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Optical pulling using topologically protected one way transport surface-arc waves
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Optical pulling is a counterintuitive phenomenon whereby light can pull particles against its propagation
direction, but usually it is necessary to optimize both the incident beam and the manipulated particles. Here,
we propose a robust optical pulling scheme using an air waveguide sandwiched between two chiral hyperbolic
metamaterials carrying Weyl points. The pulling force is induced by mode conversion between two topologically
protected chiral surface arcs supported on the two metamaterial surfaces of the waveguide. We prove that the
optical pulling force is totally attributed to the Minkowski-type momentum of light and proportional to the
wave-number difference between the two surface-arc waves, thus the pulling force is robust against the material,
shape, and size of the particle. Thanks to the backscattering immunity of the surface-arc waves and the in-plane
isotropy of the metamaterials, robust optical pulling can be achieved even in a curved waveguide, going beyond
standard mechanisms of straight-line pulling.
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I. INTRODUCTION

Optical pulling [1–11], which is the counterintuitive idea of
using light to pull a particle towards the source, has attracted
a great deal of attention recently. Optical pulling forces arise
when the incident light transfers a backward linear momentum
to the particle via light-matter interaction, which requires the
forward scattering to be enhanced and the backward scattering
to be suppressed [2–4]. In free space, optical pulling can be
achieved by using structured light beams such as a Bessel
beam [3–5] or the interference of multiple beams [7]. The
technical difficulty in realizing long-range structured beams
limits the application of optical pulling [8]. Furthermore,
to achieve enhanced forward scattering, multipoles must be
simultaneously excited, which renders the optical pulling
material- and size-dependent [3,6,11]. These problems can be
partially solved by changing the background from free space
to a waveguide [12–20] or metamaterials [21,22], such as
using the guided waves supported in a double-mode photonic
crystal waveguide [17–19]. However, due to the restriction of
reciprocity, the material and the shape of the particle have
to be carefully optimized in order to suppress the backward
scattering.

Using topologically protected one way transport surface
waves instead of topologically trivial guided waves can en-
hance the efficacy of optical pulling, since the backscattering
of surface waves is completely suppressed for a particle
with an arbitrary shape and size and of arbitrary mate-
rial [23–35]. Wang et al. first proposed using the chiral
surface wave supported in two-dimensional (2D) magneto-
optical photonic crystals to realize robust optical pulling [36].

*Corresponding author: ruoyangzhang@ust.hk

However, the practical operating frequency range (gigahertz)
of magneto-optical materials rarely overlaps with that of op-
tical manipulation (greater than terahertz), making the optical
force negligibly small compared to other forces. In addition,
the spatial inhomogeneity of field intensity due to lattice
structures can result in local equilibria which work against
sustainable optical pulling.

In three-dimensional (3D) topological systems possessing
Weyl nodes, the topological charges of Weyl points ensure the
existence of chiral surface bands whose equifrequency sec-
tions form “Fermi arcs” (alternatively called surface arcs for
general kinds of waves) that bridge the disconnected equifre-
quency surfaces (EFSs) of bulk states [37–57]. Such chiral
surface arcs can exist in inversion-symmetry-broken sys-
tems while preserving time-reversal symmetry (TRS) [37,38].
Thanks to the relatively low technological threshold to break
inversion symmetry in photonic systems, the surface-arc
states have been observed experimentally in regimes rang-
ing from microwave [38,52,53] to near-infrared [55], and
novel functional transport effects using surface-arc waves
have been realized, such as surface negative refraction [56]
and surface-arc-assisted resonant transmission [57]. In addi-
tion to photonic crystals [38,50,51,53], Weyl points and chiral
surface arcs can emerge in homogenized metamaterials in the
long-wavelength limit, e.g., chiral hyperbolic metamaterials
(CHMs) [37,38,50].

