems
involve very large matrices with random entries, the con-
nection becomes apparent. In recent times there have been
several studies in this direction [30–36]. In this paper we
investigate the systematics of eigenvalue statistics in Heisen-
berg spin chains, in the presence of a random inhomogeneous
magnetic field, and the scalar-chirality three-spin interaction,
whose various limits lead to the preservation or breaking of
various unitary and antiunitary symmetries, leading to various
eigenvalue statistics which can be described by random matrix
ensembles with appropriate symmetry properties, as detailed
below [25–28,37].

Wigner first introduced RMT in physics in the context of
explaining the statistical properties of nuclear spectra [38–40].
Since then RMT has been successfully applied in the spectral
study of various disordered systems, quantum chaotic sys-
tems, and large complex atoms and molecules [25,27,41]. It
has also found its application in stock-market data analysis, at-
mospheric science, medical science, and in many more fields
[29,42–44]. The valuable contributions of Wigner and Dyson
in explaining complex energy levels of large nuclei [45–49],
provide deep insights into the generic properties of energy
spectra of physical many-body quantum systems. Dyson pi-
oneered the classification of random matrix ensembles via his
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famous threefold way [37,49], depending on the presence or
absence of various unitary (mainly rotations) and antiunitary
(time-reversal) symmetries in the system. The representation
of most physical Hamiltonians, rendered nonintegrable due
to the presence of random components like disorder, involve
relatively large matrices with random entries, and hence the
spectral properties of such systems fall well within the ambit
of RMT. Spacing distribution of energy levels in RMT plays
a decisive role as an indicator of integrability of a quantum
many-body system [50–54]. The Berry-Tabor conjecture [55]
and the BGS (Bohigas, Giannoni, and Schmit) conjecture [56]
asserted that the distribution of level spacings of an integrable
and a nonintegrable quantum system follow the Poissonian
and the Wigner-Dyson distributions, respectively. Generally,
there is no single definition of integrability [57] of a quan-
tum system (or the fact as to whether the system is exactly
solvable or not): one popular practice is to represent this
in terms of thermalization [54]. Classically, thermalization
of a system is dictated by its dynamical chaotic behavior,
ergodicity, etc [58–60]. Classical chaotic systems are nonin-
tegrable in nature. But there is no such obvious feature which
leads to the thermalization in quantum many-body systems
[61,62]. Quantum integrable systems are comprised of a large
number of physical operators (conserved quantities) in the
thermodynamic limit [63,64], that commute with the system
Hamiltonian. On the other hand, quantum nonintegrable sys-
tems do not have an extensive number of conserved quantities
and their dynamics is not strictly guided by conservation laws
[61,65,66].

In RMT, nearest-neighbor spacing distribution (NNSD),
viz., the distribution of spacings between consecutive eigen-
values, is commonly used to study the local fluctuations in the
eigenspectrum. Depending upon the underlying symmetries,
and the correlations among the eigenvalues, universal features
associated with Poissonian statistics, Gaussian orthogonal en-
semble (GOE) statistics, Gaussian unitary ensemble (GUE)
statistics, or Gaussian symplectic ensemble (GSE) statis-
tics, can follow. When the eigenvalues are uncorrelated, the
NNSD follows the Poissonian distribution. Whereas NNSD
of correlated eigenvalues follows one of the three above-
mentioned Gaussian statistics [25,49,67]. In real physical
systems, the preservation or breaking of various unitary and
antiunitary symmetries (like time-reversal symmetry, uncon-
ventional time-reversal symmetry, rotational symmetry, etc.),
leads the spectral fluctuations to follow one of the above-
mentioned statistics. For example, the NNSD computed
using the spectra of heavy nuclei [45–49], chaotic billiards
[68,69], nonintegrable spin chains [30,31,33], Sachdev-Ye-
Kitaev (SYK) Hamiltonian [70], etc., all agree with the
Wigner-surmise results for NNSD [25–27]. In addition, there
can be circumstances when there is a “partial breaking” of
a symmetry which results in the system spectra to follow
an intermediate statistics [25,27,31,33,71–75]. These sys-
tems are analyzed via crossover random matrix models or
RMT interpolating functions [28,31,72,75–83] that depend
on symmetry-breaking or RMT crossover parameters (dis-
cussed in Sec. III A). Limiting values of these parameters lead
to the two extremes of the concerned symmetry crossover.
These RMT crossover parameters can often be associated with
certain physical parameters of the system under study, for in-

stance, magnetic field, that breaks rotational and time-reversal
symmetries [80,84].

The well-known Wigner-surmise results for NNSD (dis-
cussed in Sec. III A) can be derived using 2 × 2 Gaussian
random matrices and serve as very good approximations
to the large-dimension exact results [25,40,41,85]. Over the
years, among other things, these results have been used to
analyze statistical behavior of spectra from large many-body
quantum systems [25,27,32]. Similar results, comprising in-
terpolating functions, have also been empirically proposed
or derived using small-dimension matrices for studying
symmetry crossovers [72,81,86–88]. These Wigner-surmise-
like results have been quite fruitful in examining NNSD
crossovers in quantum many-body systems with stochas-
tic interactions or couplings to random external fields. In
quantifying the spectral fluctutations in symmetry crossovers,
the physical symmetry-breaking parameters need to be suit-
ably scaled, which results in the universal validity of the
Wigner-surmise-like formulas, and thereby their applicability
to a large variety of systems and problems ensues [72,76–
79,82,89]. Some examples in this context include heavy nuclei
[90], metallic ring in a magnetic field [91], metal-insulator
transition [92], magnetoconductance of ballistic quantum dots
[93], quantum kicked rotor [75], bipartite entanglement en-
tropy [94], etc. NNSD crossovers can also be utilized for
studying symmetry-dictated spectral crossovers in quantum
spin systems [31].

