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Perovskite solid solutions PbHfO3-PbSnO3 offer valuable opportunities for studying the formation mecha-
nisms of incommensurate phases, owing to the presence of an intermediate (between cubic and incommensurate)
phase, which is stabilized in PbHfO3 upon PbSnO3 admixture. Here, an x-ray diffuse scattering signal is
used to quantify the evolution of susceptibilities related to different modes of distortion (ferroelectric, in-
commensurate, antiferrodistortive) as a function of temperature and the results are critically compared to the
predictions of a minimal symmetry-based Landau-like model with two coupled order parameters (ferroelectric
and antiferrodistortive) and an incommensurate order parameter being interpreted as inhomogeneous polar-
ization. Experimentally, we observe a Curie-Weiss-like linear dependence of ferroelectric stiffness (inverse of
susceptibility related to homogeneous polarization fluctuations) in the cubic phase down to about 50 K above
the transition to the intermediate phase, where this dependence nearly saturates. Upon cooling down to the
intermediate phase, the maximum of susceptibility shifts gradually to the nonzero wave vector, where another
Curie-Weiss-like linear stiffness trend is established, but with respect to the incommensurate order parameter.
Symmetry of diffuse scattering distributions indicates an orthorhombic symmetry of the intermediate phase.
A notable temperature dependence of the constant that describes the energy of polarization inhomogeneities is
observed experimentally, which is in disagreement with the model expectations. The specifics of this dependence
suggest the presence of a nearly temperature-independent characteristic length scale for inhomogeneities across
several phases. Other differences with the model suggest that the incommensurate order parameter cannot be
straightforwardly identified with weakly inhomogeneous ferroelectric polarization.

DOI: 10.1103/PhysRevB.105.014101

I. INTRODUCTION

Antipolar ordering of cations in perovskite crystals attracts
long time attention because of intrinsic scientific interest [1–3]
and due to promising applications of antiferroelectrics [4–9].
These materials are a fruitful test ground for electron mi-
croscopy studies [10,11], scattering experiments [12–15], and
theories [1,3,12,16–24]. A significant share of theoretical at-
tention is given to interacting order parameters in PbZrO3-like
antiferroelectrics and to the mechanisms of incommensurate
phases formation. This paper provides an experimental mate-
rial related to those questions by reporting a diffuse scattering
study of Pb(Hf0.7Sn0.3)O3. This crystal has an intermediate
phase, where oxygen octahedral tilts are already developed,
while the incommensurate order parameter exists only in the
form of fluctuations. Studying those fluctuations by diffuse
scattering helps in identifying the important order parameter
interaction terms in a Landau-like phenomenological model
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and register the incommensurate soft mode that has been
experimentally elusive in crystals of this family.

A. Models of antiferroelectrics

Complexity of antiferroelectrics resulted in a rather large
number of different approaches and perspectives in their mod-
eling. To help the reader navigate that, a brief systematization
follows.

The first model of antiferroelectrics is due to Kittel [1],
who reduced an (at that time, abstract) antiferroelectric to
two interpenetrating lattices with antiparallel polarizations.
The most studied real antiferroelectric, PbZrO3, is much more
complex than that, in part due to the more complex dipole
ordering ↑↑↓↓ [25], due to the possibility of alternative
incommensurate orderings [10] and due to the presence of
antiphase octahedral tilts as a second type of distortion [25],
usually coexisting with the antipolar ordering of cations.

Modern models fall, roughly, into three categories. First,
ab initio analysis [26–28] of the energy landscape at zero
kelvin, sometimes extended to modeling of finite tempera-
ture behavior via molecular dynamics [23,29,30]. Usually this
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extension needs a parametrization of energy in terms of local
ionic displacements around high-symmetry positions (often
referred to as the second-principles approach). Alternatively,
the energy can be parametrized not in local coordinates, but
in normal-mode coordinates [18,23], which is not suitable
for molecular dynamics, but allows some more immediately
comprehensible insights into the energetics of the crystal, in
particular into coupling of different degrees of freedom.

The second category, semiempirical atomistic models, is
more multifaceted. In contrast to ab initio, these models con-
tain assumptions and phenomenological parameters, which
makes them more flexible for exploring narrow and specific
effects. For example, the simplified lattice-dynamics model of
Ref. [17] suggests an atomistic picture behind temperature-
dependent avoided crossing of acoustic and optic phonon
branches; the model of Ref. [3] points to universal collabora-
tive coupling between octahedral tilts and antiferroelectricity;
and the model of Ref. [19] suggests a mechanism of dipole
wave commensuralization in the presence of flat and soft
polarization branches. More recently, Ref. [20] explores the
link between bilinear coupling and incommensurate struc-
tures, and Ref. [22] shows how such structures can arise due
to the dipole-dipole interactions, in analogy with polarization
catastrophe in ferroelectrics.

The third category is Landau-like models, similar to that of
Devonshire for BaTiO3 [31]. These models do not account for
the specifics of atomic structure and short-range interactions
(in contrast to long-range electric and elastic effects [32]), but
parametrize macroscopic thermodynamic potential based on
symmetry arguments. In contrast to Landau theory of second-
order phase transitions [33], Landau-like models do not claim
exactness in any applicability domain [34], but often describe
the experimental observations adequately.

For antiferroelectric perovskites, such an approach was
applied by Haun et al. [16], who have reproduced electric
and elastic behavior in PbZrO3 by a model with ferroelec-
tric and antiferroelectric order parameters coupled to each
other and to the stress. Those parameters were considered
homogeneous. Toledano and Khalyavin considered a similar
model, but with coupling also to antiphase octahedral tilts
[35]. Tagantsev et al. [12] proposed a Landau-like model for
the same crystal where antipolar displacements correspond
not to the independently defined antiferroelectric order param-
eter (as in Haun’s work), but to inhomogeneous polarization.
Additionally, that model accounts for inhomogeneous strain,
acousto-optic (flexoelectric) coupling, umklapp interactions,
and biquadratic coupling between acousto-optic waves and
antiphase octahedral tilts.