In this paper, we propose a method to realize robust long-
range optical pulling by using two surface-arc modes in a
planar air waveguide sandwiched by two CHMs with topolog-
ically charged EFSs. Unlike in 2D magneto-optical photonic
crystals [36], the well-designed 3D CHMs respecting TRS
can operate at high frequencies to induce a considerable op-
tical force. The linear momentum of a surface wave on a
homogeneous medium can be directly determined by the wave
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vector [58,59], in contrast to the ambiguous relation between
the linear momentum of a Bloch state and its Bloch wave
vector in periodic systems [20,36], and hence the mechanism
of momentum transfer is much clearer in our system than in
photonic crystals. Based on a rigorous derivation, we obtained
the closed-form expression for the longitudinal (along the
surface wave propagating direction) optical force on a parti-
cle inside the waveguide, which reveals that the longitudinal
optical force is totally converted from the Minkowski-type
momentum of light, and proportional to the wave-number
difference of the incident and scattered surface-arc states.
Therefore, once we select the surface-arc state with the rela-
tively smaller wave number as the incident one, the particle
is always subjected to a pulling force towards the source
irrespective of its size, shape, and material. Due to the homo-
geneity of the CHMs in the long-wavelength-limit, the field
intensity distribution of the surface-arc wave is uniform along
the propagating direction, which avoids the local equilibria
induced by the intensity gradient force, thereby enabling con-
sistent pulling of the particle toward the source. Moreover, the
CHMs are isotropic in the xy plane, and the chiral surface arcs
on any truncated surface parallel to the z axis have the same
dispersion, making the surface waves travel around arbitrary
corners without any refection. Thus, a particle can be pulled
continuously in a curved waveguide.

II. BULK AND SURFACE-ARC DISPERSION OF THE CHM

A generic class of homogenized CHMs can be described
by a Drude-Lorentz model with chiral magnetoelectric cou-
pling [38,49,51,55]. Here, we assume that the metamaterials
have a Drude-like dispersion in the z direction, and isotropic
Lorentz resonances in the xy subspace. Additionally, the
aligned electric and magnetic dipoles are chirally coupled
in the xy plane. From the microscopic model by ignoring
damping for simplicity (see the Supplemental Material [60],
Sec. 1), we arrive at a macroscopic effective medium depicted
by the constitutive relation D = ε0

↔
ε(ω)E + i

c

↔
κ (ω)H, B =

μ0
↔
μ(ω)H − i

c

↔
κ

T
(ω)E, and the constitutive tensors

↔
ε(ω) =

(
ε∞ + αω2

0

ω2
0 − ω2

)
↔
I xy +

(
1 − ω2

p

ω2

)
ẑẑ,

↔
μ(ω) =

(
1 + βω2

ω2
0 − ω2

)
↔
I xy + ẑẑ,

↔
κ (ω) = κ (ω)

↔
I xy = ±

√
αβω0ω

ω2
0 − ω2

↔
I xy, (1)

where ω is the angular frequency, ω0, ωp are the Lorentz
resonance and plasma frequencies, respectively, ε∞ denotes
the asymptotic relative permittivity in the xy plane as ω →
∞, and α, β are two positive parameters characterizing the
strengths of Lorentz oscillation and chiral coupling. Since
Eq. (1) is deduced from the microscopic Hermitian dynamics
(see the Supplemental Material, Sec. 1), the eigenfrequency
ω(k) is ensured to be real, where k is the plane-wave vector
of an eigenmode. The band structure is plotted in Fig. 1(a). As
the chiral coupling breaks inversion symmetry while it pre-
serves TRS, two pairs of Weyl points emerge symmetrically

FIG. 1. (a) Band structure of the CHM given by Eq. (1) with
the parameters ωp = 2

√
5ω0, α = 1.2, β = 0.375, where four Weyl

points with the same charge sgn(κ ) (red nodes) and sgn(κ ) (blue
nodes) are located at the plasma frequency ωp. The yellow sheets
denote the bands of chiral surface states on the interface between
the metamaterial and air with the surface normal n̂ = −ŷ. (b) Bulk
EFS at ω = 2ω0 [corresponding to the black section line in (a)], com-
prised of a spheroid with Ch = −2sgn(κ ) and two hyperbolic sheets.
Two surface arcs (red lines) bridge disjoint projected bulk EFSs,
intersecting a rectangular loop (blue dashed line) at p±. Counting
the chirality χ = sgn(vg · dkloop) at each intersection, the summation
equals the Chern number of the EFS enclosed by the loop.

on the line of kx = ky = 0 at the plasma frequency ωp. If the
frequency is in-between max{ω0/

√
1 + α/ε∞, ω0/

√
1−β}

and ωp, Eq. (1) gives a type-I hyperbolic medium (εxx =
εyy > 0, εzz < 0, μxx = μyy > 0) [61] with chiral coupling

↔
κ .