In this work, we study the crossover between different
random matrix ensembles using linear spin-chain models
similar to the ones discussed in Refs. [30,31]. Most earlier
studies, in this context, have typically used empirical or phe-
nomenological crossover formulas. We, on the other hand,
use interpolating functions based on crossover RMT models,
such as the ones derived in Refs. [72,87], where the physical
meaning of the symmetry-crossover parameters is lucid. We
successfully map the crossovers in the physical spin-chain
models onto the RMT crossover ensembles and thus cor-
roborate the associated universality. By comparing the RMT
crossover parameters with the symmetry-breaking physical
parameters in spin-chain models, we identify universal scaling
exponents for different NNSD crossovers in the large system
size limit. In addition to NNSD, we also examine the distri-
bution of the ratio of two consecutive level spacings. This
quantity has the advantage that, unlike the computation of
NNSD, it does not require the unfolding of the spectra due
to the presence of nonuniform density of states (DOS). Due to
this, the study of spacings-ratio related statistics has gained
a lot of attention in recent years among researchers after
being introduced by Oganesyan and Huse in studying statisti-
cal behavior of one-dimensional spinless-fermion model [95].
Wigner-surmise-like results for the ratio distribution (RD),
based on 3 × 3 matrix models, are available for the three
standard symmetry classes of RMT, as well as for certain
crossover ensembles [75,82,96,97]. Over the years these re-
sults of ratio distribution have been successfully applied in
studying statistical behavior of large quantum many-body sys-
tems like spin-chain systems [33,34,73,98–100], many-body
quasiperiodic systems [35], Bose-Hubbard model [36,52], etc.
Similar to NNSD, our detailed analysis of ratio distribution
in spin-chain models for various symmetry crossovers and
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comparison with RMT results again leads to identification of
universal scaling exponents.

The presentation scheme in the rest of this paper is as fol-
lows. In Sec. II, we describe the spin-chain Hamiltonian used
in our study and its various limits which give rise to distinct
symmetry classes. In Sec. III we summarize the various RMT
key concepts and results used in our analysis. We present our
calculations and results in Sec. IV which includes, inter alia, a
detailed explanation of the universality aspects. We conclude
in Sec. V with summary and discussion of our work.

II. METHODOLOGY: THE SPIN HAMILTONIAN,
ITS SYMMETRIES, THE BASIS AND

CONFIGURATION AVERAGING

We consider a one-dimensional spin- 1
2 Hamiltonian H ,

with one spin per lattice site. It consists of the usual isotropic
Heisenberg term (Hh), a random term (Hr) representing the
coupling of the spin system to a spatially inhomogeneous
(on the length scale of lattice spacings) and random magnetic
field,1 and the three-site scalar spin-chirality term (Hc) [30,31]
which appears in the third order of the strong coupling expan-
sion of the Hubbard model for a complex hopping amplitude,
induced in the presence of a magnetic field [16]. For example,
this kind of spin correlation term can emerge while probing
Mott insulators using circularly polarized laser [101]. We have

H = Hh + Hr + Hc

=
N−1∑
j=1

JS j · S j+1 +
N∑

j=1

h jS
z

j +
N−2∑
j=1

Jt S j · [S j+1 × S j+2].

(1)

This Heisenberg spin- 1
2 chain consists of N sites, S j is the

spin operator at site j, and J is the nearest-neighbor exchange
interaction. A Zeeman-like coupling of the spin chain to an
external stochastic magnetic field, is introduced via the ran-
dom term Hr , where h j is the random magnetic field along
the z direction at site j, which follows a Gaussian distribution
having zero mean and variance h2 [30]. The three-site inter-
acting scalar spin-chirality term [13–16] Hc is also included
in our Hamiltonian, with a coupling constant Jt . This term can

1This microscale inhomogeneity is essential to observe the spectral
crossovers that we intend to study because if one uses a random but
spatially uniform (again on the length scale of the lattices that we
use), the Zeeman term simplifies to the product of the uniform field
amplitude (hz) times the total Sz of the lattice. Such a term has no
effect at all when we restrict ourselves to the Sz = 0 sector of a lattice
with an even number of sites and the system will always remain in the
Poissonian regime. Even for a lattice with an odd number of sites, for
which the lowest sector is Sz = 1

2 , such a field amounts to a uniform
shift of all energy levels, that does not alter the level spacings or
their ratios (as these are calculated within a given realization of the
random field), in which we are interested. So again no crossovers
from the Poissonian regime will be observed.

be simplified as2

Jt S j · [S j+1 × S j+2] = 1

2

∑
k,l,m

iJtεklmSz
kS+

l S−
m, (2)

where εklm is the standard Levi-Civita symbol and each of k,
l , and m takes the values j, j + 1 and j + 2 (see the Appendix
for a derivation). This term favors a noncoplanar arrangement
of spins and hence counters the other two terms in this sense.
All other interactions in the Hamiltonian are expressed in
units of the Heisenberg coupling J throughout this paper (so
effectively J = 1.0).

It is well known from the literature [25,26,49,67] that the
eigenvalues of an integrable system are uncorrelated, there-
fore, the eigenvalue-spacing distribution of the Hamiltonian
is Poissonian. For the nonintegrable systems, on the other
hand, the presence or absence of various unitary and antiu-
nitary symmetries drive the eigenvalue spacings of the system
Hamiltonian to follow different Gaussian ensemble distribu-
tions, as described below.

Any angular momentum operator J is odd under the usual
time-reversal symmetry operation, i.e., T0J T −1

0 = −J . The
antiunitary time-reversal operator for a spin- 1

2 system is de-
fined as T0 = eiπSy/h̄K where Sy is the y component of spin
operator and K is the complex-conjugation operator. The spin,
being an angular momentum, is odd under time reversal and
for a particular term of a spin Hamiltonian, the evenness or
oddness under the time-reversal symmetry depends on the
number of the spin operators involved in that term. Hh is time-
reversal-symmetry invariant (or even) (T0HhT −1

0 = Hh), as it
involves two spin operators. But, Hr and Hc are odd under time
reversal as the number of the spin operators involved in these
terms is odd (one and three, respectively). The unconven-
tional time-reversal symmetry is discussed in Refs. [26,30,31],
where the antiunitary unconventional time-reversal operator
is defined by T = eiπSx/h̄T0. Hh and Hr are even and Hc is
odd under the unconventional time-reversal symmetry. This is
because the unitary operator eiπSx/h̄ reverses the signs of Sy

j
and Sz

j but not of Sx
j . So, in totality, T reverses the sign of Sx

j
alone. Thus, the full Hamiltonian H is neither even nor odd
under these antiunitary symmetry operations.

Now, when only the Heisenberg term is present in Eq. (1),
the Hamiltonian of the system is preserved under both an-
tiunitary symmetries T0 and T . So the eigenvalues of the
Hamiltonian matrix are uncorrelated and the level spacings are
expected to follow the Poissonian distribution. If we switch
on Hr , then T0 is broken but the Hamiltonian H1 (= Hh + Hr)
is still invariant under T . The Hamiltonian matrix becomes
real symmetric and the correlation statistics of the eigenvalues
should follow the GOE distribution. When all the three terms
of Eq. (1) are present, both antiunitary symmetries are broken
and the matrix representation of H becomes complex Her-
mitian [complex nature is introduced by the scalar-chirality
term, apparent from Eq. (2)]. The correlation statistics of the
eigenvalues should now follow GUE distribution. By varying
the relative amplitudes of each term in H , we can achieve

2The 1
2 factor in the simplified form is missing in Refs. [30,31]. See

the Appendix for derivation.
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crossovers between the Poissonian, GOE, and GUE distribu-
tions.

