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Highly efficient tree search algorithm for irreducible site-occupancy configurations
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We present a universal and extremely efficient tree search algorithm for irreducible site-occupancy configu-
rations (implemented in DISORDER code) that partially avoids the barrier from the combinatorial explosion and
allows us to model the compositionally complex materials. The tree search algorithm is developed based on our
original algorithm and is leveraging the idea of stopping descending further down the branches of the tree that
do not meet the requirements. Meanwhile, the wrongly counted degeneracies of the irreducible site-occupancy
configurations, caused by the skipping of some branches of the tree, can be corrected by a degeneracy correction
procedure. Using binary face-centered cubic alloys, ternary body-centered cubic alloys, and quaternary simple
cubic alloys as examples, we demonstrate that, compared with our original algorithm, the overall efficiency
of the tree search algorithm is improved by more than 2 times for binary site occupancy, 70 times for ternary
site occupancy, and 50 times for quaternary site occupancy, which is far beyond other similar algorithms. The
tree search algorithm developed here can be broadly useful for the modeling of high-entropy alloys and provides
support for other methods, such as special quasirandom structures and small set of ordered structures, that require
enumerating a set of site-occupancy configurations.
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I. INTRODUCTION

As one of the most important sources of solid-state struc-
tures, site-occupancy disorder systems have been extensively
investigated in many domains of condensed matter physics
and materials science on account of their structural diversity
and promising applications [1–10]. For theoretical calcula-
tions studies on site-occupancy disorder, the concrete atomic
configurations are always indispensable; they are typically
derived from an ordered supercell, and the number of de-
rived configurations increases dramatically with the increase
of supercell size, i.e., the so-called combinatorial explosion.
Finding a set of irreducible (symmetrically inequivalent) site-
occupancy configurations from all combinatorially distinct
configurations by using crystal symmetry is a useful means
to reduce the number of generated configurations and thus
the computational cost. Up to date, various algorithms with
increasing efficiency have been proposed to generate irre-
ducible site-occupancy configurations, such as the algorithm
implemented in SOD [11], CRYSTAL [12], ENUMLIB [13–16],
SUPERCELL [17], and DISORDER [18]. Nevertheless, the pur-
suit of more efficient algorithms for generating irreducible
site-occupancy configurations to accelerate the process of
researching disordered systems still has methodological and
practical significance.

High-entropy alloys (HEAs) [19–28], a kind of compo-
sitionally complex material, i.e., multiple different types of
atoms are randomly arranged on a crystalline lattice, possess
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diversified applications and have received a great deal of re-
search interest, providing one of the most striking paragons
for the practical application of an irreducible site-occupancy
configuration generation algorithm. To model the disordered
alloys (e.g., HEAs), numerous techniques have been de-
veloped [29–37], and the most widely used are coherent
potential approximation [29], cluster expansion (CE) [31],
special quasirandom structure (SQS) [33], and small set of
ordered structures (SSOS) [35]. Among them, the techniques
of CE, SQS, and SSOS require enumerating a set of site-
occupancy configurations, which is a subset of the irreducible
site-occupancy configurations, while the exhaustive enumera-
tion of all possible irreducible site-occupancy configurations
is the only known way that is guaranteed to find optimal
SQS and SSOS [38]. However, the search of irreducible site-
occupancy configurations for HEAs suffers from more severe
difficulty brought by combinatorial explosion than that for
common binary or ternary alloys. Although the tiptop irre-
ducible configuration generation algorithm (implemented in
ENUMILB code) for multinary site occupancy recently devel-
oped by Morgan, Hart, and Forcade [16] partly avoids the
combinatorial explosion, its efficiency is still insufficient for
the larger supercell and/or the HEAs with higher entropy.
Therefore, developing more efficient search algorithms for
irreducible site-occupancy configurations will provide strong
support for the wider applications of SQS and SSOS tech-
niques, etc., and promotes the research of HEAs.

In this paper, by abstracting the search of irreducible
site-occupancy configurations into a treelike structure, we
proposed a tree search algorithm based on our original al-
gorithm to have higher efficiency. We show that, compared
with our original algorithm, the efficiency of the tree search
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algorithm is greatly improved, especially for the multinary
site-occupancy systems. The reason for this performance im-
provement is that, in the process of tree search, the branches
that do not meet some requirements are blocked, i.e., avoid
descending further down the tree, whereas it is equivalent to
searching all the branches of the tree in the original algorithm.
Additionally, we also proposed a degeneracy correction pro-
cedure to correct the wrongly counted degeneracies caused
by the skipping of some branches of the tree. To demonstrate
its practical application, we apply the tree search algorithm
to generate the optimal SQSs for ternary equiatomic face-
centered cubic (fcc) and body-centered cubic (bcc) alloys
as examples, which is an extremely challenging task for the
traditional exhaustive method used for SQS generation. The
tree search algorithm for irreducible site-occupancy configu-
rations developed here is universal and efficient, which can be
expected to be useful for the modeling of various composi-
tionally complex materials.