Its bulk EFSs consist of a closed spheroid and a hyperboloid
of two sheets, separated by two complete kz-momentum gaps.
The spheroidal EFS and each hyperbolic sheet carry topolog-
ical charges (i.e., Chern numbers) Ch = −2sgn(κ ) and Ch =
sgn(κ ), respectively [37]. In the Supplemental Material [60],
Sec. 2, we showed that such CHMs can be realized using
metallic helical structures.

When the metamaterial is in contact with air at a flat sur-
face parallel to the z axis, the nontrivial Chern numbers of
the EFSs indicate the existence of surface states confined on
that surface which disperse as open arcs bridging the projected
EFSs [37], according to the correspondence between bulk
EFSs and surface arcs [44,45]. As shown in Fig. 1(b), since the
spheroidal EFS has Ch = −2sgn(κ ), two surface arcs tangen-
tially attaching to the bulk EFS stretch across the kz gaps and
connect with the upper and lower charge-1 hyperbolic sheets,
respectively. The gapless surface arcs at different frequencies
sweep out two surface bands (colored in yellow) filling the
bulk band gaps, as shown in Fig. 1(a). Consider a virtual
equifrequency loop enclosing the projected spheroidal EFS
and inevitably intersecting with the two surface arcs, where
the orientation of the loop is counterclockwise viewed from
the top of the truncated surface. At an intersection point p,
we define the chirality of the surface arc as χp = sgn[dkloop ·
vg] [45], where dkloop is the positive tangent vector of the
loop, and vg, normal to the surface arc, denotes the group
velocity of the surface state at p. The summation of the
chirality of all intersections equals the Chern number of the
EFS enclosed by the loop, namely

∑
p χp = Ch = −2sgn(κ ).

For a rectangular loop in Fig. 1(b), the two horizontal paths
along kz = ±kz0 intersect with the two surface arcs at p+, p−
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FIG. 2. (a) Configuration of the optical pulling system. (b)–(d) Surface waves scattered by particles inside the CHM waveguides. The
constitutive parameters of the upper CHM are

↔
ε1 = diag(3, 3, −4),

↔
μ1 = diag(0.5, 0.5, 1), κ1 = 0.45, and the relative permittivity of the

dielectric particle in the air gap is εr = 3 in all cases. The constitutive parameters of the lower CHM are
↔
ε2 = diag(4, 4, −3),

↔
μ2 = ↔

μ1, κ2 =
−0.5 in (b),(c) and

↔
ε ′

2 = diag(3, 3, −3),
↔
μ2 = ↔

μ1, κ2 = −0.5 in (d). (e),(f) Dispersion of the surface state 1 (red solid lines) and state 2 (blue
dashed and green dashed lines). The arrows mark the directions of group velocities. The gray and orange shaded regions correspond to the
bulk states of CHMs and the EFS of air, respectively. In (e), the upper and lower CHMs are the same as those used in (a)–(c). In (f), the upper

CHM takes the same parameters as in (a)–(c), the lower CHM has the parameters (
↔
ε

′
2,

↔
μ2, κ2) and (

↔
ε

′
2,

↔
μ2, κ

′
2) for the blue dashed line and the

green dashed line, respectively.

respectively. Due to TRS, the two intersections must have
the same chirality, i.e., χp+ = χp− = −sgn(κ ). Therefore, the
longitudinal (along the x direction) propagating directions of
the surface-arc states are determined by the topological charge
of the EFS. In what follows, we illustrate how to realize robust
optical pulling using such chiral surface-arc states.

III. ONE WAY TRANSPORTATION AND CONVERSION
OF THE SURFACE-ARC WAVES

The configuration of the optical pulling system is schemat-
ically shown in Fig. 2(a), where an air gap is sandwiched
between two lossless CHMs with different constitutive pa-
rameters (

