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Equation of state and strength of diamond in high-pressure ramp loading
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Diamond is used extensively as a component in high-energy-density experiments, but existing equation of
state (EOS) models do not capture its observed response to dynamic loading. In particular, in contrast with
first-principles theoretical models of equilibrium multiphase EOS, no solid-solid phase changes have been
detected, and no general-purpose EOS models match the measured ambient isotherm. We have performed density
functional theory (DFT) calculations of the diamond phase to ∼10 TPa, well beyond its predicted range of
thermodynamic stability, and used these results as the basis of a Mie-Grüneisen EOS. We also performed DFT
calculations of the elastic moduli, and calibrated an algebraic elasticity model for use in simulations. We then
estimated the flow stress of diamond by comparison with the stress-density relation measured experimentally in
ramp-loading experiments. The resulting constitutive model allows us to place a constraint on the Taylor-Quinney
factor (the fraction of plastic work converted to heat) from the observation that diamond does not melt on ramp
compression.
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I. INTRODUCTION

Carbon is of course a key element in astrophysics and for
terrestrial life, and has been the subject of innumerable exper-
imental and theoretical studies. Its properties are particularly
exotic because of the different forms of interatomic bonding it
exhibits. Electronic structure studies have predicted multiple
solid phases to occur under compression, as discussed further
below. Although graphite is the equilibrium structure at stan-
dard temperature and pressure (STP), the diamond phase is
essentially stable for most purposes. Both of these structures
are covalently bonded, but diamond has a remarkably high
shear modulus and strength; its flow behavior is not under-
stood.

Diamond components are used widely in high-energy-
density (HED) experiments. It is an efficient choice as the
fuel capsule and ablator for inertial confinement fusion (ICF)
targets, and is a common choice for the tamper and ablator for
high-pressure studies of material properties, such as in situ x-
ray diffraction experiments [1]. Diamond is also the material
of choice for advanced static compression systems intended
to reach at least 1 TPa [2–4]. The plastic flow behavior at
high pressures is important in the design of these devices.
Extensive studies have been performed of its high-pressure
properties, including measurements of its response to ramp
loading to ∼5 TPa [5,6], and x-ray diffraction to ∼2 TPa [7].

Theoretical studies of the phase diagram of C have a long
history [8]. Calculations of the graphite phase are relatively
challenging using density functional theory (DFT) [9–12] be-
cause of the difficulty in capturing the van der Waals forces
between adjacent graphene sheets, and most EOS models

take diamond as the ambient phase. Using electronic structure
calculations resembling current techniques, there has been a
series of predictions of pressure-induced transitions out of
the diamond structure. Diamond was predicted to transform
to the R8 structure around 500 GPa [13]. More recently,
in a multiphase equation of state (EOS) also including the
liquid phase, diamond was predicted to transform to BC8
around 1 TPa [14]. Quantum molecular dynamics (QMD)
simulations were performed to ∼1.4 TPa, and compared with
shock measurements at Sandia National Laboratories’ Z fa-
cility [15]; these results were used in the construction of a
general-purpose EOS model, SESAME 7834 [16]. A particu-
larly thorough EOS model has been constructed comprising
four solid phases and the liquid [17,18], again with a transition
to BC8 around 1 TPa. For the elasticity, electronic structure
calculations have been used to calibrate an algebraic model
for the variation of the shear modulus of polycrystal diamond
to 1.7 TPa [19], and the variation of the elastic moduli with
pressure and temperature to 500 GPa [20].

Unfortunately, no current EOS and strength model captures
the observed behavior adequately. The clearest indication is
that no phase changes have been observed or inferred in
samples of carbon (initially diamond) up to 5 TPa. The in-
consistency between equilibrium multiphase EOS models and
observation may be the result of a slow transition rate from the
diamond phase, caused by a relatively high energy barrier. The
practical result is that high-fidelity multiphase models deviate
significantly from observation and would require a substantial
increase in sophistication to avoid exhibiting the phase transi-
tions that are predicted to occur. However, another limitation
even in the diamond phase itself is that we have found no
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TABLE I. Prescriptions used for electronic structure calcula-
tions. XC is the exchange-correlation functional, Kohn-Sham local
density approximation (LDA), or generalized gradient approxima-
tion (GGA). Ec is the plane-wave cutoff energy.