Presently there is no consensus on why the PbZrO3-like
crystals tend to be incommensurate instead of ferroelectric.
The proposition of Tagantsev et al. [12] that it is due to
flexoelectric interaction is in line with a broader discussion
on the possible origin of incommensuration in dielectrics
[36–38] due to the presence of an invariant term of the form
P∂u/∂x − u∂P/∂x, where P is the polarization and u is the
strain or another quantity with appropriate transformational
properties. A point of confusion in that broader discussion
has been summarized by Blinc and Levanyuk [36] as follows:
“In the literature one may find the assertion that it is this
coupling, which is a general reason for [incommensurate]

phase formation. Such a statement would be meaningful only
if one could be sure that the nonrenormalized coefficient [of
polarization correlation energy] is positive. But we hardly
know confidently if it is the case...”. A recent step towards a
better understanding of that is the work by Stengel [39], where
the applicability of a continuum model with flexoelectric cou-
pling has been analyzed in connection to describing the ab
initio–derived phonon dispersion curves of SrTiO3. That work
suggests that a continuum description can be adequate, but
needs to be more complex than usually considered [40,41].
Extension of the improved continuum model towards free-
energy analysis of antiferroelectrics at high temperatures has
not yet been attempted. There are few microscopic models in
the literature [20,22,42] that suggest a way of obtaining the
negative nonrenormalized coefficient above due to particular
atomic-level specifics of perovskites. This ambiguity seems
presently distant from the resolution.

B. Motivation

There is a considerable experience of simulating polariza-
tion fluctuations, as seen by scattering, in the cubic phase
of perovskites [43,44], where there are no other order pa-
rameters with which the polarization could interact. When
the symmetry becomes lower than cubic, the goal becomes
more complex [14]. The positive side of that complication is,
however, an emerging possibility of studying the energetics of
order parameter interactions in low-symmetry phases.

A natural test ground for this could be the high-pressure
intermediate phase in PbZrO3 [14,45] and PbHfO3 [45,46]
that becomes stable between the cubic and the incommen-
surate phases almost immediately on raising pressure above
ambient. This phase of lower-than-cubic symmetry has an
order parameter (octahedral tilts, as Ref. [46] suggests), ap-
parently no long-range ordered displacements in the cation
subsystem, but strong fluctuations of inhomogeneous polar-
ization, as seen by diffuse scattering. It would be seen as a
good model object, but studying it in temperature domain is
difficult, since pressure complicates such experiments consid-
erably. A possible strategy is to study a similar phase, but
created, somehow, without pressure; for example, by chemical
modifications.

C. Tin-doped PbZrO3 and PbHfO3

It is instructive to consider tin-doped PbZrO3 and PbHfO3.
In contrast to titanium doping, which leads to ferroelectric
lead zirconate titanate [47], doping by tin leads in a com-
pletely different direction [48]. Tentatively, the fully filled d
shell of tin prevents it from acting like titanium, but results
in effect similar to that of pressure due to ionic radius differ-
ence. As a result of tin doping the intermediate phase forms,
appearing highly similar to the one(s) under pressure.

In the parent compound of PbHfO3-PbSnO3, pure PbHfO3,
two phase transitions occur on varying temperature: at about
163 ◦C, the low-temperature antiferroelectric (AFE1) phase
[49] transforms to the incommensurately modulated AFE2
phase [15,44,50], and at about 215 ◦C the cubic phase
forms. Curiously, cubic → AFE2 transition is a triggered
incommensurate transition, which is controlled not by an
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incommensurate soft mode, as in most of the incommensurate
dielectrics [36], but by the softening of the antiferrodistortive
(AFD) mode [44]. The triggered transition scenario is, seem-
ingly, suppressed on doping by tin, because an intermediate
phase between the cubic and the AFE2 phases appears, allow-
ing the distortions related to the AFD and incommensurate
order parameters to form at different temperatures [51]. There
is no sharp drop in the dielectric constant in the intermediate
phase [48] compared to the cubic phase, which suggests the
intermediate phase to be nonpolar.

D. This work

This paper reports on a study of the intermediate phase and
related transitions by diffuse scattering in PbHfO3-PbSnO3

solid solution with 30% concentration of tin atoms – a nearly
critical concentration in terms of solubility.

The primary observation is a strongly temperature-
dependent incommensurate diffuse intensity maximum in the
intermediate phase, which emerges gradually from zone-
center maximum in the cubic phase. To put that into a
quantitative basis, we propose recalculating intensities to stiff-
ness with respect to distortions, in which case the situation
becomes more understandable. This leads to further notes,
such as unusual saturation of dielectric stiffness in cubic phase
and a surprisingly linear (Curie-Weiss) trend for incommen-
surate stiffness going to zero at the point of incommensurate
transition.

Particularly interesting is the behavior of correlation
energy, which characterizes how much the crystal resists in-
homogeneities in polarization. In contrast to what is expected
for normal ferroelectric crystals, the one under study has a
notably temperature-dependent correlation energy, not only
in the intermediate phase, where, as we suggest, interaction
between its order parameter (tilts) and polarization gradient
could explain that, but also in the cubic phase, where it
occurs spontaneously. This temperature dependence of cor-
relation energy suggests a possibility of an unusual, largely
temperature-independent characteristic length scale for inho-
mogeneities.

The findings help in advancing the experimental and in-
terpretation methodology, as well as add some particular
physical insight, especially on the interaction of octahedral
tilts and dipoles arrangement.

II. METHODS

A. Experiment

Single crystals of PbHfO3-PbSnO3 have been grown by
a spontaneous crystallization method at Institute of Applied
Physics MUT, Warsaw, Poland, as described in Ref. [48].
Experiments on diffraction and diffuse scattering have been
performed at the European Synchrotron Radiation Facility
(ESRF), at the side station of ID28 beamline. For measure-
ments we have used a needlelike piece with a cross section
of about 100 × 100 microns, mounted on quartz capillary
and heated in the flow of hot air from a heat blower. The
measurements were done in a cooling cycle. Tight focusing
of the beam (∼40 μm) and the relatively large size of the
sample, as compared to the characteristic attenuation length

of ∼10.5 μm (wavelength of λ = 0.6968 Å), induced a con-
siderable inhomogeneity in the overall signal distribution in
reciprocal space, prompting us to analyze the data correspond-
ing to a sufficiently homogeneous part of it. The exposure
was 0.2–0.5 s per 0.1◦ angular step. Data treatment has been
carried out using the CRYSALIS PRO program and custom-built
MATLAB codes.