To construct the basis for our exact diagonalization calcu-
lations, we consider a spin-chain system with a spin 1

2 at each
lattice site. That means each of the N sites of the system can be
occupied by either of an up spin (mz = 1

2 ≡ ↑) or a down spin
(mz = − 1

2 ≡ ↓), where mz is the eigenvalue of Sz. There exist
2N number of basis states (|mz

1mz
2mz

3. . .m
z
N 〉) for an N-site sys-

tem. Here we can see that [S2, H] �= 0 (where S2 is the square
of the total spin operator with S = ∑N

j=1 S j) but [Sz, H] =
0 (where the total z component of spin Sz = ∑N

j=1Sz
j). So

among the total 2N number of basis states we only consider
a subspace having a constant Sz value. In our calculations
we have considered systems where N is even and we restrict
ourselves to the Sz = 0 subspace, which includes contribu-
tions from all total S sectors and has the largest dimension
(n = CN

N/2). As we are considering the whole spectrum, the
sign of J is irrelevant unlike in ground-state studies. We have
used full exact diagonalization methods to obtain the energy
eigenvalues and eigenfunctions, as we need the full spectrum
of eigenvalues. This consequently limits the system sizes that
we can access, to some extent, but manages to capture the
universality behavior that we demonstrate in this work.

Since we are considering the system in the presence of a
random, inhomogeneous magnetic field, one typically needs
to average over several random configurations or realizations
of the magnetic field, in order to obtain good spectral statis-
tics. In a real-life experimental situation, this could be due
to the coupling of the system to an external magnetic field,
fluctuating rapidly on the timescale of a typical magnetic mea-
surement. This means that any measured physical quantity is
essentially time averaged over several configurations of this
rapidly fluctuating magnetic field, which is mimicked by an
ensemble average over several random configurations in our
calculations, implicitly implying usual statistical ergodicity
[58–60]. Each configuration, for a given h (standard deviation
of the Gaussian distribution from which the magnetic fields
are drawn), consists of a set of N site magnetic fields {hj}. For
each such set, the Hamiltonian is diagonalized in the above
basis and the energy spacings are computed and stored. For
the purposes of configuration averaging, we consider a set of
M such configurations, henceforth referred to as an ensemble.
This diagonalization and computation of spacings is repeated
for each member of the ensemble, and the final set of all
energy spacings from all the configurations is used to plot
the histogram (distribution) of energy spacings. As h is varied
over some suitable grid, the entire process above is repeated
and a level-spacing distribution is obtained for each h. Details
of the exact number of configurations used in an ensemble,
for each lattice size, are discussed in Sec. IV. We find that the
larger the lattice size (and hence the basis size), the smaller the
number of configurations are needed to obtain good statistics
or, equivalently, a smooth distribution profile. This indeed
reflects the “self-averaging” or the “spectral ergodicity” prop-
erty of RMT, which demonstrates the equivalence of the
ensemble average and the spectral average, in the limit of
large Hamiltonian matrices [26,102]. This also applies to the
spectral studies of disordered many-body quantum systems
for subspaces with relatively large basis sizes [103,104].

TABLE I. Probability distribution of nearest-neighbor spacings
for unfolded eigenvalues [25,26].

Type of distribution NNSD probability density

Poissonian PPoi(s) = exp(−s)
GOE PGOE(s) = (πs/2) exp(−πs2/4)
GUE PGUE(s) = (32s2/π 2) exp(−4s2/π )

III. RANDOM MATRIX THEORY (RMT)

In this section, we summarize the RMT results which are
required for the analysis of our results. These include the exact
expressions for the nearest-neighbor spacing distributions and
ratio distributions, for invariant as well as crossover ensem-
bles.

A. Nearest-neighbor spacing distribution (NNSD)

In RMT, the fluctuation properties of a system’s eigenspec-
trum are quantified using both short-range and the long-range
level statistics [25,26]. NNSD is the most widely studied
statistical measure to quantify the local correlations among
energy eigenvalues of a given system. Since the DOS is
nonuniform for the eigenspectrum of an arbitrary physical
system, one requires to implement the unfolding procedure
to compare the calculated fluctuations with the standard RMT
results. In our analysis pertaining to NNSD, we use polyno-
mial fits to the calculated DOS and use it to unfold the spectra
[25,26,30,80]. If the ordered sequence of n energy eigen-
values of a Hamiltonian is given by ε1 < · · · < εn, then the
unfolded eigenvalues are calculated using ε̃ j = n

∫ ε j

ε1
ρ(ε)dε,

where ρ(ε) = dN (ε)/dε is the fitted DOS, and N (ε) is the
cumulative DOS. The nearest-neighbor level spacing of the
unfolded eigenvalues is defined as s j = ε̃ j+1 − ε̃ j . The corre-
sponding frequency distribution, or rather its fitted envelope
[P(s)], is then compared with the RMT analytical results for
its quantification, as discussed in the Introduction. The Wigner
surmise expressions for the three Dyson symmetry classes
along with the Poisson distribution are compiled in Table I,
for this purpose.

In this paper, we are interested in studying crossover be-
tween different RMT ensembles. It is modeled using the
Pandey-Mehta Hamiltonian [78,79,105]

H = H0 + λH∞√
1 + λ2

, (3)

wherein the symmetry of the primary Hamiltonian H0 is
broken by the perturbing Hamiltonian H∞, with the extent
of this symmetry breaking being controlled by the crossover
parameter λ. The two extremes of H, viz., H0 and H∞, be-
longing to two different symmetry classes, are obtained for
λ = 0 and λ → ∞. Our focus in the current work is on exam-
ining the Poissonian-to-GOE and GOE-to-GUE crossovers,
which is achieved by tuning the crossover parameter. The
Wigner-surmise-like results for the spacing distributions have
been derived in Ref. [72] for these crossovers. The NNSD
function interpolating between the Poissonian and the GOE
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TABLE II. Probability distribution of ratio of consecutive spac-
ings [96,97].