Ec

XC k points (eV) Software

Clark et al. [13] GGA 4 (3 × 3 × 3) 408 CETEP

Orlikowski et al. [19] GGA 20 × 20 × 20 950 ABINIT

Correa et al. [14] GGA 10 × 10 × 10 950 ABINIT

Knudson et al. [15] GGA ∼3 × 3 × 3 500 VASP

Benedict et al. [18] GGA 20 × 20 × 20 1300 VASP

Valdez et al. [20] LDA 4 × 4 × 4 680 QUANTUM

ESPRESSO

This work LDA 10 × 10 × 10 900 CASTEP

general purpose EOS model that reproduces measurements of
the ambient isotherm [21].

As C has not been observed to change from the dia-
mond structure under ramp compression to at least 5 TPa,
we perform electronic structure calculations and construct
an EOS model for this structure to higher pressures, for
use in simulations of experiments in this regime. Previous
electronic structure calculations for EOS and elasticity have
used a variety of numerical prescriptions and computer pro-
grams (Table I). In the present work, we use a prescription
consistent with those we employed for our previous studies,
e.g., [22–25]. DFT has systematic errors that often make it
inappropriate to use directly as an EOS. Our approach is to use
DFT to obtain algebraic functions that can be adjusted to im-
prove the accuracy, and then use these functions to construct
a model of the EOS and elastic moduli.

II. ELECTRONIC STRUCTURE CALCULATIONS

Energies and stresses used to construct the EOS and elastic
moduli were obtained from calculations of the ground state
of the electrons with respect to fixed ions, for a series of
different values of the lattice parameters. These calculations
were performed using nonlocal pseudopotentials to represent
the inner electrons on each atom, and a plane-wave expansion
to represent the outer electrons, solving the Kohn-Sham DFT
equations [9–12] with respect to the Schrödinger Hamilto-
nian [26]. Pulay corrections to the ground-state energy and
stress were included, although they were small. Exchange-
correlation interactions with the pseudopotential core were
ignored: as was found previously [18], the cold curve at
high compressions was found to asymptote to the all-electron
atom-in-jellium result, suggesting that these core corrections
are not significant. The stress tensor on the lattice cell was
obtained from the ground-state wave functions using the
Hellmann-Feynman theorem.

Norm-conserving pseudopotentials were used, generated
by the Troullier-Martins method [27]. The K-shell electrons
were treated as core, with a cutoff radius of 1.0 bohrs for
the s component and 1.4 bohrs for the p and d components
(� 0.529 and 0.741 Å, respectively) [28–30]. The outer four
electrons were treated explicitly, with partial state occupa-
tions allowed so metallic behavior could be accommodated,

expected at high pressure. The consistency of the calculated
cold curve with atom-in-jellium predictions at high compres-
sion also indicated that the same pseudopotential could be
used over the density range considered. This observation is
consistent with a separate QMD study in which it was found
that the 1s electrons in C can be treated as core with no change
in pseudopotential needed to at least 15 g/cm3 [31]. The wave
functions were evaluated at 103 regularly spaced points in
reciprocal space, reduced by the symmetry of the crystal lat-
tice [32]. The eight-atom diamond cubic lattice cell was used.
A plane-wave cutoff of 900 eV was sufficient to converge
the ground-state energy to ∼1 meV/atom or better. For each
calculation performed, the wave functions were determined
by iterative minimization of the Hamiltonian; iterations were
performed until the total energy had converged to better than
0.01 meV/atom. No convergence criterion was applied to the
stress on the lattice cell, but the energy criterion typically gave
stress convergence to at least five significant figures.

III. EQUATION OF STATE

The EOS model was constructed from a cold curve fitted
to the electronic structure calculations for the isotropically
compressed diamond cell, with ion-thermal energy obtained
from a Debye model [33] in which the variation of the Debye
temperature θD with compression was calculated from the
Grüneisen parameter obtained from the cold curve and its
derivatives. The EOS model is intended primarily for appli-
cations around the principal isentrope, so the electron-thermal
energy and the high-temperature reduction in ionic heat ca-
pacity to 3kB/2 were not included. This approach avoids
having to calculate the phonon density of states as we have for
other materials [22,24], and which is computationally much
more intensive. This simplification is justified as, in the solid,
the ion-thermal contribution is a relatively small correction to
the dominant contribution of the cold curve to the EOS, and in
the present work we are not concerned with phase boundaries
where small corrections may matter.