↔
ε1,

↔
μ1, κ1) and (

↔
ε2,

↔
μ2, κ2), respectively. A particle

can move in the channel along the x direction, as indicated
in Fig. 2(a). For the two parallel metamaterial surfaces facing
the air gap, each one supports a topologically protected chiral
surface-arc in the upper kz gap between the bulk EFSs, and
the corresponding surface-arc states propagate unidirection-
ally. In Fig. 2(e), the red solid (blue dashed) line depicts the
surface-arc on the interface between the upper (lower) CHM
and air, which we refer to as arc 1 (arc 2), and we call the
surface states on the two arcs state 1 and state 2, respectively.
A line source along the z axis, as marked by a red star in
Fig. 2(a), is located near the left surface of the upper lossless

CHM to excite state 1. To prevent the surface waves from
returning to the starting point after circling the CHMs, we
attach an absorbing layer to each lossless CHM, as shown
in Fig. 2(a). For the chosen kz = 1.3k0, where k0 is the wave
number in vacuum, the longitudinal wave number kx2 of state
2 is less negative than kx1 of the state 1, which can be seen
from Fig. 2(e). The group velocities of the surface states are
normal to the corresponding surface arcs as marked by the
arrows in Fig. 2(e). At kz = 1.3k0, both of the surface states
propagate from left to right inside the air gap. Note that both
kx1 and kx2 are negative, therefore the x components of the
phase and group velocities of each state are in the opposite
directions.

Consider a round particle located in the air gap. Since state
2 cannot be excited due to the mismatch of kx, the incident
surface wave will be confined on the surface of the upper
CHM before being scattered by the particle, as shown by
the full-wave simulation result in Fig. 2(b) obtained using
the commercial package COMSOL. When the surface wave is
scattered by the particle, plane-wave components of various
kx are generated around the particle (acting as a secondary
line source), and state 2 is excited by the component with
kx = kx2. Since only the two modes with kx = kx1 and kx = kx2

can propagate, all the optical energy will be distributed to the
states 1 and 2. Due to the absence of a backward channel, the
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FIG. 3. Schematic of the closed surfaces for integrating the stress
tensors. (a) The red dashed rectangle denotes the closed surface ∂S
in the air. (b) The orange and green dashed rectangles are the closed
surfaces ∂S′ and ∂S∞, respectively.

incident wave cannot be reflected by the particle, independent
of its material content, size, and shape. Therefore, even if we
replace the round particle by a triangular one, the backward
scattering is still totally suppressed, as shown in Fig. 2(c).

IV. THE LONGITUDINAL OPTICAL FORCE AND
CONSERVATION OF THE MINKOWSKI-TYPE

MOMENTA OF LIGHT

In this section, we will derive the optical force exerted
by the surface-arc waves on a particle inside the air gap of
the waveguide, and we will show that the optical force is
rigorously proportional to the wave-number difference of the
two surface-arc states. Since the particle is immersed in air,
the optical force acting on the particle can be unambiguously
evaluated by

F =
∮

∂S

↔
T

max
· n̂ dl, (2)

where the time-averaged Maxwell stress tensor (MST) is ex-
pressed as

↔
T

max
= 1

2 Re
[
ε0EE∗ + μ0HH∗

− 1
2 (ε0E · E∗ + μ0H · H∗)

↔
I
]
. (3)

∂S is an arbitrary closed surface that encloses the particle
and is restricted in the region of the air gap, and n̂ is the
outward normal unit vector of ∂S. Without loss of general-
ity, we choose ∂S as a rectangle in the air waveguide with
the upper (lower) horizontal boundary infinitely close to the
lower (upper) surface of the waveguide from the side of air,
as marked by the red dashed rectangle in Fig. 3(a). The x
and y boundaries of the rectangle are at x1, x2 and y1, y2,
respectively. Then the longitudinal optical force (along the x
direction) of the particle is calculated as

fx =
∫ y2

y1

[
T max

xx (x2, y) − T max
xx (x1, y)

]
dy

+
∫ x2

x1

[
T max

xy (x, y2) − T max
xy (x, y1)

]
dx. (4)

In Eq. (4), we have the MST components T max
xx =

1
2 Re[ExD∗

x + HxB∗
x − 1

2 (E · D∗ + H · B∗)] with D =
ε0E, B = μ0H in air, and T max

xy = 1
2 Re(ExD∗

y + HxB∗
y ).