Type of distribution RD probability density

Poissonian PPoi(r) = 1/(1 + r)2

GOE PGOE(r) = 27r(r + 1)/[8(r2 + r + 1)5/2]
GUE PGUE(r) = 81

√
3r2(r + 1)2 /[4π (r2 + r + 1)4]

distributions is given by [72,106]

fP→O(λ, s) = su2(λ)

λ
exp

(
−u2(λ)s2

4λ2

)

×
∫ ∞

0
exp(−x2 − 2xλ)I0

(
sxu(λ)

λ

)
dx. (4)

Here, I0(z) is the modified Bessel function and u(λ) =√
πU (− 1

2 , 0, λ2), with U (a, b, z) being the confluent hyper-
geometric function of the second kind (Tricomi function). The
limiting cases of λ → 0 and λ → ∞ lead to the Poissonian
and the GOE spacing distributions, respectively, as shown in
Table I. Similarly, the interpolating function for GOE-to-GUE
crossover is given by [72,106]

fO→U (λ, s) =
(

2 + λ2

2

)1/2

D2(λ)

× s exp

(
s2D2(λ)

2

)
erf

(
sD(λ)

λ

)
, (5)

where

D(λ) =
(

π (2 + λ2)

4

)1/2[
1 − 2

π

{
arctan

(
λ√
2

)
−

√
2λ

2 + λ2

}]
.

In this case, the limits λ → 0 and λ → ∞ result in the GOE
and the GUE spacing distributions, respectively, as given in
Table I. These interpolating functions are based on 2 × 2 ma-
trix models, however, once the transition parameter is suitably
scaled, these results can be applied to larger dimensional cases
also [80,81,106–113]. One of our key objectives in this paper
is to probe such a scaling for spin-chain systems.

B. Ratio distribution (RD)

As discussed in the Introduction, another short-range fluc-
tuation measure which circumvents the need of unfolding and
has become quite popular in recent times is the distribution of
the ratios of consecutive level spacings [33,34,73,95–97,114].
Considering again the ordered sequence of n energy eigen-
values ε1 < · · · < εn, one examines the distribution of the
ratio of two consecutive level spacings given by r j = (ε j+2 −
ε j+1)/(ε j+1 − ε j ). The RMT results for the ratio distribution
P (r), based on 3 × 3 matrix models, have been derived for
the three standard symmetry classes, along with the Poisso-
nian case in Ref. [96]. These are analogous to the results for
NNSD and are compiled in Table II. A related quantity is
r̃ = min(r, 1/r), which is also used quite often as this quantity
gets restricted in the interval [0,1], and the corresponding
probability distribution is P̃ (r̃) = 2P (r̃)�(1 − r̃).

As far as the crossover is concerned, there are several
phenomenological formulas available for the RD (see, for

example, Refs. [33,73,114]). However, we are interested in
results based on RMT crossover model as in Eq. (3). In
this context, to the best of our knowledge, there is no result
available for the Poissonian-to-GOE crossover and we resort
to numerics. On the other hand, an exact expression for the
ratio distribution, based on a 3 × 3 matrix model, is known for
the GOE-to-GUE crossover [75]. It is given by the following
interpolating function:

FO→U (λ, r) = r(1 + r)

16
√

6π
(1 + λ2)3/2

× [g(a, b) + g(a, br) − g(a, br + b)], (6)

where

g(η, ξ ) = ξ (5η2 + 3ξ 2)

η4(η2 + ξ 2)2
+ 3

η5
arctan

(
ξ

η

)
,

a(r) =
√

(1 + r + r2)/6 and b(λ) = 1/(2
√

2λ). When λ → 0
this interpolating function follows GOE statistics and for λ →
∞ it follows GUE statistics, as given in Table II. Similar to the
case of NNSD, when applied to large-dimensional matrices,
the crossover parameter λ in the above expressions needs to
be scaled properly as we will see in Sec. IV B.

IV. CALCULATIONS AND RESULTS

In this section, we present the details of our calculations
and various results concerning RMT analysis of the spin-chain
system for the various symmetry crossovers.

A. Nearest-neighbor spacing distribution (NNSD)

We consider nearest-neighbor spacings of energy eigenval-
ues computed from the Hamiltonian matrix H by its numerical
diagonalization and analyze its statistics. We notice that level-
spacing distributions for spin-chain systems with lattice size
N = 14 (matrix dimension for the Sz = 0 subspace, n =
3432) and above, follow standard RMT results.3 So, we carry
out calculations for spin chains having N = 14 and 16 (n =
12 870) sites, on an ensemble of M = 50 and 10 matrices,
respectively. Also, performing diagonalization for systems
having N = 18 (n = 48 620) or more, is computationally very
expensive, so we do not attempt the full basis calculation, but
resort to a reduced basis calculation, based on spin-inversion
symmetry consideration, as discussed later. Periodic boundary
conditions give rise to extra degeneracies in the spectra and,
therefore, we consider open boundary condition throughout
our calculations. We have unfolded the system spectra using
polynomial fits (as mentioned in Sec. III A) to obtain unfolded
spectra for which the average spacing equals unity.

1. Poissonian-to-GOE crossover

To realize Poissonian-to-GOE crossover we proceed as
follows. To begin with, we switch off the scalar chirality term
(Jt = 0) and the random field term (h = 0). In this setting,

3We have studied the level-spacing statistics for smaller systems
having N = 10 (n = 252) and N = 12 (n = 924); they do not follow
the standard RMT ensembles, closely enough.
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the system is integrable and NNSD obeys Poissonian level-
spacing distribution [PPoi(s)], as expected. We then switch
on the random term and vary the magnetic field values h j

on the sites. As mentioned earlier, these are drawn from
the Gaussian distribution with mean zero and standard de-
viation h. This introduces disorder in the system and the
system becomes nonintegrable. Each set {h j} of the N ran-
dom site fields corresponds to one member of the aforesaid
ensemble or one realization of disorder, as already discussed
earlier. As the magnitude of h is gradually increased, a
crossover from Poissonian to GOE statistics is observed. After
a certain value of h, the regime beyond the applicability of
RMT is reached and the statistics reverts back to Poisso-
nian, due to localization of eigenstates. This simply means
that, due to a very high magnetic field, the quantum fluc-
tuation effects included in the Heisenberg term are strongly
suppressed, and consequently the weights of the eigenstates
spread over a much fewer number of basis configurations
now. In Fig. 1 we show this Poissonian→GOE→Poissonian
(integrable→quantum chaotic→integrable) transition with
the increasing random magnetic field value.