II. ORIGINAL ALGORITHM RECAP

To make the paper more coherent, in this section, a brief
review of our original algorithm is presented to the readers for
a background, while the details of it are given in Ref. [18].
The algorithm for generating irreducible site-occupancy con-
figurations is essentially to deal with three problems: (1) how
to represent and enumerate atomic configurations, (2) how to
identify symmetrically equivalent atomic configurations, and
(3) how to eliminate duplicate atomic configurations. In the
following, the treatment of these problems adopted in our
original algorithm will be introduced concisely and to the
point.

In our algorithm, the representation and enumeration of
atomic configurations are based on combinatorics. Consider
a supercell with K atomic positions that can be occupied by
N different types of atoms (the vacancies are deemed as a
special type of atom), and the number of each type of atom is
ki(i ∈ [1, N]), satisfying K = ∑N

i=1 ki. For such a system, the
total number (Nc) of atomic configurations can be expressed
as a multinomial coefficient:

Nc(k1, k2, . . . , kN ) = (k1 + k2 + · · · + kN )!

k1!k2! · · · kN !
=

(∑N
i=1 ki

)
!

∏N
i=1 ki!

.

For binary (N = 2) site occupancy, the multinomial coeffi-
cient degenerates into the well-known binomial coefficient:

Nc(k1, k2) = (k1 + k2)!

k1!k2!
= K!

k1!k2!
= Ck1

K = Ck2
K ,

which inspires us to use binary combinations to represent the
atomic configurations for the binary system, where the binary
combinations corresponding to the binomial coefficient Cm

n
are the possible ways to choose a subset of size m elements,
disregarding their order, in a consecutive integer set from 1 to
n. Meanwhile, for the multinary (N � 3) site-occupancy case,
we can decompose it into several binary site occupancies,
which stems from the fact that the multinomial coefficient
can be written as the product of several binomial coefficients.
For the sake of clarity, we present an example for K = 6,
k1 = 3 (blue), and k2 = 3 (red), i.e., the binary site occupancy,

as shown in Fig. 1(a), and an example for K = 6, k1 = 2
(blue), k2 = 2 (red), and k3 = 2 (green), i.e., the ternary site
occupancy, as shown in Fig. 1(b).

The identification of symmetrically equivalent atomic con-
figurations is achieved by an equivalent atomic matrix, which
is constructed from the space group operations of the super-
cell. Based on the algorithm implemented in SPGLIB [39],
the space group operations of an arbitrary supercell can be
searched out directly from its structural information. More-
over, the atomic configuration after a space group operation
may be beyond the original configurations space; however, it
can be returned to the original configuration space by a permu-
tation operation, which is realized by sorting the configuration
in numerical order.

The elimination of duplicate configurations by using sym-
metries is the most time-consuming procedure, so that it
becomes the key to the efficiency of our original algorithm
as well as the tree search algorithm. Figure 2(a) shows the
flowchart of eliminating duplicate configurations for our orig-
inal algorithm, in which the fast conversion of configurations
to integers plays a pivotal role in the high efficiency of our
original algorithm.

III. TREE SEARCH ALGORITHM DETAILS

The tree search algorithm is developed based on our orig-
inal algorithm with some modifications on the procedure of
eliminating duplicate configurations. The key concept of the
tree search algorithm is to abstract the search of irreducible
site-occupancy configurations into a treelike structure and
block the branches of the tree that do not meet the require-
ments. Other basic ideas, such as the enumeration of atomic
configurations, the identification of symmetrically equivalent
atomic configurations, and the conversion of configurations to
integers are consistent with those of the original algorithm. In
the following, the implementation details of the tree search
algorithm for binary and multinary site occupancy will be
elaborated, respectively.

A. Binary site occupancy

For binary site occupancy, the tree search algorithm for
searching irreducible configurations is based on a treelike
structure, as shown in Fig. 3(a): an example for K = 6, k1 =
3 (blue), and k2 = 3 (red). For such an example, the tree
search for irreducible configurations is performed as follows:
(1) searching irreducible configurations for the binary site
occupancy of (k1 = 1, k2 = 5) from the configurations space
of {1, 2, 3, 4}; (2) searching irreducible configurations for the
binary site occupancy of (k1 = 2, k2 = 4) from the configu-
rations space of {1 2, 1 3, 1 4, 1 5, 3 4, 3 5}; (3) searching
irreducible configurations for the binary site occupancy of
(k1 = 3, k2 = 3) from the configurations space of {1 2 3, 1
2 4, 1 2 5, 1 2 6, 1 3 4, 1 3 5, 1 3 6, 3 4 5, 3 4 6}, where the
bold numbers indicate the irreducible configurations searched
out. We can see that the nodes not belonging to the irreducible
configurations have no need to descend further down the tree,
resulting in a sharp reduction of the configuration space used
to search for irreducible configurations.
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FIG. 1. The enumeration of (a) binary site-occupancy configurations for K = 6, k1 = 3 (blue), and k2 = 3 (red) and (b) ternary site-
occupancy configurations for K = 6, k1 = 2 (blue), k2 = 2 (red), and k3 = 2 (green).