B. Interpreting and modeling the signal

Diffuse scattering (DS) is a scattering corresponding to
wave-vector transfers, �Q, that are outside the reciprocal lattice
points, �τ . It is due to disorder in the arrangement of scattering
centers, which in the case of crystals under study corresponds,
mainly, to partially disordered, but still correlated displace-
ments of ions from their nominal positions in the structure.

DS from fluctuations of a particular normal mode (order
parameter) is proportional to susceptibility, according to the
formula [52]

I ( �Q, T ) = T · |FDS( �Q)|2 · χ (�q, T ), (1)

where T is the temperature in energy units, FDS is the structure
factor for diffuse scattering, and χ = α−1 is the susceptibility
with respect to that normal mode. The structure factor FDS is
computed similarly to the inelastic structure factor for scatter-
ing by phonons [52,53]. Relatively simple cases of the present
paper (transverse polarization waves and tilts of octahedra
around a particular axis) can be treated with a simplified form
for the structure factor

FDS ∼ ( �Q�u�q), (2)

where �u�q is the Fourier component of displacements distribu-
tion, corresponding to reduced wave vector �q = �Q − �τ . This
simplification is obtained (see Appendix) by neglecting the
interference of scattering centers within the cell, but keeping
the essential dependence on the directions of displacements.

This approach to probing stiffness with respect to a par-
ticular normal mode is enabled by the following general
relationship between stiffness and fluctuations:

〈P2〉 = T

α
, (3)

where 〈P2〉 is the ensemble averaged square of normal mode
amplitude, P. This follows from the equipartition theorem,
stating that the average thermal energy deposited into a normal
mode in equilibrium, α〈P2〉/2, equals to T/2. The diffuse
scattering signal due to that normal mode is proportional to
〈P2〉, so α can be extracted upon taking into account the cor-
responding structure factor, provided that the relevant signal
is separated from other scattering.

This stiffness is the same as the one determining linear
response to a conjugate field, E , as

P = α−1E . (4)

If P is polarization and E is the electric field (any or-
der parameter and conjugate field can be substituted here),
then α−1 should be dielectric susceptibility, as measured
in capacitors. This links scattering measurements, sensing
temperature-induced 〈P2〉, to linear response measurements,
sensing P as a function of E .
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FIG. 1. Schema of determining the stiffness with respect to transverse polarization waves in the cubic phase. Intensity along τ corresponds
to the background (which is subtracted from profiles), because of zero structure factor for transverse waves. Stiffness at the zero wave vector
is obtained by fitting a finite-wave-vector signal using a Lorentzian line shape. Such fits along different directions provide mutually consistent
estimates of α( �q = 0).

Stiffness with respect to a particular order parameter,
when considered as a function of the wave vector, should be
parabolic near q = 0:

α(�q) = α +
∑

i, j

Di, jqiq j, (5)

which reflects that a homogeneous order parameter should
be energetically less expensive than an inhomogeneous one
(as long as there is no Lifshitz invariant, which holds for
cubic perovskite structure). Therefore, when considering an
arbitrarily oriented line in reciprocal space going through a
reciprocal space node, one should expect a Lorentzian-shaped
intensity profile

I ( �Q) ∼ T |FDS( �Q)|2
α + D2| �q|2 , (6)

where D2 is a constant of spatial correlation energy for that
order parameter along that direction. In the case of polariza-
tion waves, one should count �q as originating at the cubic
� points, while in the case of oxygen octahedral tilts, one
should treat it as originating from the R points. Basically,
the data treatment proceeds by experimentally quantifying the
parameters in formula (6) and, in the less trivial cases, beyond
it. An annotated example of extracting the dielectric stiffness
from diffuse scattering in cubic phase is shown in Fig. 1.

Note that this approach can be justified only near the parent
Bragg reflections with small structure factor. Small structure
factor for Bragg scattering implies small structure factor for
scattering by long-wavevlength acoustic waves. This allows
sensing mostly distortions of the cells, while the shifts of
the cells as a whole are discarded to a large degree. For that
purpose, this work uses (−3, 0, 0) Bragg peak, which has a
relatively small structure factor, about 1/10 of that for the
strong (2, 0, 0) peak.

The diffuse scattering data of the present work are treated
as if the scattering originated from fluctuations of inho-
mogeneous polarization only. In fact, these waves may be
“renormalized” due to flexoelectricity or other similar-in-

form interactions (see Introduction) and contain, therefore, a
mixture of polarization and some other property. This possi-
bility is ignored in direct data modeling of the present work,
mainly because the data do not allow distinguishing one possi-
ble renormalization scenario from the other. It is assumed that
the present data treatment results could be reassessed upon
obtaining a more specific understanding of renormalization in
the future.

Order parameter magnitudes are seen in diffraction by
intensities of superstructure reflections. When distortions are
small, these intensities are proportional to the square of the
distortion magnitude [52]. So, if the transition is of second
order, one expects nearly linear temperature dependence of
intensities, I ∼ (T0 − T ), without discontinuities. In the first-
order transition case, one expects a jump at the transition
temperature.

III. RESULTS

A. Two phase transitions

The range of temperatures that have been studied contains
three different phases: incommensurate phase (AFE2), inter-
mediate phase (IM), and the cubic phase. Their characteristic
scattering patterns are shown in Fig. 2. The low-symmetry
AFE2 phase shows incommensurate reflections at �F (h ±
ξF , k ± ξF , l) points and zone-boundary reflections at R (h +
0.5, k + 0.5, l + 0.5) points, which is consistent with struc-
tural reports on the same phase in pure PbHfO3 [15,50]. In
the higher-temperature IM phase, the sharp reflections at �F

disappear, while diffuse scattering maxima about the same
positions emerge.

As to the R-point reflections in the IM phase, they demon-
strate a particular systematics. All the inspected (few tens)
reflections at the R points with symmetric indices, |H | =
|K| = |L|, are by about an order of magnitude less intense
than some of the reflections with nonsymmetric indices. From
this one may suggest that the R-point reflections are mostly
due to the octahedral tilts. If they were totally due to the tilts,
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FIG. 2. Three phases of Pb[Hf0.7Sn0.3]O3: incommensurate
AFE2 (a), intermediate IM (b), and cubic (c). Squares: intensity at
R-points; circles: intensity of �F reflections. Nonzero values above
the IM-AFE2 transition are due to the intensity of diffuse scattering
at the incommensurate positions. Dashed lines show the transition
temperatures.

the symmetric reflections would be expected totally absent in
the small-displacement limit [54]. The experimental presence
of small intensities at symmetric R points can be attributed to
the minor presence of an additional distortion mode (such as
antiphase Pb shifts) or to the violation of small-displacement
limit in the experiment. Tentatively, the octahedral tilt pattern
is the same as in the AFE1 and AFE2 phases (a−a−c0), but
with smaller amplitude.