To estimate the threshold for the magnetic field at which
the Poisson-GOE crossover is more or less complete, we
evaluate the Kullback-Leibler divergence (KL divergence)
[115–117] of the calculated spacing distribution P(s) at dif-
ferent values of h, with respect to PGOE(s). This comparison
is shown in Fig. 2 for the N = 14 and 16 systems. The KL
divergence is a measure of the difference between two proba-
bility distributions. Let us say p and q are the two probability
distributions in question, then the KL divergence of q relative
to p is given by

DKL(p||q) =
∫

dx p(x) ln

(
p(x)

q(x)

)
. (7)

For our computation, we use the discretized version of this
formula. When the two distributions are same, i.e., p = q,

the KL divergence is zero, and for very distinct distributions,
it assumes a high value. Here, the two extreme cases cor-
respond to Poissonian and GOE distributions for which KL
divergence has a value ∼ 0.28 [using the analytical forms
PPoi(s) and PGOE(s), from Table I]. In Fig. 2, we observe that
these extreme KL divergence values are 0.24 and 0.26 for the
N = 14 and 16 systems, respectively, converging towards the
aforesaid theoretical value of ∼ 0.28.

From Fig. 2 we estimate that the Poissonian-to-GOE
crossover is achieved at about h = 0.17 and 0.13 for the N =
14 and 16 systems, respectively. Beyond the crossover value
of h, the systems enter in the GOE regime and KL divergence
saturates near zero as observed in Fig. 2.

Next, we plot the NNSD for the Poissonian-to-GOE
crossover for N = 14 (Fig. 3) and N = 16 (Fig. 4) systems,
and find out that both systems reach GOE at external magnetic
field values which are estimated from the KL divergence cal-
culation as h ∼ 0.17 and h ∼ 0.13, respectively. We observe
here that with increasing system size we need a lesser magni-
tude of the symmetry-breaking random magnetic field, which is
in agreement with RMT crossover studies in Refs. [77,78,89].
We now fit the RMT interpolating function fP→O(λ, s) of
Eq. (4) to these computed distributions to obtain the values
of the RMT crossover parameter λ, vis-a-vis the physical

FIG. 1. NNSD for N = 16. (a) Shows Poissonian distribution
when magnetic field is zero; (b) NNSD follows GOE for h = 0.2; and
(c) shows how Poisson distribution is recovered due to eigenvector
localization for a typical large magnetic field (h = 2.5).

crossover parameter h. We find that the best fits for N = 14,
the above two extremes are obtained, respectively, for λ =
0.013 and 1.578, whereas for N = 16, the respective values
are 0.013 and 1.507. Figures 3 and 4 show the corresponding
plots.

2. GOE-to-GUE crossover

To realize GOE-to-GUE crossover we switch on the scalar
chirality term in Eq. (1) by keeping the system in GOE regime,
for which the value of h is fixed at 0.2 [see Figs. 1(b) and 2].
We can observe GOE-to-GUE crossover by slowly increasing
the amplitude of scalar chirality term Jt . Again, to estimate
the exact crossover points for the GOE-to-GUE crossover,
we have used the KL divergence of P(s) with respect to
PGUE(s) and plotted DKL against the symmetry-breaking phys-
ical crossover parameter Jt in Fig. 5. Here, the two extreme

014205-6



SPECTRAL CROSSOVERS AND UNIVERSALITY IN … PHYSICAL REVIEW B 105, 014205 (2022)

FIG. 2. Variation of DKL(PGOE||P) [KL divergence of NNSD
P(s) with respect to PGOE(s)] with increasing value of the symmetry-
breaking crossover parameter h for the (a) N = 14 and (b) N = 16
systems.

cases correspond to GOE and GUE distributions for which KL
divergence has a value ∼ 0.047 [using the analytical forms
PGOE(s) and PGUE(s), from Table I]. We observe in Fig. 5
that these extreme KL divergence values are 0.055 and 0.057
for N = 14 and 16 systems, respectively. While increasing
Jt from zero, unlike the Poissonian-to-GOE crossover case,
here we observe that some threshold amount of scalar spin-
chirality amplitude (Jt ) is needed to even start breaking the
GOE symmetry (as indicated by the plateauing at low Jt ),
and further increment of Jt shows a linear variation with
λ. For N = 14 and 16 systems, these threshold values are
(Jt )Th ∼ 0.1 and (Jt )Th ∼ 0.07, respectively. The KL diver-
gence saturates at around Jt = 0.62 and at around Jt = 0.42
for the N = 14 and 16 systems, respectively. So we claim
that for these values the GOE-to-GUE crossover is complete.
As we have kept h fixed at 0.2, we again conclude that with
increasing system size, we can break the GOE symmetry of
the system with lesser magnitude of scalar spin chirality and
achieve the GUE distribution sooner.

Now, the GOE-to-GUE computed crossover data are
mapped on to the interpolating function fO→U (λ, s) of Eq. (5)
and the values of RMT crossover parameter λ are noted
against the physical crossover parameter Jt . We observe from
Fig. 6 that in the GOE regime, the value of the RMT crossover

FIG. 3. NNSD for N = 14. Poissonian-to-GOE crossover with
increasing h. (a), (c) Show the two limiting cases Poissonian and
GOE, respectively and (b) shows one of the intermediate cases. We
have used fP→O(λ, s) to fit this crossover and the values of the RMT
crossover parameter λ are determined.

parameter λ is very close to zero, and at around λ ∼ 1.7,
fO→U (λ, s) matches quite well with GUE distribution, for the
N = 14 system (Fig. 6), and for the N = 16 system it achieves
the GUE distribution for the RMT crossover value of λ = 1.9
(see Fig. 7, for details).

3. Crossovers using inverted spin basis

In this work, we are also interested in exploring the univer-
sality behavior of RMT spectral crossovers for our spin-chain
systems, in the large system size limit. For this, we need
to explore more than just two lattice sizes. This would also
enable us to properly examine the existence of a universal
scaling exponent (discussed in the next section). However,
we have already pointed out the computational limitations
to carry out calculations for systems beyond the lattice size
N = 16. To circumvent this problem, we resort to a symmetry
consideration to further reduce our system basis, as discussed
below [118]. In our calculations we have used spin chains
having even number of sites and, as discussed in detail ear-
lier, restrict our calculations to the Sz = 0 subspace. In this
scenario, there exists a pair of equivalent basis vectors which
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FIG. 4. Plots of NNSD for N = 16, similar to the N = 14 cases
in Fig. 3.