T max
xy only depends on the field components Ex, Dy, Hx, By

that are continuous across the boundaries of the CHMs.
Therefore, T max

xy is continuous across the boundary, and the
integration for the longitudinal optical force can be performed
over ∂S′, whose upper (lower) boundary is infinitesimally
close to the surface of the waveguide from the side of CHMs
[see the dashed orange lines in Fig. 3(b)], and the integrand is
then replaced by the time-averaged Minkowski stress tensor
instead, namely

fx = x̂ ·
∮

∂S′

↔
T

min
· n̂ dl, (5)

where the Minkowski stress tensor is expressed as

↔
T

min
= 1

2 Re
[
ED∗ + HB∗ − 1

2 (E · D∗ + H · B∗)
↔
I
]
. (6)

We note that the above expression of the Minkowski stress
tensor, as the spatial part of the electromagnetic energy-
momentum tensor derived from Noether’s theorem, is valid
even in dispersive media [62,63]. Because the CHMs are

homogeneous and lossless, ∇ · ↔
T

min
= 0 is satisfied inside the

CHMs [63] and hence the integral of the Minkowski stress
tensor over any closed surface inside the material is always
zero. Therefore,

fx = x̂ ·
[∮

∂S′

↔
T

min
· n̂ dl +

∮
∂S∞−∂S′

↔
T

min
· n̂ dl

]

= x̂ ·
∮

∂S∞′

↔
T

min
· n̂ dl, (7)

where ∂S∞ is a very big rectangle with the upper and lower
boundaries far away from the air waveguide; see the green
dashed rectangle in Fig. 3(b). Since the electromagnetic fields
decay away from the air waveguide, the electromagnetic fields
vanish at the horizontal boundaries of the far side. So, we
only need to consider the integration over the two vertical
boundaries in Eq. (7), namely

fx =
∫ ∞

−∞

[
T min

xx (x2, y) − T min
xx (x1, y)

]
dy. (8)

Because the surface modes decay very fast away from the
interfaces, the interference between the two surface modes can
be safely neglected. So, we can calculate the contribution of
each surface mode, respectively. For the incident state 1, the
electromagnetic fields can be expressed as

(E, H)T = (ex, ey, ez, hx, hy, hz )T eikx1x+ikzz, (9)

where ei, hi, i = x, y, z are y-dependent functions and vanish
at infinity, y → ±∞. According to Maxwell’s equations,

∇ × E = iωB, ∇ × H = −iωD, (10)

we obtain

D = 1

ω
(i∂yhz + kzhy, kx1hz − kzhx,−kx1hy − i∂yhx )eikx1x+ikzz,

B = 1

ω
(−i∂yez − kzey, kzex − kx1ez, kx1ey + i∂yex )eikx1x+ikzz.

(11)
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Substituting Eq. (9) into T min
xx , we obtain

T min
xx = 1

2ω
[Re(h∗

y ez − h∗
z ey)kx1

− Im(ez∂yh∗
z + h∗

z ∂yex + ez∂yh∗
x + h∗

x∂yez )]

= 1

2ω
{Re(h∗

y ez − h∗
z ey)kx1 − Im[∂y(exh∗

z + ezh
∗
x )]}.

(12)

Then according to Eq. (8), the contribution of the incident
state 1 to the longitudinal optical force is

− kx1

2ω
Re

∫ ∞

−∞
(h∗

y ez − h∗
z ey)dy

+ 1

2ω
Im

∫ ∞

−∞
∂y(exh∗

z + ezh
∗
x )dy. (13)

The last integration of Eq. (13) vanishes since
∫ ∞

−∞
∂y(exh∗

z + ezh
∗
x )dy = (exh∗

z + ezh
∗
x )|∞−∞ = 0 − 0 = 0,

(14)
and the first integration gives

−kx1

2ω

∫ ∞

−∞
Re(h∗

y ez − h∗
z ey)dy = kx1

ω

〈
S(inc)

1x

〉
tot, (15)

where 〈S(inc)
1x 〉tot is the total energy flux along the x direction of

the incident state 1. Similarly, we can obtain the contributions
from the scattered states 1 and 2. And the longitudinal optical
force is then given by

fx = kx1

ω

(〈
S(inc)

1x

〉
tot − 〈

S(sca)
1x

〉
tot

) − kx2

ω

∣∣〈S(sca)
2x

〉
tot

∣∣, (16)

where 〈S(sca)
1x 〉tot and 〈S(sca)

2x 〉tot are the total energy fluxes along
the x direction of the waves scattered to state 1 and state 2,
respectively. Note that since state 1 is required to propagate
rightward, 〈S(sca)