In the cubic phase, there are no superstructural reflections,
and diffuse scattering has a butterflylike shape with a maxi-
mum at the center of the Brillouin zone.

From scattering, both transitions appear to be close to the
second order. Intensities of the corresponding superstructural
reflections increase linearly directly near the transition tem-
peratures. It seems most natural to estimate the transition
temperatures by extrapolating the linear sections to the tem-
perature axis, TAFD ≈ 200 ◦C and TIC ≈ 172 ◦C.

B. Antiferrodistortive mode critical dynamics

Since the transitions appear close to the second order, a
critical increase of respective susceptibilities should occur on
approaching the transition temperatures. That should manifest
in diffuse scattering intensity increase at and near the cor-
responding points of the Brillouin zone, which is, for AFD
tilting, the R point.

Diffuse cross-shaped distributions (Fig. 3) are formed by
the intersecting diffuse scattering rods oriented along the H ,

K , and L directions. There are very weak or no rods for which
�q = �Q − �QR is approximately parallel to �Q. Consequently, the
displacements from which the scattering stems are perpen-
dicular to �q. Taking into account that we consider antiphase
tilts, the tilts are around the direction of �q. Visually, such an
inhomogeneous fluctuation in tilt subsystem can be imagined
as in Fig. 4. As the cubic → IM transition is approached,
the intensity of the rods increases, as can be seen from the
profiles. Unexpectedly, the intensity of the rods drops sharply
at T = 220 ◦C, which is still significantly higher than the
transition temperature obtained from the extrapolation of the
amplitude of the tilting (T = 200 ◦C).

In the language of stiffness, this corresponds first to its
gradual decrease on cooling and then, in an abrupt increase
at T = 220 ◦C [Fig. 5(a)].

If one inspects not the extrapolation of DS intensity to the
R point, but the integrated intensity in its vicinity, then the
picture becomes different [Fig. 5(b)]. Integral intensity grows
without unexpected features. The reason is that at a tempera-
ture where diffuse scattering is suppressed (T = 220 ◦C) the
sharp peak at the R point itself increases strongly (it is still
much weaker than in the IM phase), and the total intensity
nevertheless increases. Upon recalculating this integral in-
tensity value into a stiffness, the resulting effective stiffness
behaves as expected; it decreases on approaching the transi-
tion [dashed line in Fig. 5(a)].

It is natural to explore how it looks from the perspective
of tilt-tilt correlation length [Fig. 5(d)]. The formula for this
quantity, 
 = √

D2/αAFD, is extracted from the denominator
of Eq. (6) as the combination with dimension of length. At
temperatures that are above diffuse intensity drop, the length
grows on cooling, agreeing with the theoretical expectations,
which are shown by dashed lines [Fig. 5(d)]. At the moment
of diffuse intensity drop, the length also decreases sharply.
It turns out that the correlation length associated with nor-
mal diffuse scattering does not grow significantly higher than
20–30 cells. On the other hand, the continued growth of the
integral intensity, and, in particular, the narrow Bragg-like
component directly at the R point, suggests that the degree
of ordering of the tilting still grows further. It is likely that for
an adequate assessment of the stiffness and correlation length
it is necessary to take into account both the normal diffuse
signal (Lorentzian-like) and the narrow component directly at
the R point. At the moment, it is not clear how this should be
made most consistently (we used intensity integration as the
simplest approach). Parallels can be seen with phonon spec-
troscopy, where energy integration with taking into account
also the central peak, appears necessary to estimate the “true”
stiffness [44,55].

An alternative suggestion could be that maybe the sample
at T = 220 ◦C is not fully homogeneous and some subvol-
umes of it are already in the ordered (IM) phase, while the
rest of the crystal is in cubic phase. The Bragg-like component
is, in this case, just a normal Bragg reflection from those
ordered regions. In the case of SrTiO3 a similar question arose
(see Ref. [52], Sec. III.2.1, for review) and was the subject
of targeted studies [56], which were aiming at elucidating
the possibility of higher transition temperature in near-surface
layers, but did not confirm that.
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FIG. 3. Diffuse scattering distribution in the vicinity of the (−1.5 −0.5 0.5) reflection in the cubic phase. Profiles (e)–(l) are constructed by
integrating the signal in cylinders with a radius of 0.014 reciprocal lattice units (r.l.u.). Dashed lines are the fit by Lorentzian I = T

α+D2(�q− �q0 )2 .
Asymmetry of the L-direction profile is likely due to the experimental artifact: in some places of the reciprocal space there are strong intensity
gradients due to the relatively large size of the sample in comparison with the characteristic absorption length of radiation in it.

FIG. 4. A real-space view of an AFD fluctuation responsible for
diffuse scattering rods near R points. Octahedra experience antiphase
tilts around the axis that coincides with the direction of the wave
vector, i.e., the direction in which the pattern slowly changes in
real space. In the present case, this change is assumed as just the
decay of tilt magnitude over the characteristic correlation length,

. Note that this pattern of short-range tilt correlations is similar to
a0a0c−, which is different from the tilt pattern in the antiferroelectric,
incommensurate, and (presumably) IM phases, which is a−a−c0.

C. Unrealized transition to the polar phase

In addition to an increase in the AFD susceptibility,
an increase in the dielectric susceptibility is also expected
in the cubic phase, according to the dielectric studies of
Pb(Hf0.7Sn0.3)O3 crystals [48].

The stiffness at �q = 0, denoted as αFE and determined by
the fitting of diffuse scattering profiles (Fig. 6), decreases
on cooling (Fig. 7). At high temperatures (300–450 ◦C) this
fits to the Curie-Weiss law with a critical temperature TFE ≈
200 ◦C, which coincides unexpectedly well with the AFD
transition temperature. At lower temperatures (220–250 ◦C)
the stiffness decrease slows down, and nearly saturates. This
lower-temperature saturation seems qualitatively compatible
with the dielectric data of Ref. [48], which is coplotted. The
absence of divergence of susceptibility at zone center agrees
well with the absence of ferroelectric transition (AFD transi-
tion occurs instead).