are related via global spin inversion [118]. If | ↓↓↑↑↓↑〉
denotes a basis of six-site system having three up spin and
three down spin, then the equivalent pair basis is denoted
by the basis | ↑↑↓↓↑↓〉. Now if we choose one basis vector
out of each pair, then we have two subsets of basis vectors
in the Sz = 0 subspace. We want to carry out NNSD calcu-
lations considering only one such subset and compare with
the full basis results. In Figs. 8(a) and 8(b) we have plotted
NNSD of N = 14 (n = 1716) and N = 16 (n = 6435) sys-
tems, considering M = 100 and 20, respectively. We observe
that the Poissonian-to-GOE crossovers take place around the
same symmetry breaking h values when compared to the
full basis calculations in Sec. IV A 1. We have also studied
GOE-to-GUE crossovers in Figs. 9(a) and 9(b) for the N = 14
and 16 systems, respectively, and observed that the values of
the physical crossover parameter Jt obtained from the inverted
basis calculations are in good agreement with the results ob-
tained from full basis calculations in Sec. IV A 2. The N = 18
system full basis (n = 48 620) calculations are not possible
due to computational limitations. However, in view of the
above observations, we study the N = 18 system using in-
verted basis (n = 24 310). For this, we consider M = 5 and
obtain the spacing distributions. These results are depicted
in Figs. 8(c) and 9(c), where we find the Poissonian-to-GOE

FIG. 5. Variation of DKL(PGUE||P) [KL divergence of NNSD
P(s) with respect to PGUE(s)] with the increasing value of symmetry-
breaking crossover parameter Jt for (a) N = 14 and (b) N = 16
systems.

crossover value for the N = 18 system is h = 0.085, and the
GOE-to-GUE crossover takes place at around Jt = 0.28, for
the same system, respectively. In the next sections, along with
the N = 14 and 16 systems with Sz = 0 basis, we use the
N = 18 system with inverted spin basis in all ratio distribution
calculations and in universality studies.

4. Universality in NNSD

In the preceding subsections, we used the RMT inter-
polation functions based on 2 × 2 matrix models to fit the
calculated data and obtained the crossover parameter λ. In
order to investigate the universal aspects of RMT spectral
crossovers, as discussed in the Introduction, we show that
after suitable scaling of the physical parameters h and Jt , the
crossovers are governed by identical values of the λ parameter
for different lattice sizes, thereby establishing universality
of the RMT crossover results. For the Poissonian-to-GOE
crossover we plot the variation of the RMT interpolating pa-
rameter λ [of the crossover function fP→O(λ, s)] against the
physical crossover parameter h in Fig. 10(a). Initially, it varies
linearly with increasing magnetic field value, then it saturates
as it approaches the GOE regime. We fit the linear part of this
plot using a scaling function nah, where n is the dimension
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FIG. 6. NNSD for N = 14; GOE-to-GUE crossover with in-
creasing scalar spin-chirality amplitude (Jt ) by keeping the system
at constant random magnetic field (h = 0.2). (a), (c) Show the two
limiting cases GOE and GUE, respectively, and (b) shows one of the
intermediate states. We have used fO→U (λ, s) to fit this crossover and
the value of the RMT crossover parameter λ is determined.

of the system Hamiltonian [n = 3432 for N = 14, n = 12 870
for N = 16, and n = 24 310 for N = 18 (inverted basis)] and
a is the scaling exponent. In Fig. 10(b), λ is plotted against
nah, the universal scaling exponent is found to be a = 0.23.
Therefore, we conclude that we have found universality in the
Poissonian-to-GOE crossover, in the large system size limit.

Similar behavior can be observed for the GOE-to-GUE
crossover in Fig. 11(a), where we have plotted the variation
of RMT interpolating parameter λ [of the crossover func-
tion fO→U (λ, s)] against the physical crossover parameter Jt .
Again, we have fitted the linear increment part in Fig. 11(b)
using the scaling function naJt and find that the universal
scaling exponent a takes the value 0.25 [using N = 14, 16,
and 18 (inverted basis) systems]. After the linear region,
further increment of Jt saturates the crossover parameter λ

into the GUE region. Thus, similar to the Poissonian-to-GOE
crossover, here also we observe universality in the GOE →
GUE crossover, in the large system size limit.

FIG. 7. Plots of NNSD for N = 16, similar to the N = 14 cases
in Fig. 6.

B. Ratio distribution (RD)

We now examine the spacings-ratio distribution. To esti-
mate the threshold of physical crossover parameters for which
spectral crossovers are achieved, we have computed the KL
divergence for NNSD. Similarly, we have studied the KL
divergence for RD and find that the DKL versus physical
crossover parameter variations are not much different from
NNSD. However, in the present case, it is interesting to study
the average of the ratios 〈r〉 and 〈r̃〉, which also help classify
the system in one regime or the other. It should be noted that
such a study is not useful in the case of NNSD since the un-
folding of eigenspectra necessarily makes the average spacing
unity. The averages 〈r〉 = ∫ ∞

0 rP (r)dr and 〈r̃〉 = ∫ 1
0 r̃P̃ (r̃)dr̃

can be computed and the exact RMT values of these average
ratios are included in Table III. We have calculated 〈r〉 and
〈r̃〉 for both the Poissonian-to-GOE and the GOE-to-GUE
crossovers considering the N = 14, 16, and 18 systems. We
have listed our calculated values of 〈r〉 and 〈r̃〉 at RMT
crossovers for different ensembles in Table III.

At Poissonian limit, the exact RMT value 〈r〉RMT is ∞
[96,114], but in practice we get relatively large finite val-
ues for our systems. The exact RMT value 〈r̃〉RMT is 0.386
at Poissonian distribution and it is well in agreement with
the calculated 〈r̃〉 values for our systems. We find that 〈r〉
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FIG. 8. Inverted basis GOE distribution for the (a) N = 14,
(b) N = 16, and (c) N = 18 systems, at the crossover points.

TABLE III. Exact RMT values (from Refs. [96,114]) and the
calculated (this work) values of 〈r〉 and 〈r̃〉.

Quantity Poissonian GOE GUE

1.750 1.361〈r〉RMT ∞
1.800 1.376

7.080 (N = 14) 1.772 (N = 14) 1.371 (N = 14)
〈r〉 11.41 (N = 16) 1.757 (N = 16) 1.372 (N = 16)

10.40 (N = 18) 1.755 (N = 18) 1.362 (N = 18)
0.536 0.603〈r̃〉RMT 0.386
0.528 0.598

0.395 (N = 14) 0.531 (N = 14) 0.599 (N = 14)
〈r̃〉 0.385 (N = 16) 0.531 (N = 16) 0.599 (N = 16)

0.382 (N = 18) 0.530 (N = 18) 0.597 (N = 18)

FIG. 9. Inverted basis GUE distribution for the (a) N = 14,
(b) N = 16, and (c) N = 18 systems, at the crossover points.

achieves the values 1.772 (h = 0.17), 1.757(h = 0.13), and
1.755 (h = 0.085) in the GOE regime for N = 14, 16, and
18 systems, respectively, against the RMT values listed in
Table III. Please see the Supplemental Material for a detailed
variation of 〈r〉 and 〈r̃〉 with h and Jt [119]. Our systems satu-
rate to the GUE regime at around 〈r〉 = 1.37 (〈r̃〉 = 0.599) for
N = 14 and 16 and at 1.36 (0.597) for N = 18. Our spin-chain
model conforms to different RMT symmetry classes with the
variation of physical crossover parameters h and Jt , and the
calculated values of 〈r〉 and 〈r̃〉 are in good agreement with
the theoretical RMT values 〈r〉RMT and 〈r̃〉RMT [96,114].