The frequency of phonon modes varies with compression
through a Grüneisen parameter for each mode, essentially
relating the phonon modes to the anharmonicity of the crystal
lattice [34]. For a given crystal structure, this observation
leads to a relationship between the average Grüneisen param-
eter � in the EOS and the volume or density derivatives of the
cold curve. Different degrees of approximation and different
assumptions about the asymptotic behavior at high compres-
sions (beyond the range of interest in the present work) lead to
different functional forms for the relationship between � and
mass density ρ along the cold curve [35–37]. These functions
can be summarized in the Burakovsky-Preston form [34],

�(ρ) =
B′(ρ)

2 − 1
6 − t

2

[
1 − p(ρ)

3B(ρ)

]
1 − 2t

3
p(ρ)
B(ρ)

, (1)

where p is the pressure, B the bulk modulus, and B′ its pres-
sure derivative. The ion-thermal EOS has been found to be
represented most accurately by a value of t which increases
from 0 to 2 with compression [34]. We constructed EOS
models with t = 1 and t = 2, and found that the latter gave
better agreement with the principal shock Hugoniot, and so
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TABLE II. Modified Vinet parameters fitted to electronic struc-
ture calculations.

ρ0 ec l1 l2 e0

(g/cm3) (MJ/kg) l0 (×103) (×105) (MJ/kg)

3.64504 99.7657 0.29836 −1.41913 −5.42538 −1149.17

used the Vashchenko-Zubarev relation [37] (corresponding to
t = 2) for subsequent work. This choice is reasonable since
the ion-thermal contribution to the principal shock Hugoniot
is smaller at lower pressure. For comparison, we also show
some results for an EOS model constructed with t = 1, corre-
sponding to the Dugdale-MacDonald form [36].

The Grüneisen parameter is the logarithmic derivative of
the Debye temperature,

�(ρ) = ρ

θD

dθD

dρ
, (2)

and so the Debye temperature can be expressed as

θD(ρ) = θD(ρr )G(ρ), (3)

where

G(ρ) ≡ exp
∫ ρ

ρr

�(ρ ′)
ρ ′ dρ ′ (4)

and ρr is some reference density.
In order to perform the further differentiation necessary to

calculate B and B′, the cold curve was fitted with analytic
functions. Several functions were tried, and a modified version
of the Vinet form [38] was found to fit the cold curve over the
widest range:

e(ρ) = ecφ[a(ρ)] + e0 : φ(a) = −e−a

(
1 + a + 1

20
a3

)
,

(5)
where

a(ρ) = (ρ0/ρ)
1
3 − 1

l
, l (ρ) = Pn[η(ρ)] : η(ρ) = ρ

ρ0
− 1

(6)

and Pn is a polynomial, here quadratic. The fitting parame-
ters (Table II) are the coefficients of Pn, ρ0, ec, and e0. The
modifications remove the need for material-specific constants
such as the atomic weight, used to calculate the Wigner-Seitz
radius, and thus give a more convenient relation for describing
arbitrary e(ρ) data, given that the scaling parameter l is fitted
to reproduce the data in any case. By expressing the cold curve
in terms of macroscopic quantities such as mass density, rather
than atomic-level quantities such as Wigner-Seitz radius, it
also becomes simpler to apply the Vinet model to compounds
and mixtures, rather than just elements. In the original Vinet
form, l is a constant; we found it necessary to generalize it
to a low-order polynomial in order to fit the cold curve of
diamond C to multi-terapascal pressures. The modified Vinet
fit reproduced the electronic structure calculations over the
full range from 3.5 to 20 g/cm3 or zero to 12 TPa, mostly to
within 0.1% in pressure except for the lowest pressures which
were reproduced to within 0.2 GPa.