D. Incommensurate mode critical dynamics

Since the transition from the IM phase to the AFE2 phase
is incommensurate, it is logical to expect a decrease in the
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FIG. 5. Diffuse scattering parameters in the vicinity of the R
point (−1.5 − 0.5 0.5): (a) AFD stiffness αAFD determined by
independent fits along the K and L axes. We think that the true
stiffness, which does not depend on the direction in cubic phase, is
the average between them. Stars are the stiffness recalculated from
the integral intensity of the profiles along L. (b) Integral intensity
for the corresponding directions. (c) Correlation energy constant D2.
(d) Correlation lengths of displacements recalculated from stiffness
and correlation energy constant. Dashed lines are theoretical expec-
tations under the assumption D2 = const and αAFD = A(T − TAFD).

FIG. 6. Distribution of diffuse scattering in the cubic phase. Two-
dimensional distributions (cuts througth Q = (−3 0 0) by H K 0
plane) are shown using same color scale. The profiles correspond to
[1 1 0] (circles) and [0 1 0] (triangles) directions, background sub-
tracted. Solid and dashed lines are fit by Lorentzian I = T

α+D2 (�q− �q0 )2 .

FIG. 7. The temperature dependence of the dielectric stiffness,
determined by the analysis of diffuse scattering in the cubic phase
compared to dielectric measurements [48]. For a correct comparison,
the moment of the phase transition of the dielectric data was shifted
in temperature to the value T = 200 ◦C at which a phase transition is
observed in the current study.

stiffness corresponding to transverse incommensurate waves.
Indeed, we register a minimum of stiffness αIC at an incom-
mensurate position, q0. This can be seen from the scattering
profiles [Figs. 8 and 9(a)], where the maximum is located
in the vicinity of q0 = (0.15, 0.15, 0). The position of the
maximum shifts away from the center of the zone as the
sample cools down [Fig. 9(c)].

FIG. 8. Diffuse scattering distributions in the IM phase. Two-
dimensional distributions [cuts througth Q = (−3 0 0) by the H K 0
plane] are shown using the same color scale. The profiles correspond
to [1 1 0] (circles) and [0 1 0] (triangles) directions, background
subtracted.
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FIG. 9. Temperature dependence of the incommensurate diffuse
scattering in the IM phase (a) and its parameters: incommensurate
stiffness, measured as T/Imax (b), and the position of intensity maxi-
mum (c).

The most interesting feature of this maximum is that the
incommensurate stiffness, recalculated from its amplitude,
behaves linearly when approaching the IM → AFE2 transition
and the critical temperature for this linear dependence coin-
cides with the transition temperature [Fig. 9(b)]. At the same
time, the position of the minimum of the stiffness just above
the transition coincides with the position of the incommensu-
rate reflection just below it. These two factors are consistent
with what would be expected from classical soft-mode-driven
(second-order) incommensurate transition [36]. However, this
apparent similarity to second-order transition does not directly
agree with the presence of nonzero latent heat in caloric
measurements of such crystals [48]. This discrepancy is of
interest, although no immediate explanation is apparent, apart

FIG. 10. Population of domains in the AFE2 and IM phases. In
the AFE2 phase (a), as well as in the low-temperature region of
the IM phase (b), (c), domains with incommensurate maxima along
the [1 1 0] direction strongly prevail in volume over domains with
incommensurate maxima along the [−1 1 0] direction, and other
directions (not shown). However, as the transition to the cubic phase
is approached, the intensities along the [1 1 0] and [−1 1 0] directions
are equalized (d), (e). Cubic phase (f) shows equal intensities in these
directions.

from a possibility that the experimentally registered latent heat
is due to extrinsic sources, such as domain redistribution at the
transition point.

The linear trend of incommensurate stiffness breaks at T =
188 ◦C, where the slope changes [Fig. 9(a)]. Seemingly, this
is due to a change in the distribution of IM-phase domains
with different orientations at T about 187–189 ◦C, as Fig. 10
indicates.

IV. INTERPRETATION

Here, a symmetry-guided minimal Landau-like model is
built and the experimental data are compared to its predic-
tions.

A. Symmetry of the IM phase

The structure of the IM phase has not yet been refined
crystallographically. However, plausible assumptions on it can
be made on the basis of its AFD character, general symmetry
considerations, and experimentally observed symmetry of dif-
fuse scattering.

The first candidate for an IM-phase unit cell is the or-
thorhombic one defined by vectors �aIM = (aPC,−aPC, 0),
�bIM = (aPC, aPC, 0), �cIM = (0, 0, 2aPC), where aPC is the
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pseudocubic lattice parameter. Oxygen octahedra are tilted in
an a−a−c0 pattern around �aIM. Such a cell of Imma symmetry
has been considered by Tolédano and Khalyavin [35] (axes
a, b, and c assigned differently in the present work to have
them similar to those in the AFE phase) as a virtual interme-
diate structure between cubic and antiferroelectric structures.
Also, this cell corresponds to the average structure of the
incommensurate phase of PbHfO3, as determined crystallo-
graphically [15].

The orthorhombic Imma cell is compatible with the ob-
served symmetry of diffuse scattering. This can be deduced
as follows. If one considers a temperature near the bottom
of the IM phase stability range, like T = 177 ◦C, the diffuse
scattering maxima along the [1 1 0] direction are five to seven
times more intense than those along [1 − 1 0], [1 0 1], and
[1 0 − 1]. Intensity profiles along [1 1 0]and [1 − 1 0] are
shown in Fig. 10(b), while the latter two directions ([1 0 1] and
[1 0 − 1]) are omitted for clarity of the figure; the intensity of
the respective profiles is about the same as along [1 − 1 0] at
this temperature. It is possible to verify that such a combina-
tion of intensities cannot be reproduced by any combination
of rhombohedral-symmetry domains or tetragonal-symmetry
domains, but is compatible with orthorhombic-symmetry do-
mains. The volume shares of different orientational domain
states are changing with temperature, as commented in the
caption of Fig. 10.

B. Minimal Landau-like model of the IM phase

By knowing (actually, reliably guessing) the order param-
eter of the IM phase, it is possible to learn how the stiffness
landscape in wave-vector space should be organized. The or-
der parameter is assumed to be �η0 = η0( 1√

2
, −1√

2
, 0): antiphase

tilts around �aIM. The idea is to build such a symmetry-
determined free-energy expansion, in which by means of the
lowest-possible-order terms involving �η0 and polarization gra-
dients, the key specifics of the IM phase are accounted for.