For such a treelike structure, however, the branches of the
tree are not independent, i.e., the configurations will jump
from branch to branch after performing symmetry opera-
tions (i.e., space group operations combining permutation
operations), which causes difficulty in programming and in
counting degeneracies. Although it is possible for us to im-
plement it in our future work, at present, we have to take the
second best, i.e., adopting the treelike structure, as shown in
Fig. 3(b), whose basic idea is consistent with that presented
in Fig. 3(a). The only difference between them is that we
combine steps (2) and (3) above into one step, i.e., searching
irreducible configurations for the binary site occupancy of
(k1 = 3, k2 = 3) from the configurations space of {1 2 3, 1
2 4, 1 2 5, 1 2 6, 1 3 4, 1 3 5, 1 3 6, 1 4 5, 1 4 6, 1 5 6, 3 4 5, 3
4 6, 3 5 6}, while step (1) is the same. Obviously, for such
a treelike structure, the configuration space used to search
for irreducible configurations is also reduced a lot, and most
importantly, we have a strategy to decorrelate the branches of
the tree. In the following, the specific implementation of the
treelike structure presented in Fig. 3(b) will be discussed in
detail.

Firstly, we consider a special case, assuming the K atomic
positions are indistinguishable, i.e., they are symmetrically
equivalent. It is conceivable that, for such a case, the con-
figuration that does not start with 1 can be converted to the
configuration that starts with 1 by a symmetry operation, and
we do not need to know exactly which symmetry operation.
In the tree search algorithm, therefore, the configurations that
do not start with 1 are discarded directly, forming a reduced
configuration space, i.e., {1 2 3, 1 2 4, 1 2 5, 1 2 6, 1 3 4, 1
3 5, 1 3 6, 1 4 5, 1 4 6, 1 5 6} for the example of K = 6 (the
six atomic positions are indistinguishable), k1 = 3 (blue), and
k2 = 3 (red).

However, the counted degeneracies of the irreducible con-
figurations are incorrect for the tree search algorithm, owing
to some configurations being skipped, and a degeneracy cor-
rection procedure is therefore needed. Fortunately, for the
situation we are discussing, the counted degeneracies of all
irreducible configurations differ from the corrected degen-
eracies only by the same constant factor, i.e., Dcorrected =
nDcounted, and n is the ratio of the number of whole config-
urations to that of reduced configurations, and have

n = Ck1
K

Ck1−1
K−1

= K

k1
,

where K−1 and k1 − 1 are owing to the first atomic posi-
tions already being occupied by a blue atom for the reduced
configurations. Obviously, to make n as large as possible, we
can always let k1 � k2. For the example of K = 6, k1 = 3,
and k2 = 3, the number of reduced configurations is Ck1−1

K−1 =
C2

5 = 10, which is half of the number of whole configurations
Ck1

K = C3
6 = 20, so that Dcorrected = 2Dcounted for this example.

Moreover, it is worth noting that n is not necessarily an integer
but the product of n and the counted degeneracy is an integer.

The above discussion is based on one premise, i.e., the K
atomic positions are indistinguishable. Although this condi-
tion is met in many systems, it is necessary to extend it to
the universal situation, i.e., the K atomic positions are not all
indistinguishable. To this end, we divide the K atomic posi-
tions into several groups, and the atomic positions in the same
group are indistinguishable, while the order of these groups
is irrelevant in principle. As shown in Fig. 4, the K atomic
positions are divided into Ng groups, the number of atomic
positions in each group is Ki(i ∈ [1, Ng]), and satisfying K =∑Ng

i=1 Ki. Similarly, we can divide all atomic configurations
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FIG. 2. The flowchart of eliminating duplicate configurations for (a) the original algorithm and (b) the tree search algorithm.

into Ng groups according to which atomic position group the
first label of the atomic configuration belongs to. More specif-
ically, the configurations whose first label belongs to the same
atomic position group will be regarded as the same atomic
configuration group. However, one can notice that the first la-
bel of the last atomic configuration is K − k1 + 1. Therefore,
the atomic configuration group Ng disappears when k1 > KNg.
Similarly, the atomic configuration groups Ng and Ng−1 dis-
appear when k1 > KNg + KNg−1, and so on. Consequently, the
number of atomic configuration groups is Ng′ and satisfying
1 � Ng′ � Ng.