In the present work, we took θD inferred at STP, and Eq. (3)
was used to calculate θD(ρ). With the EOS model constructed
in this way, the pressure for the observed STP mass density
and temperature was −13.8 GPa. It is desirable to apply
a correction in order to bring the STP state into as close
agreement as possible with observation. In constructing other
EOS models, we followed previous work [39] that argued
that, since the origin of the discrepancy is the inaccuracy
of the DFT calculation, it makes sense to correct the latter
rather than, for example, scaling the mass density, as has been
done for other EOS. Accordingly, we have previously applied
a pressure correction, implemented as an energy correction
linear in specific volume. The problem with this approach is
that, in DFT, the pressure correctly asymptotes toward zero as
mass density does the same; this limit is violated by the simple
pressure correction. Instead, we hypothesize a correction of
the form

�e = αρβ ⇒ �p = αβρβ+1. (7)

We took β = 1, giving α = −pai(ρr, Tr )/ρ2
r to bring the pres-

sure to the desired STP value.
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FIG. 1. State loci from EOS models using Vashchenko-Zubarev (solid) and Dugdale-MacDonald (dashed) �(ρ ). The isotherm and
isentrope are almost identical in density-pressure space on this scale (left).
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FIG. 2. Comparison of ambient isotherm from different EOS models [16,18,41] with DAC measurements [21]. Right: Detail at low
pressure.

A. High-pressure performance

Key thermodynamic loci were constructed from the EOS
model, for comparison with experimental data and with
other models. We compare with wide-ranging semiempiri-
cal EOS models, and also with the recent, multiphase EOS
model [18] mentioned above. The semiempirical models were
constructed using empirical forms for the cold compression
curve and ion-thermal energy, adjusted to reproduce high-
pressure data as available at the time of construction, blending
into Thomas-Fermi theory [40] at high temperature and com-
pression. The STP state in the multiphase model had a mass
density 3.216 g/cm3, which is significantly lower than the
3.51 g/cm3 observed in diamond. For a more meaningful
comparison, this model was adjusted in the same way as de-
scribed above to give a more accurate STP state; it is referred
to below as “Benedict, adjusted.” The empirical EOS were
SESAME models 7830 [41] and 7834 [16].

In pressure-density space, the choice of Grüneisen model
affected only the principal Hugoniot; in pressure-temperature
space it affected only the principal isentrope (Fig. 1). The
ambient isotherm lies close to diamond anvil cell (DAC)
measurements [21], closer than other reported EOS models
(Fig. 2). The agreement may be even better than shown, as it
has been argued [42] that the pressure deduced in the DAC
data should be raised 10 GPa between ∼50 and 140 GPa.
Ramp-loading experiments have been reported on samples
of full density to ∼800 GPa at the OMEGA laser facility [5],
and on deposited samples of reduced density to ∼5 TPa at
the National Ignition Facility (NIF) [6]. In the absence of
material strength, ramp loading should sample states along
the principal isentrope of the sample; strength acts to increase
the normal stress at a given mass density. The nominal stress-
density relation deduced for the reduced-density material lies
above that from the full-density material everywhere except
around 250 GPa, where they coincided. This observation
could be interpreted as a higher thermal pressure from the
lower-density samples, or, unexpectedly, a higher strength.
However, taking the experimental uncertainties into account,
the stress-density relations are consistent with each other once
the lower-density samples have been compacted to full density
(Fig. 3).

Before we consider the effect of material strength, the only
assessment we can make is whether the isentrope lies below
the ramp data, plotted as normal stress as a function of mass
density, by an amount plausible to account for by the strength.
The present EOS model has an isentrope lying in between
those of the two empirical models, consistent with (i.e., lying
below) the ramp-loading data, and implying a higher strength
than would be consistent with SESAME 7834. The isentrope
from the five-phase model passes through the nominal NIF
ramp data around 2.4 TPa, although it always lies below
the upper uncertainty bound of the data, implying that the
strength would have to decrease significantly as the pressure
increased beyond 1 TPa. If the nominal NIF data are correct,
this would imply that the five-phase model was inconsistent,
as the strength would have to be negative, which is unphysical
(Fig. 4).