1. Cubic part of the free-energy expansion

Free energy of inhomogeneous polarization in a cubic crys-
tal is given as [57]

FP = α

2
�P2 + 1

2

∑

i, j

Di jlm
∂Pi

∂xi

∂Pl

∂xm
, (7)

where �P is polarization, α is dielectric stiffness, Di jlm is po-
larization correlation energy tensor, and xi is coordinates x, y,
and z. This formula does not account for the LO-TO splitting
due to the long-range electrostatic interactions, which should
be, in principle, included in such macroscopic consideration
[32]. Here, for simplicity, we do not consider them, but instead
(which is largely equivalent) just assume that all possible
polarization waves in Eq. (7) are transverse.

2. Interaction between polarization and tilts

Interaction of polarization with �η0 should be described by
those coupling terms between �−

4 (for polarization) and R+
4

(for tilts) distortions that the cubic symmetry allows. The
Supplemental Material [58] lists such terms up to fourth order

(and up to second order in gradients), as provided by ISOTROPY

software [59].
The commonly considered coupling is the biquadratic cou-

pling [12,60], which is represented by three fourth-order
terms. In our case they are proportional, respectively, to

(
P2

x + P2
y

)
η2

0, PxPyη
2
0, and P2

z η2
0. (8)

This biquadratic coupling between �η0 and homogeneous po-
larization accounts for the change in the dielectric tensor
between the cubic and IM phases, but does not account for
the change in spatial correlations of polarization.

3. Biquadratic coupling of tilts to polarization gradient

Spatial correlations should be affected by coupling terms
involving polarization gradients. Also those terms should not
contain �η0 gradients, because those should be zero for con-
stant �η0. Lowest-order terms of this sort are degree-3 terms
linear in polarization gradient, which vanish in a big crystal,
because their volume integrals are transformed to surface
integrals of finite vector fields [33]. Therefore, the desired
lowest-order interaction should be described by biquadratic
terms between polarization gradients and homogeneous tilts,
of which there are 30 invariants (only 15 are nonequivalent in
big crystals) with terms proportional to [58]

∂Pi

∂x j

∂Pl

∂xm
ηsηt . (9)

Upon substituting �η0 = η0( 1√
2
, −1√

2
, 0), these terms contribute

to free energy as

�F = 1

2
η2

0

∑

i, j

γi jlm
∂Pi

∂xi

∂Pl

∂xm
. (10)

The symmetry of the γi jlm tensor is not cubic, as that of Di jlm,
but orthorhombic with the main axes along �aIM ([−1 1 0]),
�bIM ([1 1 0]), and �cIM ([0 0 1]). The coefficient γabab, which
determines the dispersion of transverse polarization waves
propagating along �bIM and polarized along �aIM reads

γabab = γxxxy − γxyyy + 1
2 (γxxxx − γxxyy + γxyxy − γxyyx ).

(11)
This coefficient is different from γbaba, which corresponds
to similar waves, but propagating along �bIM. Therefore, bi-
quadratic coupling between the polarization gradient and tilts
can be sufficient for creating the incommensurate stiffness
minima selectively at �q0 = ±(ξ, ξ , 0), without simultane-
ously creating such minima at all the wave vectors of the same
star.

The correlation energy for transverse waves propagating
along �bIM is defined by constant D2, which is recalculated
from tensors as

D2 = (Dxxxx − Dxxyy) + γababη
2
0. (12)

For an incommensurate stiffness minimum this coefficient
shall be less than zero.

4. Expected temperature dependencies of coefficients

Following the general philosophy of Landau-like models,
such as Devonshire’s [31], one tries to find a minimal number
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of parameters that depend on temperature, ideally, one param-
eter, which is linear in T , as in Landau theory [34]. Here, one
needs at least two parameters, because in the cubic phase both
the ferroelectric and AFD modes appear soft and the model
does not present a natural mechanism of linking one softening
to the other. Therefore, the simplest model would be with both
dielectric and AFD stiffness following linear trends,

α(T ) = A(T − T0) (13)

and

αAFD(T ) = AAFD
(
T − T AFD

0

)
. (14)

Landau theory does not allow Pm3̄m→Imma AFD tran-
sition to be of second order [61]. On the other hand, the
temperature dependence of R-point reflections appear linear in
the IM phase (Fig. 2), which would be consistent with second-
order transition. The simplest reconciliation is to assume that
the transition is of “weakly” first order and η2

0 is not strictly,
but nearly linear just below cubic → IM transition,

η2
0 ≈ Y

(
T AFD

0 − T
)

(15)

(above ≈ T AFD
0 , η2

0 = 0). The polarization correlation energy
constant will then be also nearly linear [Eq. (12)] and de-
crease on cooling if γabab is negative. Figure 11 shows how
q-dependent stiffness evolves in this case. Note that this be-
havior is ultimately simplified: along with the assumptions
above, biquadratic coupling to homogeneous polarization
(as opposed to the coupling to gradients) is neglected. The
specifics of this minimal model is that the stiffness minimum
shifts from zero in wave-vector space nearly continuously,
similarly to how the free-energy minimum shifts from zero
along the polarization axis in Landau theory of second-order
transitions.

C. Model vs experiment

This section examines the experimental data in comparison
with the minimal model outlined above. There are no attempts
to fit the data using model temperature dependencies (they are
considerably different), but rather the q-dependent stiffness
is modeled by the respective formula S(q) = αFE + D2q2 +
D4q4 [Figs. 12(a)–12(c)] at each temperature point and the re-
sulting temperature dependencies of coefficients [Figs. 12(d)
and 12(e)] are compared with expectations [Figs. 11(c) and
11(f)]. The fitting result with temperature-independent D4, in
our opinion, differs in shape with experiment in the high-
temperature region of the cubic phase. So, we tried also a
temperature-dependent D4, which agrees better. The profiles
in Figs. 12(a) and 12(b) correspond to T > 181 ◦C. The fits of
these profiles appear reasonable. On the other hand, at lower
temperatures (173 ◦C < T < 179 ◦C) the fits appear inade-
quate, as Fig. 12(c) illustrates: the shape is clearly different.