Afterward, we define a list G with a size of Ng′; its ele-
ments are the label of the first atomic position for each group,
i.e., G = (1, K1 + 1, K1 + K2 + 1, . . . ,

∑Ng′−1
i=1 Ki + 1). Like

the case of Ng = 1 (i.e., all atomic positions are indis-
tinguishable), we can search the irreducible configurations
for each group independently. Specifically, for the group
l (l ∈ [1, Ng′]), the configuration that does not start with G(l)
can be converted to the configuration that starts with G(l) by a
symmetry operation; therefore, the configurations that do not
start with G(l) are discarded directly. Figure 2(b) shows the
flowchart of eliminating duplicate configurations for the tree
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FIG. 3. The two treelike structures for binary site occupancy in
the special case of K = 6, k1 = 3 (blue), and k2 = 3 (red). The solid
spheres stand for the irreducible configurations, the hollow spheres
with solid lines denote the duplicate configurations, and those with
dashed lines represent atoms that do not need to be enumerated in
practice.

search algorithm after extending it to the general case. As an
aside, the atomic position labels of the same group must be
consecutive; otherwise, the atomic configuration groups or the

FIG. 4. The grouping of atomic positions. The symmetrically
equivalent atomic positions are regarded as the same group, and the
atomic position labels of the same group are consecutive.

branches of the tree, as stated above, may not be independent,
i.e., the atomic configuration of one group may be equivalent
to that of another group.

It is not difficult to find that the number of reduced
configurations for the group l is Nc(l ) = Ck1−1

K−K1−K2−···Kl−1−1.
Therefore, the ratio of the number of whole configurations to
that of reduced configurations is

n = Ck1
K

Ck1−1
K−1 + Ck1−1

K−K1−1 + Ck1−1
K−K1−K2−1 + · · · + Ck1−1

K−K1−K2−···KNg′−1−1

.

One can see that the above formula becomes n = K/k1,
i.e., the situation of Ng = 1, when the tail (i.e., Ck1−1

K−K1−1 +
Ck1−1

K−K1−K2−1 + · · · + Ck1−1
K−K1−K2−···KNg′−1−1) in the denominator

is not present. Accordingly, we have n � K/k1 in which the
equal sign holds if and only if Ng′ = 1. In addition, it is hard to
know how to make n as large as possible because it is related
to the order of the atomic types (i.e., k1, k2) as well as that
of the atomic position groups (i.e., K1, K2, . . . , KNg′ ). For the
sake of simplicity, we still let k1 � k2, and on this premise, we
should let K1 � K2 � K3 � . . . � KNg′ to make n as close to
K/k1 as possible.

Similarly, we need to perform a degeneracy correction
procedure to obtain the corrected degeneracies. Unfortunately,
unlike the degeneracy correction for Ng = 1, i.e., the counted
degeneracies of all irreducible configurations differ from the
corrected degeneracies only by the same constant factor, that
for Ng > 1 is much more complicated. Firstly, we define a
list of (k11, k12, . . . , k1Ng), where k1l is the number of atoms
occupied in atomic position group l for the atomic type
corresponding to k1 and satisfying k1 = ∑Ng

l=1 k1l . Given an
irreducible configuration, there is a list (k11, k12, . . . , k1Ng)
corresponding to it, and for such a configuration, its counted
degeneracy differs from the corrected degeneracy only by the
constant factor, i.e., Dcorrected = n′Dcounted, where

n′ =
Ck11

K1
Ck12

K2
· · ·Ck1l

Kl
Ck1l+1

Kl+1
Ck1l+2

Kl+2
· · ·Ck1Ng

KNg

Ck11
K1

Ck12
K2

· · ·Ck1l −1
Kl −1 Ck1l+1

Kl+1
Ck1l+2

Kl+2
· · ·Ck1Ng

KNg

= Ck1l
Kl

Ck1l −1
Kl −1

= Kl

k1l
,

for the configurations belonging to group l (l ∈ [1, Ng′]). In
reality, therefore, for each irreducible configuration belonging
to group l , only k1l in the list of (k11, k12, . . . , k1Ng) is re-
quired, while other elements are useless. It should be noted
that, however, for different configurations belonging to the
same group, the k1l may be different.

B. Multinary site occupancy

Like binary site occupancy, the tree search algorithm for
multinary site occupancy is also based on a treelike struc-
ture, as shown in Fig. 5(a): an example for K = 6, k1 = 3
(blue), k2 = 2 (red), and k3 = 1 (green), i.e., the ternary site
occupancy. To implement such a treelike structure, we will
encounter the same difficulty as that for binary site occu-
pancy, i.e., the branches of the tree are not independent.
Obviously, the treelike structure shown in Fig. 5(a) can be
degenerated to that shown in Fig. 5(b), just as we did for
binary site occupancy. Meanwhile, the implementation of the
treelike structure shown in Fig. 5(b) for ternary site occupancy
is exactly the same as that shown in Fig. 3(b) for binary
site occupancy and shares the same flowchart as presented
in Fig. 3(b). Nevertheless, we have an alternative treelike
structure [presented in Fig. 5(c)] used to search irreducible
configurations for multinary site occupancy, which is much
better than that shown in Fig. 5(b). The branch dependence of
the tree is caused by the permutation symmetry, which works
only on the same color (i.e., atoms of the same type). For
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FIG. 5. The three treelike structures for ternary site occupancy in the special case of K = 6, k1 = 3 (blue), k2 = 2 (red), and k3 = 1 (green).
The solid spheres represent the irreducible configurations, the hollow spheres with solid lines stand for the duplicate configurations, and those
with dashed lines denote the atoms that do not need to be enumerated in practice.