The present EOS model is intended primarily for ramp
loading, and did not include a melt curve, high-temperature
ion-thermal effects, or electron-thermal energy, and thus
would not be expected to reproduce the shock Hugoniot at
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are the loci of 1σ uncertainty for density reported in the original
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FIG. 4. Comparison of principal isentrope from different EOS models [16,18,41] with ramp-loading data [5,6]. Thin lines are the loci of
1σ uncertainty in the ramp data. Right: Detail at low pressure.

pressures much over 1 TPa. It is nevertheless useful to evalu-
ate its performance at lower pressures, and interesting to check
its behavior at higher pressures, where for example a ramp
load could steepen into a shock in a less than optimal experi-
ment, as many are. Shock Hugoniot data exhibit more random
scatter than ramp measurements, and experimental data up to
the onset of shock melting were reasonably consistent with
any of the EOS models considered. At higher pressures, the
models constructed with Grüneisen parameters t = 0 or 1
were much stiffer than any other EOS models, which is why
we eliminated them from further use. Of the previous EOS
models considered, only the five-phase model included an
explicit melt transition, clearly evident along the principal
Hugoniot between ∼800 and 1050 GPa. The Hugoniot from
the EOS model constructed with the Vashchenko-Zubarev
Grüneisen relation, i.e., t = 2, lies between those from the
more recent empirical model SESAME 7834 and the five-phase
model, even passing almost exactly where these Hugoniots
cross at around 5 TPa to lie between them at even higher
pressures. This surprising consistency suggests that the new
EOS model should be at least as reasonable a choice when
modeling shock formation from a ramp load as either of the
other EOS models. It does not reproduce shock data in detail
around melting though it seems to be as good a choice as
any other EOS for shock states at higher pressures; more
work would be needed to develop an adequate model of the
melt transition out of the diamond phase where it may be
metastable (Figs. 5 and 6).

IV. CONSTITUTIVE MODEL

In theoretical and computational terms, it is far more fea-
sible to predict the EOS and elastic moduli than the plastic
flow behavior, because the length and time scales involved in
plasticity are much less tractable to ab initio computation, and
the flow mechanisms are poorly understood. Previous work
on diamond for dynamic loading applied a time-independent
model developed for plastic flow in metals [19]. It is com-
monly assumed, but not rigorously tested, that the flow stress
scales with the shear modulus. Here we use electronic struc-
ture calculations to predict the variation with compression

of the elastic moduli, and hence the texture-averaged shear
modulus. We then consider observations of the normal stress
to estimate the variation of flow stress with compression.

In empirical studies of material strength, it is common to
express the elastic moduli and flow stress as functions of the
pressure and temperature. Electronic structure calculations are
more amenable to predicting material properties as a function
of mass density rather than pressure. At constant pressure, in-
creasing the temperature usually causes expansion; expansion
usually reduces the bulk and shear moduli, and so the effect
of temperature becomes conflated with that of compression.
Usually, expressing the shear modulus in terms of mass den-
sity reduces the variation with temperature, sometimes to the
level where it can be ignored. For this reason, we constructed
the strength model in terms of mass density, but we also
provide a calibration in terms of pressure for use in software
implementations which do not allow a compression-based
model.

A. Elastic moduli

The variation of elastic moduli with compression was pre-
dicted by calculating the ground-state stress tensor as the
diamond lattice cell was distorted from its equilibrium shape.
Uniaxial compression along the [100] direction gives c11 and
c12, and shearing in any {100} plane gives c44 (Fig. 7). The
stress tensor was calculated for several strains from each
isotropic configuration: a uniaxial strain of ±0.01, 0.02, 0.05,
and a shear strain of ±0.01, 0.02. The diamond lattice was
calculated to remain stable with respect to shear induced by
uniaxial deformation, i.e., c11 > c12, for ρ < 20 g/cm3, i.e.,
p < 12 TPa. The calculated variation of c44 was reasonably
smooth and monotonic up to 9.5 g/cm3, or 2.2 TPa, at which
point the calculated values became scattered. Ignoring widely
scattered and unconverged points, the variation of elastic mod-
uli with compression μ ≡ ρ/ρ0 − 1 was fitted by

c11 − c12

2
= b0 + b1μ + b2μ

2, (8)
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where b0 = 470 ± 4 GPa, b1 = 475 ± 6 GPa, and b2 =
−123 ± 1.4 GPa; and

c44 = a0 + a1μ
α, (9)

where a0 = 521 ± 64 GPa, a1 = 1834 ± 88 GPa, and α =
1.30 ± 0.09.