Both α and D2 decrease on cooling in the cubic and IM
phases. This is especially remarkable for D2: while it is ex-
pected to change in the IM phase due to interaction with tilts
[Eq. (12) and Fig. 11(f)], in the cubic phase it is not expected
to change. In Landau theory it is temperature independent
[33], and one could expect this to extend qualitatively to
Landau-like models. For the present crystal this seems to not
apply, likely because it is not so similar to ferroelectrics; at

FIG. 11. Minimal Landau-like model of the IM phase in the tem-
perature domain. Ferroelectric stiffness, α, decreases linearly across
the cubic → IM transition. In the cubic phase (dashed red lines)
this leads to homogeneous shift of the whole stiffness dispersion
in (a) and to the unbending of the free-energy parabolic part in
(b). In the IM phase (blue solid lines), the polarization correlation
energy, D2, linearly decreases due to the biquadratic interaction of
the polarization gradient with oxygen octahedral tilts. This leads
to the unbending of stiffness dispersion in (a) and the formation
of incommensurate stiffness minimum. Subsets (c)–(f) describe the
temperature behavior of the model parameters: dielectric stiffness α,
AFD stiffness αAFD, squared AFD order parameter η2

0, and correla-
tion energy constant D2, respectively.

least its α(T ) does considerably violate α = A(T − T0) law
and no ferroelectric phase forms.

Upon noting the interesting temperature dependence of D2

in the fits, it is instructive to attempt to ensure that this effect is
real and not an artifact of the data processing. Figure 13 sup-
ports the fit results by showing stiffness profiles, recomputed
so that the y axis becomes

√
S − S0, where S is the stiffness

and S0 is the stiffness at the zone center, as obtained by the
fit. This way the parabolic stiffness curve is transformed to a
linear curve with the slope of

√
D2. This slope increases with

temperature.

V. DISCUSSION

A. Relation to other observations of intermediate phase

The present IM phase is similar to the additional phase
in pure PbHfO3 that is stabilized under pressure, where
similar diffuse incommensurate maxima, as well as the R-
point reflections, were also registered [46]. There are subtle
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FIG. 12. Description of the stiffness profiles along the [1 1 0] direction by the relation S(q) = αFE + D2q2 + D4q4, where αFE is the
ferroelectric stiffness and D2 is the polarization correlation energy constant. At low qx values, the Bragg scattering and scattering by acoustic
phonons are dominant, so stiffness fit is done for 0.03 < qx < 0.15 reciprocal lattice units (r.l.u.). The αFE and D2 values are presented in non-SI
units; to switch to SI units, it is necessary to multiply the absolute values of the parameters by N1 = 1.23 × 105 [Jm/C2] (for the stiffness)
and N2 = 2.05 × 10−14 [Jm3/C2] (for the D2), respectively. The stiffness in this figure is the same in meaning as in Fig. 7, but slightly differs
in value due to different methods of obtaining it: Fig. 7 obtained from the fit of the intensity (proportional to the susceptibility) taking into
account only D2, and here it was done from the fit of the stiffness, taking into account also D4.

differences, however, in part due to the presence of weak
reflections at X and M points under pressure, which the
IM phase in PbHfO3-PbSnO3 lacks. Similar incommensu-

FIG. 13. The square root of the q-dependent part of the stiffness
profiles along the [1 1 0] direction in the cubic phase. Slopes corre-
spond to

√
D2.

rate maxima were also seen in PbZrO3 under pressure [14],
although, unfortunately, without information on the R-point
superstructures. Most likely, all these phases are similar. Other
studies of PbHfO3-PbSnO3 [51,62], where PbSnO3 concen-
tration was lower, did not reveal such a temperature-dependent
incommensurate diffuse scattering maxima. Tentatively, this
behavior changes strongly with tin concentration.

There is a disagreement between the temperature trend of
the IM-phase dielectric stiffness obtained by diffraction [see
Fig. 12(d)] and the corresponding trend obtained by dielec-
tric measurements [48]. From diffraction, dielectric stiffness
should decrease on cooling, while from dielectric measure-
ments it should increase. We think this discrepancy comes
likely from the polydomain structure of the IM phase. The
agreement tends to recover (Fig. 14), if one considers a stiff-
ness produced by averaging diffuse-scattering-derived values
related to displacements along different {110} directions,
which is more reminiscent to what is measured in a dielectric
setup.

A research strategy applied to Pb(Hf0.7Sn0.3)O3 in this
work can also be introduced to a wider range of materials
including lead-free ones. Primarily, one could look at
bismuth-ferrite-based materials, in which incommensurate
waves propagate in the same direction, but have much smaller

014101-11



MARIA A. KNIAZEVA et al. PHYSICAL REVIEW B 105, 014101 (2022)

FIG. 14. Ferroelectric stiffness values extracted from diffuse
scattering profiles along the [1 1 0] and [−1 1 0] directions. The
average of those values is compared with the dielectric data of
Jankowska-Sumara et al. [48]. One notes that averaging over two
different directions results in better agreement in temperature trends
below the transition point than the stand-alone values related to
different directions.

period, while being also affected by octahedral tilts [63]. In
other incommensurate materials, for example NaNbO3-based
[64], such an IM phase, if it exists, should be likely different
because the incommensuration in these materials is related to
other types of waves. Similar to PbHfSnO3, diffuse scattering
landscapes can be observed in Pb2ScTaO6 [65], which allows
one to expect a similar physical background in Pb-containing
relaxors.

B. Effect of Sn doping on structural distortions

The influence of Sn doping on different types of distortions
can be most straightforwardly grasped from a phase diagram
in temperature-doping coordinates, as published in [62]. Sn
doping increases the temperature, at which the cubic phase
transforms to the IM phase. It can be deduced that Sn doping
increases the stability of antiphase tilts. On the other hand,
Sn doping decreases the temperature, at which the IM phase
transforms to the IC phase. Therefore, the stability of IC or-
dering is suppressed by Sn doping. What remains not covered
by such a phase diagram is the interaction of Sn doping with
ferroelectric order parameter. To this end, it is possible to learn
from the fact that Sn doping increases the coercive field in
PbHfO3 ceramics [66], which can be interpreted as destabiliz-
ing the (metastable) ferroelectric phase even more intensively
than it destabilizes the incommensurate phase. This property
of Sn, as observed upon doping PbHfO3, is qualitatively con-
sistent with the observations in BaTiO3 [67,68], where Sn also
destabilizes the ferroelectric order, but this time in favor of
polar nanoregions.