different colors of the treelike structure presented in Fig. 5(c),
the permutation symmetry disappears, so the branch depen-
dence of the tree disappears too, i.e., the branches of the
tree are independent. As an aside, although a similar treelike
structure is also adopted in ENUMLIB code [16], its efficiency
is far lower than our algorithm. In the following, the specific
implementation of the treelike structure presented in Fig. 5(c)
will be discussed in detail.

The tree search of irreducible configurations for multinary
site occupancy is hierarchical by colors: blue (k1) is the first
level, red (k2) is the second level, green (k3) is the third level,
and so on. For binary site occupancy with a stoichiometry of
k1 : K − k1, the tree search only needs to proceed down to the
first level; for ternary site occupancy with a stoichiometry of
k1 : k2 : K − k1 − k2, the tree search needs to proceed down
to the second level; and for N-nary site occupancy with a sto-
ichiometry of k1 : k2 : ... : kN−1 : K − k1 − k2 − · · · − kN−1,
the tree search needs to go deep into the N−1 level. More-

over, for N-nary site occupancy with a stoichiometry of
k1 : k2 : ... : kN−1 : K − k1 − k2 − · · · − kN−1, the procedure
of tree search from the first level to the N−2 level is fully
consistent with that for (N−1)-nary site occupancy with a sto-
ichiometry of k1 : k2 : ... : kN−2 : K − k1 − k2 − · · · − kN−2.
Furthermore, we can also divide the irreducible configurations
by colors, such as the irreducible configurations for blue color
(BICs), the irreducible configurations for red color (RICs),
and the irreducible configurations for green color (GICs),
while the complete irreducible configurations are obtained by
merging these irreducible configurations.

Take ternary site occupancy as an example, as shown in
Fig. 5(c). The tree search is first carried out on the first
level (i.e., the blue color), whose implementation is consis-
tent with that for binary site occupancy, as stated above. For
different BICs, their descendants are uncorrelated, so that
the search of irreducible configurations for the descendants
of each BIC can be performed independently. Moreover, in
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FIG. 6. The flowchart of eliminating duplicate configurations for the tree search algorithm of quaternary site occupancy. Note that the
letters with different colors represent different variables.

the process of eliminating duplicate configurations for each
BIC, the symmetry operations which leave the current BIC
unchanged are recorded, i.e., the so-called stabilizer sub-
group [16]. For different BICs, their stabilizer subgroup may
be different. Thereafter, in the process of eliminating du-
plicate configurations for the RICs, only the corresponding
stabilizer subgroup is applied, while other symmetry opera-
tions are skipped directly, which greatly improves the search
efficiency.

Based on ternary site occupancy, we can proceed down
the tree search for quaternary site occupancy. Similarly, for
different RICs, their descendants are uncorrelated too, so that
the search of irreducible configurations for the descendants
of each RIC can be performed independently. In the pro-
cess of eliminating duplicate configurations for each RIC, the
symmetry operations which leave the current RIC unchanged
are also recorded and used to eliminate duplicate configu-
rations for the GICs. Obviously, the stabilizer subgroup for
each RIC is a subset of that for its parent (i.e., the BIC),
which means that the stabilizer subgroup will get smaller
with the deepening of the level and speeds up the search
of irreducible configurations. By parity of reasoning, we can

proceed down the tree search of irreducible configurations for
quinary, senary, and septenary site occupancies, etc.

Obviously, a degeneracy correction procedure is also
needed for the tree search algorithm of multinary site occu-
pancy. For irreducible configurations of different colors, we
can count their degeneracies respectively in the process of
eliminating their duplicate configurations. After the degen-
eracies of BICs are corrected according to the degeneracy
correction procedure for binary site occupancy, as presented in
Sec. III A, the correct degeneracies of the merged irreducible
configurations can be obtained by multiplying the degenera-
cies of all colors. Take Fig. 5(c) as an example again. For
instance, the counted degeneracy for 1 3 4 is 2, that for 2 5
is 2, 5 6 is 1, and the corrected degeneracy for 1 3 4 is 2
× 2

1 = 4. Therefore, the corrected degeneracy for 1 3 4 2 5
is 4 × 2 = 8, and that for 1 3 4 5 6 is 4 × 1 = 4. Another
example, the counted degeneracy for 3 4 5 is 3, that for 1
2 is 1, 1 6 is 2, and the corrected degeneracy for 3 4 5
is 3 × 4

3 = 4. Therefore, the corrected degeneracy for 3 4
5 1 2 is 4 × 1 = 4, and that for 3 4 5 1 6 is 4 × 2 = 8.
Lastly, Fig. 6 plots the flowchart of eliminating duplicate
configurations for the tree search algorithm of quaternary site
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TABLE I. The performance comparison of the tree search algorithm and the original algorithm for binary site occupancy in a 2 × 2 × 2
fcc supercell. n1 is the ratio of the run time of the original algorithm to that of the tree search algorithm, n2 is the ratio of the number of whole
configurations to that of reduced configurations, i.e., K/k1 for this example.