The main purpose of this work is to improve models of di-
amond for use in simulations of HED experiments, performed
using multiphysics radiation hydrocodes which typically in-
clude a small set of isotropic strength models, i.e., with a
scalar shear modulus G and flow stress Y . It is thus a prac-
tical advantage if the constitutive behavior of diamond can
be represented using an existing such model, even if it is not
the most natural or general representation of the behavior.
For uniaxial loading, the full, tensorial constitutive model
can always be represented by an effective isotropic model
of sufficient complexity. The Steinberg-Guinan model [50]
is widely used in dynamic loading simulations. However,
as normally formulated, the underlying prescription for the
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EOS models [16,18,41] and constructions using Vashchenko-
Zubarev (VZ) or Dugdale-MacDonald (DM) �(ρ ) with shock
data [15,43–49] (detail around shock melting).

variation of G with pressure and compression is represented
with a single parameter, and is known to be inaccurate at
high pressures. Instead, we consider a modification to the
Steinberg-Guinan model for large compressions [51], which
has been used previously for diamond [19]. This model has
been implemented with some slight but important differences
in different hydrocodes, and for clarity we define below the
precise form of the model used in this work:

G = G0{ f (ρ)Gl + [1 − f (ρ)]Gh − B(T − T0)}, (10)

f (ρ) = {1 + exp [α(η(ρ) − ηc)]}−1, (11)

Gl = 1 + Al p[η(ρ)]−1/3, (12)

Gh = Ah + Mhη(ρ), (13)

η(ρ) = ρ/ρ0, (14)

where Gl is the usual Steinberg-Guinan term for pressure
hardening and the term in B similarly for thermal softening,
Gh is the high-pressure modification with parameters Ah and
Mh, and f provides a smooth transition between the two with
parameter ηc representing the compression at the transition.

Another important subtlety is that, for samples of differ-
ent microstructural texture, the effective isotropic strength
model differs. The previous diamond strength model [19]
was constructed for polycrystalline material assuming an
isotropic texture. Diffraction experiments on polycrystalline
samples typically use single-crystal diamonds as structural
components to avoid superimposing diffraction rings from the
diamond on the signal from the sample. Measurements of

FIG. 7. Cubic diamond lattice cell (left), and distortions used to
calculate elastic moduli c11 and c12 (uniaxial, center), and c44 (shear,
right).

014109-6



EQUATION OF STATE AND STRENGTH OF DIAMOND IN … PHYSICAL REVIEW B 105, 014109 (2022)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  1000  2000  3000  4000  5000

sh
ea

r 
m

od
ul

us
 (

G
P

a)

pressure (GPa)

DFT G100
DFT G110
DFT G111

Orlikowski GVoigt

FIG. 8. Predicted effective shear modulus as a function of pres-
sure for different crystal orientations, compared with previous
polycrystalline average [19] commonly used in simulations of HED
experiments.

loading waves transmitted through diamond of different mi-
crostructure, O(0.1) mm thick, have indicated that plasticity
is simpler for {110} crystals than for other orientations, in the
sense that less structure is observed around the elastic-plastic
transition in surface velocimetry [52]. More detailed studies
of single-crystal plasticity in diamond would be needed to
understand this behavior and reproduce it in simulations. For
this reason, we have generally preferred to use {110} crystals
for our experiments at NIF and OMEGA.

The effective shear modulus for {110} crystals is G110 =
(G100 + 3G111)/4, where G100 = (c11 − c12)/2 and G111 =
c44 (Fig. 8). We fitted the parameters in the improved
Steinberg-Guinan model above to G110 as calculated from the
elastic moduli (Table III). The parameters of the transition
function f provide such a broad transition that G is sensitive
to the high-pressure parameters throughout the low-pressure
region: the parameter G0 < G(p = 0). The model reproduced
the DFT calculations of G110 almost exactly to 6 TPa, with
deviations increasing to a few percent by ∼10 TPa (Fig. 9).

For comparison with the previous strength model [19], we
also calculated the polycrystalline average shear modulus, by
the limiting approximations of Reuss (constant stress) and

TABLE III. Parameters for the improved Steinberg-Guinan
strength model. The parameters from Orlikowski [19] are the fit
to DFT for comparison, rather than the values adjusted to match
experimental observations of elastic moduli at low pressures.