1x 〉tot must take a positive value. In contrast,
〈S(sca)

2x 〉tot can be either positive or negative. Nevertheless, as
the directions of the energy fluxes of the scattered states are
always parallel to the outward surface normal at the corre-
sponding exit boundaries of ∂S∞, no matter whether the state
2 propagates leftward or rightward, the scattered wave in state
2 must offer a negative contribution to the total force, as
expressed in Eq. (16). For the lossless case, the total energy
flux should be conserved [64], which leads to

〈
S(inc)

1x

〉
tot − 〈

S(sca)
1x

〉
tot = ∣∣〈S(sca)

2x

〉
tot

∣∣. (17)

From Eqs. (16) and (17), we obtain the explicit expression
of the longitudinal optical force as

fx =
∣∣〈S(sca)

2x

〉
tot

∣∣
h̄ω

h̄(kx1 − kx2). (18)

The line density of the Minkowski momentum along the x
direction gx and the line energy density W is related by [58]

gx = kx

ω
W, (19)

and the group velocity of a surface mode is defined as [58]

vg =
(∫ ∞

−∞
〈S〉dy

)/
W, (20)

where 〈S〉 is the Poynting vector of the surface wave. Substi-
tuting Eqs. (19) and (20) into Eq. (18), the longitudinal optical
force can be further expressed as

fx = vgx1
(
g(inc)

1x − g(sca)
1x

) − |vgx2|g(sca)
2x , (21)

where vgx1, vgx2 are the group velocities along the x direction
of the states 1 and 2, and g(inc)

1x , g(sca)
1x , g(sca)

2x are the Minkowski
momentum line densities of the incident state 1, scattered state
1, and scattered state 2, respectively. From the microscopic
perspective, the Minkowski momentum and energy of a single
photon are h̄ω and h̄k. Using the line number density of
photons N = W/(h̄ω) = gx/(h̄kx ), Eq. (21) can be written as

fx = (
N (inc)

1 − N (sca)
1

)
vgx1h̄kx1 − N (sca)

2 |vgx2|h̄kx2, (22)

where N (inc)
1 , N (sca)

1 , N (sca)
2 are the line number densities of

the photons of the incident state 1, scattered state 1, and
scattered state 2, respectively. Equation (22) indicates that
the longitudinal optical force is equal to the change of to-
tal Minkowski momentum of light per unit time, consistent
with the law of linear momentum conservation. Note that
N (inc)

1 vgx1h̄ω, N (sca)
1 vgx1h̄ω, N (sca)

2 vgx2h̄ω are the total energy
fluxes of the incident state 1, scattered state 1, and scattered
state 2, respectively, so Eqs. (22) and (18) are equivalent.

Equation (18) shows that the longitudinal optical force on
the particle is proportional to the wave-number difference
between the incident and the scattered surface states, (kx1 −
kx2). Since the linear Minkowski momentum of a surface
mode supported by a homogeneous medium is proportional
to k [58], we can conclude that the longitudinal optical force
is entirely converted from the Minkowski momenta of the
surface modes [59]. Interestingly, the surface states 1 and 2
have backward Minkowski momentum while they propagate
forward along the x direction.

It is worthwhile to remark that despite the long debate
on the definition of the momentum of light in media, known
as the Minkowski-Abraham controversy [65], our derivation
does not rely on a special choice or definition of optical
momentum, because the particle is placed in air, where all
variants of stress tensors of electromagnetic fields are re-
duced to the Maxwell stress tensor. As a result, the derived
optical force is not complicated by the Minkowski-Abraham
controversy, which in turn demonstrates that the Minkowski
momentum of surface waves plays a practical role in light-
matter interaction.