Run time (s)

Stoichiometries Total configurations Irreducible configurations Original algorithm Tree search algorithm n1 n2 n1/n2

1:31 32 1 0.034 0.033 1.030 32.000 0.032
2:30 496 5 0.033 0.032 1.021 16.000 0.064
3:29 4960 14 0.036 0.033 1.075 10.667 0.101
4:28 35 960 71 0.049 0.036 1.355 8.000 0.170
5:27 201 376 223 0.087 0.053 1.636 6.400 0.256
6:26 906 192 874 0.233 0.115 2.027 5.333 0.380
7:25 3 365 856 2706 0.714 0.284 2.518 4.571 0.551
8:24 10 518 300 8043 2.114 0.769 2.748 4.000 0.687
9:23 28 048 800 20 123 6.274 2.262 2.774 3.556 0.780
10:22 64 512 240 45 497 16.950 6.229 2.721 3.200 0.850
11:21 129 024 480 88 716 38.817 14.884 2.608 2.909 0.897
12:20 225 792 840 154 379 77.104 31.180 2.473 2.667 0.927
13:19 347 373 600 234 803 132.702 57.900 2.292 2.462 0.931
14:18 471 435 600 318 348 202.198 93.186 2.170 2.286 0.949
15:17 565 722 720 379 926 263.182 129.495 2.032 2.133 0.953
16:16 601 080 390 404 582 302.959 155.311 1.951 2.000 0.976
Cumulative 2 448 023 842 1 658 311 1043.487 491.802 2.122 2.280 0.931

occupancy, while that for other multinary site occupancies
are similar.

IV. PERFORMANCE COMPARISON

At present, we have elaborated the implementation details
of the aforementioned tree search algorithm and have imple-
mented it in DISORDER code [40]. In this section, we will
discuss the performance of the tree search algorithm and com-
pare it with the original algorithm through three examples,
i.e., the fcc parent lattice used for the binary site-occupancy
performance test, the bcc parent lattice used for the ternary
site-occupancy performance test, and the simple cubic (sc)
parent lattice used for the quaternary site-occupancy perfor-
mance test.

The fcc unit cell possesses the point group symmetry of
Oh, which contains 48 rotation operations and four pure
translation operations. Here, a 2 × 2 × 2 fcc supercell (32
atoms), including 1536 space group operations, i.e., 48 rota-
tion operations and 32 pure translation operations, is adopted
to test the algorithm performance for binary site occupancy.
We enumerate all combinatorially distinct stoichiometries for
binary site occupancy, which are used to test the performance
of the original algorithm and the tree search algorithm. Table I
shows the results of the performance test, from which we can
see that the overall efficiency of the tree search algorithm is
more than double that of the original algorithm. Additionally,
an interesting phenomenon is that, with the increase of k1,
the ratio (n1) of the running time of the original algorithm
to that of the tree search algorithm approaches the ratio (n2)

TABLE II. The performance comparison of the tree search algorithm and the original algorithm for ternary site occupancy in a 2 × 2 × 3
bcc supercell. n is the ratio of the run time of the original algorithm to that of the tree search algorithm.

Run time (s)

Stoichiometries Total configurations Irreducible configurations Original algorithm Tree search algorithm n

1:11:12 32 449 872 90 421 7.025 0.614 11.436
2:11:11 194 699 232 526 708 45.880 2.260 20.298
3:10:11 713 897 184 1 904 378 45.880 4.226 42.991
4:10:10 1 963 217 256 5 202 128 543.573 10.234 53.116
5:9:10 3 926 434 512 10 359 102 1124.508 16.516 68.087
6:9:9 6 544 057 520 17 226 595 1949.887 26.816 72.713
7:8:9 8 413 788 240 22 126 976 2610.849 34.105 76.553
8:8:8 9 465 511 770 24 888 438 3046.076 34.503 88.283
Cumulative 31 254 055 586 82 324 746 9509.481 129.275 73.560
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TABLE III. The performance comparison of the tree search algorithm and the original algorithm for quaternary site occupancy in a 2 ×
2 × 5 sc supercell. n is the ratio of the run time of the original algorithm to that of the tree search algorithm.