Polycrystalline

Parameter {110} Hill average Orlikowski [19]

G0 (GPa) 386.5 552.5 529.0
Al (1/GPa) 0.212 × 10−2 0.443 × 10−2 0.43 × 10−2

Ah −3.75 −0.520 −0.596
Mh 5.41 1.368 1.588
α 0.67 0.574 3.47
ηc 1.64 0.420 0.88
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FIG. 9. Improved Steinberg-Guinan fit to effective shear modu-
lus for {110} crystals.

Voigt (constant strain), and also Hill (average of the two).
These different approximations diverge by tens of percent
above a few hundred gigapascals, indicating that texture and
its evolution are likely to be important in polycrystalline dia-
mond in this regime (Fig. 10).

By fitting the parameters in the improved Steinberg-Guinan
model (Table III), it reproduced the Hill average shear mod-
ulus closely over the full range considered. The transition
function was again broad enough that Gh affected the low-
pressure region. Interestingly, the previous polycrystalline
model, which was described as the Voigt average [19], lies
close to the present Reuss average to the ∼1.5 TPa covered
by the previous study (Figs. 11 and 12).

B. Flow stress

We deduced the flow stress Y by comparing the stress-
density response of diamond deduced from ramp-loading
experiments with the isentrope. The ramp experiments used
polycrystalline samples, so we used the Hill polycrystalline
average shear modulus G. As discussed above, the variation of

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  2000  4000  6000  8000  10000  12000  14000

sh
ea

r 
m

od
ul

us
 (

G
P

a)

pressure (GPa)

Voigt
Reuss

Hill
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diamond with alternative averaging methods.
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FIG. 11. Shear modulus for equiaxed polycrystalline diamond:
Predicted variation and improved Steinberg-Guinan fit.

G with temperature is usually less for G(ρ, T ) than G(p, T ),
so we took the polycrystalline average expressed as G(ρ) and
ignored the thermal variation.

The uniaxial compression measurements from the OMEGA

and NIF facilities were taken on samples of different initial
density, and the nominal data were not consistent in the region
over which the densities overlapped, although the 1σ uncer-
tainties overlapped. The OMEGA data were taken on samples
of close to full density, which is more straightforward to
interpret, and ranged up to a normal stress ∼0.8 TPa [5]. The
nominal stress-density data were reproduced with a constant
flow stress Y = 70 GPa. The 1σ limits would imply a mono-
tonic increase or decrease of flow stress with strain. The NIF
data [6] were taken on nanocrystalline samples relevant for
ICF fuel capsules of significantly lower density, 3.25 g/cm3.
The nominal stress-density data could be described by a flow
stress Y (ρ) = f (ρ)G(ρ), where f is a relatively slowly vary-
ing function, linear from 0.12 at 3.5 g/cm3, to 0.17 at 10
g/cm3. This observation is equivalent to a criterion for plastic
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FIG. 12. Predicted shear modulus for equiaxed polycrystalline
diamond with alternative averaging methods.

flow that there is a maximum elastic strain that diamond can
support which varies slowly with compression. Following the
lower uncertainty bound in the ramp data, maximum elastic
strain at 10 g/cm3 would be around 0.07; following the upper
bound, it would be around 0.35, with a variation faster than
linear. The OMEGA data are consistent with these relations,
within their uncertainty (Fig. 13).

V. HEATING ON RAMP COMPRESSION

Diamond is notable for its high yield stress and low heat
capacity, so it is particularly interesting to consider the effect
of plastic work on heating during ramp loading. The relation-
ship between plastic work and heat generation has not been
thoroughly studied, and the assumptions made in hydrocode
simulations of plastic flow are rarely even documented. They
vary between assuming that 100% of plastic work appears
as heat to ignoring it altogether. Some hydrocodes allow a
parameter to be set controlling the fraction of plastic work
contributing to heating, the Taylor-Quinney factor, fTQ. Stud-
ies of the heating of bulk metals from plastic working at low
rates, such as occur in manufacturing forming processes, have
suggested 0.7 < fTQ < 0.95 [53]. More recent studies have
suggested that fTQ may vary more widely with material and
loading conditions [54]. The underlying process is that plastic
deformation occurs through microstructural changes such as
dislocation motion and evolution, which have an associated
change in energy; heating is that part of the plastic work
not accompanied by a change in potential energy of the mi-
crostructure.