1. Poissonian-to-GOE and GOE-to-GUE crossovers
in ratio distribution

To study the Poissonian [PPoi(r)] to GOE [PGOE(r)]
crossover in the ratio distribution for our spin-chain model
[Eq. (1)], we plot P (r) versus r in Figs. 12, 13, and 14, for
the N = 14, 16, and 18 systems, respectively. We observe that
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FIG. 10. Variation of RMT crossover parameter λ [of the
crossover function fP→O(λ, s)] with (a) physical crossover parameter
h, for the N = 14, 16, and 18 (inverted basis) systems. Poissonian-
to-GOE crossover is observed when λ gets saturated, for N = 14
the crossover value is h = 0.17, for N = 16 it is h = 0.13, and for
N = 18 it is h = 0.085. (b) The coinciding linear region of the plots
is fitted with the scaling function nah. λ is plotted against nah. The
universal scaling exponent a = 0.23. The dashed green line is a fit
based on the data points occurring in the linear regime.

for the N = 14 system, the P (r) histogram follows PGOE(r)
at h = 0.16 whereas, for the N = 16 and 18 systems the com-
puted ratio distribution matches PGOE(r) at around h = 0.11
and 0.09, respectively. These values for the crossover points
observed from NNSD are quite comparable with those ob-
tained from the ratio distribution results.

By keeping the spin-chain model well inside the GOE
regime (h = 0.20) we study the GOE [PGOE(r)] to GUE
[PGUE(r)] crossover in the ratio distribution for the N = 14
(Fig. 15), N = 16 (Fig. 16), and N = 18 (Fig. 17) systems.
The observed values of scalar chirality parameter Jt at the
GUE crossover in ratio distribution match quite well with the
NNSD findings, being at Jt = 0.62, 0.42, and 0.28 for the
N = 14, 16, and 18 systems, as seen from Figs. 15, 16, and
17, respectively.

For the Poissonian-to-GOE crossover, there is no analytical
expression available for the ratio distribution interpolating
function which can be compared with our observed results
from spin chains. Therefore, we simulate the Poissonian-to-

FIG. 11. Variation of RMT crossover parameter λ [of the
crossover function fO→U (λ, s)] with (a) physical crossover parameter
Jt for N = 14, 16, and 18 (inverted basis) systems. GOE-to-GUE
crossover is observed when λ gets saturated, for N = 14 the
crossover value is Jt = 0.62, for N = 16 it is Jt = 0.42, and for
N = 18 it is Jt = 0.28. (b) The coinciding linear region of the plots
is fitted with the scaling function naJt . λ is plotted against naJt . The
universal scaling exponent a = 0.25. The dashed green line is a fit
based on the data points occurring in the linear regime.

GOE crossover using the Pandey-Mehta crossover Hamilto-
nian, as described in Eq. (3), using 3 × 3 matrices H0 and
H∞ taken from the Poissonian and the Gaussian orthogonal
ensembles, respectively. The crossover is realized by varying
λ from 0 to relatively large numerical values. We calculate the
probability distribution of ratios of the eigenvalue spacings
for the matrix H and denote it by EP→O(λ, r). We show
in Figs. 12–14 that EP→O(λ, r) can interpolate between the
Poissonian-to-GOE crossover quite accurately for our sys-
tems.

For the GOE-to-GUE crossover, analytical expression for
the interpolating function FO→U (λ, r) [Eq. (6)] is available.
We use it to map the GOE-to-GUE crossover in our spin-chain
model onto a RMT description. This function interpolates the
crossover perfectly for all the systems (Figs. 15–17).

The simulated interpolating probability distribution
EP→O(λ, r) and the analytical interpolating function
FO→U (λ, r) are based on 3 × 3 matrix ensembles. But
by applying these to a physical system here, we have

014205-11



KUNDU, KUMAR, AND SEN GUPTA PHYSICAL REVIEW B 105, 014205 (2022)

FIG. 12. (a) Poissonian → (b) intermediate → (c) GOE
crossover for probability distribution of ratios with the increasing
value of h for the N = 14 system.

successfully shown that, similar to Wigner surmises, they can
be used for much higher-dimensional matrices, relevant for
realistic physical systems, too.

2. Universality in ratio distribution

In this section we study the universality aspects of both
the crossovers in the ratio distribution. In the last section
we studied the crossovers in the ratio distribution P (r) with
varying physical crossover parameters h and Jt . Here we have
explored the variation of the generic RMT crossover param-
eter λ, against the physical crossover parameters in the ratio
distribution. The Poissonian-to-GOE crossover in our system
is interpolated quite accurately by the EP→O(λ, r) distribution,
with increasing λ. In Fig. 18 we plot the variation of λ with
the physical crossover parameter h scaled with na. We ob-
serve the emergence of universality in the Poissonian-to-GOE
crossover in the ratio distribution, for large system sizes. The
universal scaling exponent a here assumes the value of 0.25,
which is quite comparable to the corresponding universal scal-
ing exponent of NNSD, where it has a value of 0.23.

Since the ratio distribution for the GOE-to-GUE crossover
in our system is properly interpolated by the RMT interpolat-

FIG. 13. (a) Poissonian → (b) intermediate → (c) GOE
crossover for probability distribution of ratios with the increasing
value of h for the N = 16 system.

ing function FO→U (λ, r) with increasing λ, so we study the
variation of λ with the scaled physical crossover parameter
naJt in Fig. 19. The universality of the GOE-to-GUE crossover
in the ratio distribution is observed in Fig. 19 and the universal
scaling exponent comes out to be a = 0.26. This is very close
to the universal exponent of 0.25, observed in NNSD, pointing
towards a universality in the value of the scaling exponent
itself.