V. OPTICAL PULLING

Since fx is proportional to kx1 − kx2 and kx1 < kx2, fx is al-
ways negative, as long as a part of the incident wave of state 1
is transferred into state 2 with a less negative kx incurred by the
scattering. Therefore, the optical pulling is robust irrespective
of the particle’s material, size, and shape. These parameters
only affect the conversion efficiency from state 1 to state 2
and hence the magnitude of the pulling force.
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FIG. 4. The longitudinal optical force as a function of the dimensionless size parameter (a) k0r and (b) k0d and the relative permittivity
of the (a) round and (b) triangular particle. The unit of force is N/m, and the amplitude of the source current is 1 A. The out-of-plane wave
number is kz = 1.3k0. (c) fx on the round particle (k0r = 0.5π ) as functions of the particle’ relative permittivity εr for three different lower

CHMs with the parameters (
↔
ε2,

↔
μ2, κ2)(black), (

↔
ε

′
2,

↔
μ2, κ2)(red), and (

↔
ε

′
2,

↔
μ2, κ

′
2) (blue), respectively. The lines and circles denote the results

using the MST and Eq. (18). (d) Linear fitting of |c fx/〈S(sca)
2x 〉tot| (light-blue line) as a function of 
kx = kx2 − kx1.

In Figs. 4(a) and 4(b), the longitudinal optical forces
calculated using MST on (a) a round and (b) a triangu-
lar dielectric particle located in the air gap changing with
their relative permittivities and size are displayed, which
shows that fx is always negative. The strong optical pulling
force denoted by the red regions is attributed to the mul-
tipolar resonances of the particles where the scattering is
enhanced. Although the pulling force can be amplified by
the multipolar resonances, we stress that the pulling nature
does not rely on these details, which is in sharp contrast
with the ordinary pulling scheme using structured beams
where optical pulling can only be realized via simulta-
neous excitation of multiple multipolar resonances of the
particle [3].

The strength of the pulling force can be tuned by control-
ling the wave-number difference 
kx = kx2 − kx1 according
to Eq. (18). In Fig. 4(c), we show the longitudinal optical
forces on a round particle calculated using MST (plotted by
lines) for three different CHM waveguides, and we compare
the results with those obtained by Eq. (18) (plotted by cir-

cles). The first CHM waveguide (data in black) corresponds
to Fig. 2(b). In the second scenario (red), by changing the
relative permittivity tensor of the lower CHM to

↔
ε2

′, the
value of 
kx is reduced [the momentum gap between the red
solid and blue dashed lines in Fig. 2(f) is smaller than that
in Fig. 2(e)]. Consequently, the pulling force is significantly
smaller than that in the first case. In the third case (blue), we
further change the sign of the chiral coupling to κ ′

2 = −κ2; the
chirality of the surface arc 2 [green dashed line in Fig. 2(f)]
is reversed accordingly. Although light is reflected by the
particle in this case [see the full-wave simulation in Fig. 2(d)],
we found the counterintuitive fact that the optical force is
still pulling and remarkably larger than the other two cases,
since the positive longitudinal wave number kx2 of state 2
leads to a larger 
kx. For all three cases, the results by MST
and Eq. (18) agree perfectly with each other; see Fig. 2(c).
In Fig. 2(d). We further demonstrate that the numerically
calculated optical forces normalized by the scattered energy
fluxes, fx/〈S(sca)

2x 〉tot, exhibit a strict linear dependence on 
kx

regardless of the parameters of the particle and the CHMs,
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FIG. 5. The profile of surface waves inside the air waveguide
with a 90◦ bend. The dashed arc denotes a thin and transparent
barrier. The arrows show the optical force directions.

thereby substantiating the theory. Although Eq. (18) is derived
by assuming that the CHMs are homogeneous and lossless,
the optical pulling scheme still works even when the CHMs
are lossy and subjected to a modest material imperfection,
because the topological properties of the CHMs remain invari-
ant under such conditions; see the details in the Supplemental
Material [60], Sec. 3.

VI. MOTIONS OF PARTICLES PASSING THROUGH
THE BENDS

Because the CHMs are isotropic in the xy plane, the chiral
surface arcs on any truncated surface parallel to the z axis have
the same dispersion, and the surface waves can travel around
corners without any reflection. Thus, a particle can be pulled
continuously in a curved air gap.

As a typical example, we consider that the air waveguide
has a 90◦ bend, as shown in Fig. 5. The particle is first sub-
jected to an upward optical force in the vertical region until
reaching the corner region [see Fig. 5(a)], and then it moves
into the horizontal region directly or after elastic collisions
with the modified corner boundaries. After that, it will be
pulled towards the left end [see Fig. 5(b)].