Run time (s)

Stoichiometries Total configurations Irreducible configurations Original algorithm Tree search algorithm n

1:6:6:7 931 170 240 11 671 868 882.185 20.259 43.546
2:6:6:6 3 259 095 840 40 814 088 3406.154 69.582 48.952
3:5:6:6 6 518 191 680 81 584 076 7123.834 138.308 51.507
4:5:5:6 9 777 287 520 122 352 972 11 146.139 197.344 56.481
5:5:5:5 11 732 745 024 146 809 254 14 325.498 236.461 60.583
Cumulative 32 218 490 304 403 232 258 36 883.810 661.953 55.720

of the number of whole configurations to that of reduced
configurations, which is reflected in the fact that n1/n2 gets
closer to 1. The reason is that, compared with the preprocess-
ing time of the algorithm, the time of eliminating duplicate
configurations, i.e., the procedure that our tree search al-
gorithm works, is gradually dominant with the increase of
k1.

The performance test for ternary site occupancy is based on
a 2 × 2 × 3 bcc supercell (24 atoms), while that for quaternary
site occupancy is grounded in a 2 × 2 × 5 sc supercell
(20 atoms). Because of the inhomogeneous cell expansion, the
point group symmetry of Oh for a bcc unit cell (48 rotation
operations and two pure translation operations) is reduced
to the point group symmetry of D4h for a bcc supercell (16
rotation operations and 24 pure translation operations, i.e.,
384 space group operations). Similarly, the point group sym-
metry of Oh for a sc unit cell (48 rotation operations and one
pure translation operations) is also reduced to the point group
symmetry of D4h for a sc supercell (16 rotation operations
and 20 pure translation operations, i.e., 320 space group op-
erations). Due to the large number of combinatorially distinct
stoichiometries for ternary and quaternary site occupancies,
we only select some representative stoichiometries used for
performance tests, as presented in Table II for ternary site
occupancy and Table III for quaternary site occupancy. It is
surprising that the performance of the tree search algorithm
is dramatically improved; the overall efficiency of the tree
search algorithm is improved by >70 times for ternary site
occupancy and >50 times for quaternary site occupancy com-
pared with that of the original algorithm. As an aside, we have
reason to believe that the performance will be improved even
more for the systems with higher symmetry, i.e., possesses
more space group operations.

V. APPLICATION EXAMPLE

As an application example, we use our tree search al-
gorithm to generate the optimal SQSs [33] for ternary bcc
and fcc A1B1C1 alloys, which are an extremely challeng-
ing task for the most widely used SQS generation code,
i.e., the GENSQS code in the Alloy Theoretic Automated
Toolkit (ATAT) [41]. Specifically, we built 75 symmetri-
cally distinct supercells (27 atoms) from a bcc/fcc primitive
cell (1 atom) and obtained 312 446 988 626 irreducible site-
occupancy configurations out of 17 090 507 362 500 complete
site-occupancy configurations by using our tree search algo-

rithm. In such an extremely huge configuration space and a
short time of <2 d (24 threads), we searched out 24 (2) opti-
mal SQSs, whose pair/triplet correlation functions perfectly
match those of the corresponding truly random alloys up
to the eighth-nearest/third-nearest (ninth-nearest/first-nearest)
neighbor, for ternary bcc (fcc) A1B1C1 alloys. Note that,
according to relevant tests, we estimate that the time may
be several years when the GENSQS code is used for the
same task and the same calculation conditions. Figure 7

FIG. 7. Atomic arrangements of the optimal special quasirandom
structures (SQSs), in their ideal, unrelaxed forms, for (a) body-
centered cubic (bcc) and (b) face-centered cubic (fcc) A1B1C1 alloys.
For each type of alloy, only one of the optimal SQSs is randomly
selected as a representative.
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TABLE IV. Structural descriptions of the optimal SQSs (ideal and unrelaxed forms) for bcc and fcc A1B1C1 alloys. The lattice vectors
and atomic positions are given in Cartesian coordinates, in units of a, the bcc or fcc lattice parameter. For each type of alloy, only one of the
optimal SQSs is randomly selected as a representative.

Alloys bcc A1B1C1 (SQS-27) fcc A1B1C1 (SQS-27)

Lattice vectors a 1.5 −1.5 1.5 a −1.5 1.5 0
b −2 −3 −1 b −0.5 −1 −0.5
c 1 0 −1 c −0.5 −1 2.5