V. CONCLUSIONS

We have studied the eigenvalue statistics and spectral
crossovers between different RMT symmetry classes (Pois-
sonian → GOE and GOE → GUE), for one-dimensional
quantum spin chains with multispin interactions, coupled to
random, inhomogeneous magnetic fields, as various sym-
metries are gradually broken by tuning of suitable physical
parameters. We have focused on its correspondence with the
corresponding crossovers in exact RMT models, as embodied
in the NNSD (which captures a two-point spectral correlation)
and the RD (which reflects a three-point spectral correlation).
We find an excellent one-to-one correspondence between the
RMT results and the properties of the physical spin systems,
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FIG. 14. (a) Poissonian → (b) intermediate → (c) GOE
crossover for probability distribution of ratios with the increasing
value of h for the N = 18 system.

which points towards the robustness of the RMT formalism
and the Wigner-Dyson-Berry-Tabor classification, as also en-
countered in many other physical systems [30–36,90–94]. We
summarize below some salient conclusions from this detailed
study:

(1) To obtain a good description in terms of RMT results,
one needs relatively large lattice sizes, which luckily saturate
soon enough by N = 18. One also finds that the symmetry is
broken by progressively smaller symmetry-breaking physical
parameters, as the system size is increased.

(2) Using a finite-size scaling analysis we have uncovered
a universality in these crossovers. There are two facets to this.
First, by suitably scaling the physical crossover parameter by
the Hamiltonian basis size raised to the power of a suitable
scaling exponent (a), in each type of crossover, one is able to
collapse the RMT scaling parameter (λ) versus the physical
scaling parameter plots for various lattice sizes, onto one
universal plot. Second, irrespective to the type of crossover
(Poissonian → GOE, or GOE → GUE) or the spectral corre-
lation measure used (i.e., NNSD or RD), the scaling exponent
(a) seems to hover around the value of ∼ 0.25 (between 0.23–

FIG. 15. Ratio distribution for N = 14; (a)–(c) Show the GOE-
to-GUE crossover with the increasing value of physical crossover
parameter Jt , while the value of the range of the random mag-
netic field (h) is kept at 0.2. FO→U (λ, r) interpolates this crossover
properly.

0.26). Interestingly, the value of this exponent seems to be
quite robust too.

(3) For this kind of investigation, the many-body basis size
grows very fast with the lattice size, in spite of restricting
to the smallest Sz sector. Moreover, the exact diagonalization
process needs to be repeated a large number of times, as phys-
ical parameters have to be continuously varied over a sizable
range to capture the crossovers and also for configuration
(ensemble) averaging over the random magnetic field. To add
to the problem, one typically needs all eigenvalues, and so
one cannot rely on iterative diagonalization schemes like the
Lanczos method to reduce computational costs as they yield
only extremal eigenvalues and eigenstates. The only saving
grace is the use of additional symmetries and we have demon-
strated here the usefulness of one such symmetry, viz., global
spin-rotational symmetry to truncate to an inverted basis, that
reduces the basis size to half its original value.

Future directions could involve extending these methods to
study higher-dimensional correlated spin models, long-range
spectral fluctuations, or generalization to fermionic models,
etc. Some of these investigations are already under way.
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FIG. 16. Ratio distribution for the N = 16 system, similar to the
N = 14 cases in Fig. 15.
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APPENDIX: SIMPLIFICATION OF THE SCALAR
SPIN-CHIRALITY TERM

This Appendix presents a compact derivation of Eq. (2).
Einstein summation convention is used throughout this sec-
tion. We have

S j · [S j+1 × S j+2] = S j · Sc = Sα
j Sα

c

= εαβγ Sα
j Sβ

( j+1)S
γ

( j+2). (A1)

Here, α, β, and γ run over the spin components (x, y, z). As
we know exchanging rows and columns leaves a determinant
unchanged, we obtain

εαβγ Sα
j Sβ

( j+1)S
γ

( j+2) =

∣∣∣∣∣∣∣
Sx

j Sy
j Sz

j

Sx
( j+1) Sy

( j+1) Sz
( j+1)

Sx
( j+2) Sy

( j+2) Sz
( j+2)

∣∣∣∣∣∣∣

FIG. 17. Ratio distribution for the N = 18 system, similar to the
N = 14 cases in Fig. 15.

FIG. 18. Scaling in ratio distribution for the Poissonian-to-GOE
crossover. λ of the interpolating matrix model’s level-spacing ra-
tio distribution EP→O(λ, r) is plotted against the scaled physical
crossover parameter h. Here the universal scaling exponent a = 0.25.

The dashed green line is a fit based on the data points occurring in
the linear regime.
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FIG. 19. Scaling in ratio distribution for the GOE-to-GUE
crossover. λ of the interpolating function FO→U (λ, r) is plotted
against the scaled physical crossover parameter Jt . Here the universal
scaling exponent a = 0.26. The dashed green line is a fit based on the
data points occurring in the linear regime.

=

∣∣∣∣∣∣∣
Sx

j Sx
( j+1) Sx

( j+2)

Sy
j Sy

( j+1) Sy
( j+2)

Sz
j Sz

( j+1) Sz
( j+2)

∣∣∣∣∣∣∣
= εklmSx

kSy
l Sz

m, (A2)

where k = j, l = j + 1, and m = j + 2. With this the Levi-
Civita indices now run over sites rather than spin components
(x, y, z).

The spin components are related to spin ladder operators
as

Sx = 1

2
(S+ + S−), Sy = 1

2i
(S+ − S−). (A3)

Now, using Eq. (A3) we get

εklmSx
kSy

l Sz
m = 1

4i

[
εklmS+

k S+
l Sz

m − εklmS−
k S−

l Sz
m

− εklmS+
k S−

l Sz
m + εklmS−

k S+
l Sz

m

]
. (A4)

The first term leads to

εklmS+
k S+

l Sz
m = −εlkmS+

k S+
l Sz

m

= −εlkmS+
l S+

k Sz
m = −εklmS+

k S+
l Sz

m, (A5)

where in the second step we have used the commutation
relation [S+

k , S+
l ] = 0 between distinct sites, and in the last

step we have exchanged the dummy indices k and l . Thus, it
follows that

εklmS+
k S+

l Sz
m = 0.

Similarly, we have

εklmS−
k S−

l Sz
m = 0.

Now, the third term of Eq. (A4) leads to

−εklmS+
k S−

l Sz
m = εlkmS+

k S−
l Sz

m

= εlkmS−
l S+

k Sz
m = εklmS−

k S+
l Sz

m,

where in the second step we have used the commutation rela-
tion [S+

k , S−
l ] = 0 because the Levi-Civita symbol ensures that

k and l always assume distinct site values, and in the last step
we have exchanged the dummy indices k and l . So, Eq. (A4)
becomes

εklmSx
kSy

l Sz
m = 1

4i
2εklmS−

k S+
l Sz

m

= −i

2
εklmS−

k S+
l Sz

m = i

2
εmlkSz

mS−
k S+

l

= i

2
εmlkSz

mS+
l S−

k = i

2
εklmSz

kS+
l S−

m,

where the names of dummy indices have just been inter-
changed. This establishes Eq. (2).
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