It is known that deformation at high strain rates can induce
a very high dislocation density. The dislocation population
evolves to approach the equilibrium distribution for the instan-
taneous strain rate and temperature, and so dislocations may
annihilate over a finite interval after high-rate deformation,
even if the net strain rate for the material is zero. Thus the
Taylor-Quinney factor is not a general representation of plas-
tic heating, and fTQ may even appear to exhibit values outside
the range 0 to 1 [54]. However, a more rigorous representation
is not yet available, particularly for strong covalently bonded
substances such as diamond, and so it is useful to consider the
sensitivity to fTQ for deformation under simplified conditions.

In diamond, with the elasticity and flow stress deduced
above, a value fTQ = 1 leads to melting on ramp loading to
pressures exceeding 1.2 TPa, using the melt locus from the
five-phase EOS model [18] (Fig. 14). For C to remain solid as
inferred from ramp EOS experiments [6], fTQ < 0.25. In the
five-phase model, melting on this loading path occurs from the
BC8 phase. If diamond persists as a metastable phase, melting
could potentially occur at a lower temperature if kinetically
favored over the transition to BC8; the elastic strain energy in
uniaxially compressed diamond could lower the melting point
still further. These contributions to an elevated free energy in
dynamically compressed diamond argue for a still-lower value
of fTQ. There may be additional constraints from the observa-
tion that diamond does not transform into other structures to at
least 2 TPa, as this suggests that the heating is insufficient for
the kinetics of transition to the BC8 structure, with a barrier
∼2 eV, on o(1) ns time scales.
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FIG. 13. Comparison of ramp-loading measurements [5,6] with simulations assuming different flow stress models. Right: Detail at low
pressure.

VI. CONCLUSIONS

We constructed a DFT-based Mie-Grüneisen EOS model
for C in the diamond structure which is consistent with all
high-pressure data and slightly different than previous EOS
models. We found it necessary to modify the Vinet function
used to describe the cold curve in order to represent the DFT
results to high pressure. The Vashchenko-Zubarev model for
the Grüneisen parameter performed better than the Dugdale-
MacDonald or Slater models.

We also used DFT calculations to predict the variation of
the elastic moduli of diamond. The predictions were consis-
tent with the previous results of Orlikowski and Valdez, but
extended to much higher pressures. The calculations of c11

and c12 were well behaved, and predict an instability to tetrag-
onal distortions above 20 g/cm3 or 12.5 TPa. Calculations of
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FIG. 14. Predicted temperature during ramp loading, for dif-
ferent models of the flow stress: None (green), fit to stress
measurements of Bradley et al. [5] (dashed blue, fTQ = 1), and fit to
measurements of Smith et al. [6] (solid blue, various fTQ), compared
with melt locus from multiphase EOS model [18].

c44 were noisy above 9 g/cm3 or 2 TPa, which may suggest
the onset of a shear distortion.

Effective isotropic shear moduli were deduced as a func-
tion of compression or pressure for {100}, {110}, and {111}
crystals. The predicted behavior was different than that of
Orlikowski’s polycrystalline model, which has been used
commonly for simulations of single-crystal diamond in HED
experiments. The polycrystalline shear modulus was calcu-
lated from the single-crystal moduli. The Voigt, Reuss, and
Hill averages matched at low pressure, but deviated signif-
icantly at pressures above a hundred gigapascals, by ∼10%
around 0.5 TPa, and reaching 100% by 2.5 TPa. Thus the
texture and its evolution are likely to be important in poly-
crystalline diamond.

Analytic models were developed for the elastic and shear
moduli as a function of mass density or pressure. The “im-
proved Steinberg-Guinan” model of shear modulus was found
to represent the Hill average polycrystalline shear modulus
well over the full range considered.

Given the EOS and shear modulus, the flow stress was
deduced from stress-density data obtained in ramp-loading ex-
periments. Its behavior was consistent with a roughly constant
maximum elastic strain before the onset of flow, although the
uncertainty in the ramp experiments translated to a significant
uncertainty in maximum elastic strain. The large flow stress
implies a significant amount of heating from plastic work in
ramp loading. If all the plastic work appeared as heat, ramp-
loaded samples would melt below 1.2 TPa. The observation of
solid diffraction at higher pressures may therefore be a novel
constraint on the Taylor-Quinney factor.
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