C. Inhomogeneous polarization is not sufficient for modeling
incommensurate fluctuations in the lower-T part of the IM

phase

It is remarkable that the minimal symmetry-based Landau-
like model describes the data not so well, as the comparison

of Figs. 11 and 12 highlights. The discrepancies between
model and experiment [Fig. 12(c)] arise surprisingly quickly,
at about 20 ◦C below the cubic → IM transition. Normally,
one should expect the validity region for Landau-like models
of ferroelectrics to be larger, which is related to the ex-
perimental temperatures being small when compared to the
so-called “atomic temperature” of about 104–105 K [34].
Therefore, the origin of these discrepancies is presently
unclear.

What one may suggest from the discrepancy of Fig. 12(c)
is that the incommensurate order parameter, when its wave
vector is considerably away from the zone center, cannot be
interpreted as just an inhomogeneous polarization. It is not
necessary due to stiffness renormalization by flexoelectric or
similar interactions, but may be simply because sufficiently
away from the zone center the waves cannot be considered
as weakly inhomogeneous. An independent order parameter
should be introduced instead, for which the symmetry-
allowed expansion around its wave vector, �q0, is expected to
be adequate in the vicinity of IM → incommensurate tran-
sition. An experimental indication towards this is the linear
dependence of incommensurate stiffness near that transition
[Fig. 9(b)], which is compatible with classical models of
incommensurate transitions with explicitly defined incom-
mensurate order parameter [36]. If, instead, one assumes that
incommensurate stiffness follows ferroelectric softening, as
in the minimal model considered here, the incommensurate
stiffness would be quadratic in temperature, which contra-
dicts the observations. It seems appropriate to suggest that
the dielectric stiffness may not be a very successful can-
didate for being a critical parameter in models like this,
despite the experimental increase of ε(T ) on cooling in the
cubic phase.

D. Minimal model with gradient terms as a generalization
of Holakovsky’s model of triggered ferroelectricity

The relation of dipole ordering to the tilts subsystem
in perovskite and similar structures is widely discussed
[3,12,18,22–24,30,44,60,69–71]. The likely initial point of
that discussion is Holakovsky’s proposition [60] on a pos-
sibility that it is the octahedral tilt subsystem that can be a
“soft” instead of a “ferroelectric” subsystem, while the ferro-
electric transition still takes place due to a positive biquadratic
interaction between those. The present paper attempts to
extend this to inhomogeneous polarization by considering
biquadratic coupling also to polarization gradients. This ap-
pears successful in the higher-T region of the IM phase,
where incommensurate fluctuations occur near the zone cen-
ter, but fails at the low-T region, where the fluctuations
are of much shorter wavelength [q ≈ (1/7, 1/7, 0)]. In pure
PbHfO3, the region of an apparent validity of the minimal
model is skipped, because the IM phase itself is skipped,
and the incommensurate modulations are of relatively short
wavelength from the very beginning. The minimal model
is, therefore, unlikely sufficient (although it is conceptually
consistent) for describing a triggered incommensurate tran-
sition in pure PbHfO3 [44] and a more complicated model
is needed.
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E. A possibility of temperature-independent characteristic
length scale for inhomogeneities

Polarization correlation energy constant, D2, appears to
follow a similar temperature trend to that of ferroelectric
stiffness: they both decrease nearly linearly in the cubic phase
with a critical temperature of about 200 ◦C. If one composes
the correlation length parameter from those as

√
D2/α, this

parameter appears rather temperature independent. If so, one
should think that this length scale is characteristic to the
system in a wide temperature range. Upon estimating this
length scale from Figs. 12(d) and 12(e), one arrives at the
value of about ten lattice units (projected to pseudocubic high-
symmetry directions). This value is comparable to the period
of incommensurate phase, which is ≈7 lattice units. A natural
suggestion seems to be that the fluctuations of polarization,
even in the cubic phase, are on average as inhomogeneous
as the incommensurate phase is, although the level of order
differs drastically, from long-range order in the incommen-
surate phase through short-range correlated incommensurate
fluctuations in the IM phase and to, apparently, much more
disordered fluctuations in the cubic phase. This is similar to
how the local structure of some perovskites appears largely
temperature independent despite drastic changes in the macro-
scopic symmetry and structure [72,73].

VI. CONCLUSION

The x-ray diffuse scattering experiment has shown a rich
spectrum of unusual behavior associated with phase tran-
sitions in Sn-doped PbHfO3. Among the most important
takeaways is a crossover from ferroelectric fluctuations in
the cubic phase to incommensurate fluctuations in the IM
phase. It appears convincing that this crossover occurs mainly
due to the interaction with octahedral tilts, which are the IM
phase order parameter. Quantifying this behavior within a
model turns out to be complicated; few conceptual challenges
emerge. The ferroelectric stiffness deviates from Curie-Weiss
law already in the cubic phase, and it is not clear how a
Landau-like model should account for this. Trying to keep the
discussion within the realm of Landau-like models, one may
try connecting the stiffness saturation with some “background
stiffness,” the phenomenological quantity to be introduced in
analogy with the “background permittivity” of Tagantsev and
co-workers [74]. We hope that the discrepancies in describing

the phase transitions in lead-based antiferroelectrics within
Landau-like models will be resolved in the near future upon
advancing in the experimental characterization of this and
similar systems, and also possibly by drawing from related
fields such as relaxor ferroelectrics.
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APPENDIX

1. Structure factor for diffuse scattering by a simple lattice

In the approximation of small displacements, �Ui, from
high-symmetry positions, �Ri, the total structure factor for a
simple lattice can be expanded as follows (the Debye-Waller
factor and normalization factors are omitted for simplicity).

F ( �Q) = f ( �Q)
∑

i

exp(i �Q�ri ) = f ( �Q)
∑

i

exp[i �Q( �Ri + �Ui )]

≈ f ( �Q)
∑

i

exp(i �Q �Ri )(1 + i �Q �Ui )

= f ( �Q)δ( �Q − �τ ) + i f ( �Q)( �Q �Uq)δ( �Q − �q − �τ ), (A1)

where f ( �Q) is the atomic scattering factor and �Uq is the
Fourier component of displacements. In the last row, the for-
mer term corresponds to a contribution of this sublattice to the
Bragg scattering structure factor, and the latter to the structure
factor for diffuse scattering.
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