To investigate how the particle passes through the bend
when it is initially placed near the corner with zero velocity,
we calculated the optical forces F as well as the curl of the op-
tical forces ∇ × F · ẑ acting on the particle when it is located
inside the corner region in Fig. 5, and we showed the results
in Figs. 6(a) and 6(b), respectively. We ensure that the parti-
cle’s mass center cannot reach the white regions in Figs. 6(a)
and 6(b) by introducing an arc-shaped barrier at the corner
(the dashed arc in Fig. 5). As shown in Fig. 6(a), the optical

FIG. 6. Force and movement of the particle inside the corner region shown in Fig. 5. (a) The optical force amplitude |F| (N/m) and (b)
the curl of the optical force along the z direction ∇ × F · ẑ (N/μm2) as functions of the particle’s location. The center of the corner region is
at 
x = 
y = 0. The arrows in (a) show the directions of the optical force. (c) Trajectories of the mass center of the particle when it passes
through the corner region. The particle starts to move at different horizontal positions with zero initial velocity. The purple dashed line outlines
the shape of the corner region. The radius and mass density of the particle are r = 0.5π/k0 and 1050 kg/m3, respectively. (d) The x and y
components of the optical forces acting on the particles located at the lower boundary of the corner region (solid lines) and away from the
corner region (dashed lines).
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forces mainly point towards the top right vertex of the corner
region, indicating that there is a trapping potential for the
particle inside the corner. However, the nonzero ∇ × F · ẑ in-
dicates that the particle will undergo a nonconservative optical
scattering force [66,67] and gain energy when it moves around
inside the corner region. Therefore, even if the particle has no
kinetic energy when it is entering the corner region, it can be
accelerated by the nonconservative optical force and eventu-
ally escape from the corner region. In Fig. 6(c), we show the
trajectories of a particle started at different points, labeled by
the coordinate 
x, on the lower boundary of the corner region
with zero velocity. The trajectories are calculated based on
the motion equation of the particle mr̈ = F(r), where F(r)
is the optical force, m is the mass of the particle, and the
damping of air is ignored. We suppose that perfectly elastic
collision occurs when the particle hits the arc-shaped barrier
and the boundaries of the waveguide. The horizontal coordi-
nates of the starting positions are all non-negative (
x � 0).
We can see that the particle can escape from the corner region
and move into the horizontal region of the waveguide for all
starting positions. For the case of negative starting positions

x < 0 and zero initial velocity, the particle will be subject to
an optical force along the negative-y direction at first, see the
red solid line in Fig. 6(d), and thus be pushed away from the
corner region. However, after the particle leaves the corner
region and moves into the vertical region (
y < 0), it will
be accelerated along the +y direction by the optical pulling
force, see the red dashed line in Fig. 6(d), and be attracted to

x � 0 due to the gradient force along the x direction [see
the blue lines in Fig. 6(d)]. Therefore, the particle at starting
positions 
x < 0 will reenter the corner region of 
x � 0
carrying a kinetic energy. Then it can pass through the corner
region by overcoming the trapping potential and move into
the horizontal region of the waveguide. In the Supplemental
Material [60], Sec. 4, we further show that the particle can also
be pulled passing through a 60◦ bend. All these results suggest

that the particle can be pulled along a complex trajectory
confined by a meandering waveguide.

VII. CONCLUSION

In summary, we proposed a scheme to realize robust and
long-range optical pulling using two topologically protected
chiral surface arcs on two facing CHMs. Based on a rigor-
ous derivation using the electromagnetic energy-momentum
tensor, we proved that the longitudinal optical force on the
particle immersed in the air waveguide sandwiched by the
two CHMs is entirely converted from the Minkowski mo-
menta of the surface modes and is just proportional to the
wave-number difference between the incident and scattered
surface-arc modes. Therefore, we can realize robust optical
pulling or switch it to optical pushing by simply selecting
the launched state, irrespective of the particle’s material, size,
and shape. The advantage of employing a metamaterial is its
homogeneity in the long-wavelength limit. Benefiting from
the isotropy of the metamaterial in the xy plane, we can pull
the particle along an arbitrary 2D trajectory by designing
the shape of the surface-wave waveguide. With the advance
in nanoengineering technology for realizing hyperbolic and
chiral metamaterials at the working wavelengths of optical
forces [61,68], our robust optical pulling scheme can pro-
vide an additional tool for the optical micromanipulations of
matter.
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