Atomic positions A 0 0 0 A 0 0 0
A 0 −4 0 A −2 0 2
A 0.5 −3.5 −0.5 A −2 −0.5 1.5
A 0.5 −2.5 −0.5 A −1 1 0
A 0 −1 0 A −1.5 −1 1.5
A 0.5 −0.5 0.5 A −1 −1 1
A 1 −1 0 A −0.5 −1 1.5
A 1 −1 1 A −1 0.5 0.5
A −0.5 −1.5 −0.5 A −1 0 0
B 0.5 −1.5 −0.5 B −1.5 0 1.5
B 0.5 −0.5 0.5 B −1.5 −0.5 1
B −1 −3 −1 B −1 0 1
B 1 −3 0 B −1 −0.5 1.5
B 0.5 −2.5 0.5 B −0.5 −0.5 1
B 1 −2 0 B −1.5 1 0.5
B 0.5 −1.5 0.5 B −1 −1 2
B 0 −3 −1 B −1 −1.5 1.5
B 0 −1 −1 B −1.5 0 0.5
C 0 −3 0 C −1 −0.5 0.5
C 0 −2 0 C −0.5 0 0.5
C −0.5 −2.5 −1.5 C −0.5 −0.5 0
C −1 −2 −1 C −1.5 −0.5 2
C −0.5 −3.5 −0.5 C −0.5 −1 0.5
C −0.5 −2.5 −0.5 C −1.5 0.5 0
C 0 −2 −1 C −0.5 0.5 0
C 1 −2 1 C −2 0 1
C 1.5 −1.5 0.5 C −1.5 0.5 1

presents the atomic arrangements of the optimal SQSs (ideal
and unrelaxed forms) for bcc and fcc A1B1C1 alloys, re-
spectively (only one of the optimal SQSs is randomly
selected as a representative for each type), and Table IV
lists the corresponding structural descriptions of these SQSs,
which can be widely used as standard SQSs to study
various properties of any ternary equiatomic bcc and fcc al-
loys.

Using the Monte Carlo (MC) simulated annealing tech-
nique [42,43] as implemented in the MCSQS code in the ATAT,
we also generated an SQS-27 (abbreviated as MC SQS) for
ternary bcc A1B1C1 alloys. However, its pair correlation func-
tions merely match those of the truly random alloys up to the
second-nearest neighbor, while its triplet correlation functions
fail to match. Obviously, the optimal SQSs found by our
algorithm are far superior to the MC SQS when evaluating
the match of correlation functions. To further demonstrate the
superiority, we take a real bcc Mo-Nb-V alloy as an exam-
ple. We constructed 7 Mo9Nb9V9 structures, i.e., six optimal
SQSs (randomly selected from 24 optimal SQSs) and one

MC SQS of ternary bcc A1B1C1 alloys, and calculated their
total energies and equilibrium volumes, after full optimization
(both lattice and atomic pos itions are relaxed), using density
functional theory [44] as implemented in the Vienna Ab initio
Simulation Package [45,46]. Figure 8 displays the calculated
total energies and equilibrium volumes of the 7 Mo9Nb9V9

structures, which are referenced to the average total energy
and equilibrium volume of the six optimal SQSs. We can see
that, compared with the total energy and equilibrium volume
of the optimal SQSs, those of the MC SQS deviate evidently
from the zero of energy and volume, i.e., the average total
energy and equilibrium volume of the optimal SQSs, which
approximately represents the ensemble average of ternary bcc
A1B1C1 alloys. Although such deviation in MC SQS is not
very big, it would be obvious for other physical properties that
are required to be modeled by a longer-range CE. Therefore,
the SQSs obtained from our tree search algorithm are much
more reliable because their correlation functions are perfectly
matched to those of the truly random alloys in a longer
range.

014201-10



HIGHLY EFFICIENT TREE SEARCH ALGORITHM … PHYSICAL REVIEW B 105, 014201 (2022)

FIG. 8. The calculated total energies and equilibrium volumes of
body-centered cubic (bcc) Mo9Nb9V9 structures [six optimal special
quasirandom structures (SQSs) and 1 Monte Carlo (MC) SQS], in
which the average total energy (equilibrium volume) of the six opti-
mal SQSs is chosen as the zero of energy (volume).

VI. SUMMARY

In summary, we have developed a tree search algorithm
for irreducible site-occupancy configurations based on our
original algorithm with high efficiency, by leveraging the idea
of searching for irreducible site-occupancy configurations in
a treelike structure. In the tree search algorithm, only the

branches that meet the requirements are needed to descend
further down the tree, while other branches are blocked; in
the original algorithm, it is equivalent to all the branches of
the tree being searched. Therefore, compared with the orig-
inal algorithm, the efficiency of the tree search algorithm is
greatly improved, especially for the multinary site-occupancy
systems. Specifically, the performance test results show that
the overall efficiency of the tree search algorithm for binary
site occupancy in a 2 × 2 × 2 fcc supercell is more than
doubled, and that for ternary (quaternary) site occupancy in
a 2 × 2 × 3 bcc (2 × 2 × 5 sc) supercell is increased by
> 70(50) times. Moreover, a degeneracy correction procedure
is also developed to correct the wrongly counted degeneracies
caused by the skipping of some branches of the tree. As an
application example, the optimal SQSs (SQS-27) for ternary
equiatomic fcc and bcc alloys are searched out by using the
tree search algorithm, which can be widely used as standard
SQSs to study various properties of any ternary equiatomic
bcc and fcc alloys. Our tree search algorithm for irreducible
site-occupancy configurations is universal and efficient, which
can be exceedingly useful for the modeling of various compo-
sitionally complex materials.
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