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Topological multiband s-wave superconductivity in coupled multifold fermions
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We study three-dimensional time-reversal-invariant topological superconductivity in noncentrosymmetric
materials such as RhSi, CoSi, and AlPt which host coupled multifold nodes energetically split by the spin-orbit
coupling at the same time-reversal-invariant momentum (TRIM). The topological superconductivity arises from
the s+ ⊕ s− gap function, which is k independent, but with opposite signs for the two nodes split at the same
TRIM. We consider various electron-electron interactions in the tight-binding model for RhSi and find that the
topological superconducting phase supporting a surface Majorana cone and topological nodal rings is favored in
a wide range of interaction parameters.
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Introduction. Majorana particles on superconductors have
drawn widespread attention as an avenue to topological quan-
tum computation [1–5], and this can be attributed to their
characteristic non-Abelian vortex exchange statistics [6–8].
The majority of experimental search for the Majorana zero
modes (MZMs) in condensed matter physics has been based
on proposals to realize them in a heterostructure. Examples in-
clude the semiconductor nanowire [9–13], the ferromagnetic
atomic chain [14], and the topological insulator [15,16] in
proximity to a conventional superconductor.

Besides these heterostructures, the development of topo-
logical band theory [17–19] has demonstrated that topo-
logical materials could exhibit topological superconductivity
(TSC) with Majorana boundary modes due to the novel
interplay between the unique electronic structures and inter-
actions [20–25]. Recent research has been devoted to under-
standing the interplay and the resulting TSC in Weyl/Dirac
semimetals [26–29] and Luttinger semimetals [30,31].

The recently discovered topological semimetals with un-
conventional multifold fermions [32] also provide an ideal
platform for studying the effects of interactions in the unique
electronic structures, especially TSC. In a family of candi-
date materials with the B20 crystal structure [33,34] such as
RhSi, CoSi, and AlPt, the topological features of the elec-
tronic structure such as the long surface Fermi arcs have been
observed [35–41]. However, some qualitative band structure
features of this class of candidate materials have not been
included in the existing studies on the interacting multifold
fermions [42–46]. Many of them studied isolated multi-
fold fermions at a single time-reversal-invariant momentum
(TRIM) and it has not been considered that two types of
multifold fermions lie at slightly different energy levels on the
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same TRIM. Thus, the possibility of the multiband character-
istics to manifest in the superconductivity [47–50] has been
overlooked.

In this Letter, we study a possible time-reversal-invariant
(TRI) TSC arising from the coupled structure of multifold
fermions at TRIMs in a representative multifold fermion sys-
tem, RhSi. We find that the electronic structure of coupled
multifold fermions can give rise to a robust combination of
the fully gapped TRI TSC around the coupled nodes at �

and the nodal TSC around another TRIM, which arises from
the k-independent intranodal pairing gap at each TRIM with
opposite signs between the two nodes at the same TRIM; we
shall call this the “s+ ⊕ s− gap function.”

Low-energy effective model. To study the electronic struc-
ture of RhSi, we adopt the tight-binding (TB) model proposed
in Ref. [35] [see Sec. I of the Supplemental Material (SM) [51]
for the details]. Figure 1(a) shows the TB band structure
of RhSi and the first Brillouin zone (BZ) along with the
surface BZ (SBZ) on the (001) plane. At �, fourfold and
twofold nodal points are found around the zero energy
corresponding to the (pseudo)spin- 3

2 Rarita-Schwinger-Weyl
(RSW) fermion and spin- 1

2 Kramer-Weyl (KW) fermion, re-
spectively. Additionally, there are sixfold and twofold nodal
points at R which are equivalent to doubly degenerate spin-
1 [39,53–55] and spin-0 systems, respectively. As shown
in Fig. 1(a), the Fermi level of RhSi lies around the four-
fold nodal point at � and the energy bands crossing the
Fermi level emanate from the multifold nodal points at �

and R.
We first investigate a low-energy effective model around �.

Up to first order in k, the electronic band structure near the two
nodal points at � is described by the following Hamiltonian:

H3/2⊕1/2
k =

(
H (3/2)

k T�,k

T †
�,k H

( 1
2 )

k − m�I2

)
, (1)
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FIG. 1. (a) Band structure of RhSi along the high-symmetry lines
in the BZ. The BZ and the (001) SBZ are shown in the inset.
(b),(c) The band structure of the continuum model near the nodal
points at � (R). The ratio of the wave function magnitude between
| 3

2 , 1
2 , k̂〉 and | 1

2 , 1
2 , k̂〉 (|1, 0, k̂〉 and |0, 0, k̂〉) is illustrated by differ-

ent colors. For the bands with E > 0, Chin and Chout are the Chern
numbers carried by the inner and outer FSSs, respectively, and ×2 in
the subscript indicates double degeneracy.

where H (3/2)
k = v�k · S(3/2) and H (1/2)

k = 2v�k · S(1/2) de-
scribe the RSW and KW fermions, respectively, with the
spin-s matrices S(s)

i satisfying S(s)2 = s(s + 1). Here, v� and
2v� are the Fermi velocities of RSW and KW fermions,
respectively. In the RhSi family, they originate from spin-
independent inversion-breaking hoppings. We denote the
eigenstates of H (s)

k by |s, hz, k̂〉, where s and hz are the total
angular momentum and the helicity eigenvalue, respectively.
We assume v� > 0 without loss of generality. The two nodal
points are energetically separated by m� and coupled by
T�,k = v�k√

2
(| 3

2 , 1
2 , k̂〉〈 1

2 , 1
2 , k̂| + | 3

2 ,− 1
2 , k̂〉〈 1

2 ,− 1
2 , k̂|).

When the Fermi level lies above the fourfold nodal point,
two bands of H3/2⊕1/2

k cross the Fermi level as shown in
Fig. 1(b). Their eigenstates are given by

|�, in, k〉 = ∣∣ 3
2 , 3

2 , k̂
〉
,

|�, out, k〉 = cos θ�,k

∣∣ 3
2 , 1

2 , k̂
〉 + sin θ�,k

∣∣ 1
2 , 1

2 , k̂
〉
, (2)

where θ�,k = tan−1
√

f�,k−e�,k

f�,k+e�,k
with e�,k = m� − v�k/2 and

f�,k =
√

e2
�,k + 2v2

�k2. Here, “in” and “out” represent the in-

ner and outer Fermi surface sheets (FSSs), respectively. Note
that the outer FSS mainly consists of the hz = 1

2 branch of the
RSW fermion in the limit v�k � m� , while the portion of the
KW fermion | 1

2 , 1
2 , k̂〉 increases to 2

3 in the opposite limit. In
Fig. 1(b), the bands composed of the hz = 1

2 branches of the

RSW and KW fermions are colored according to their ratio.
A FSS surrounding a multifold fermion carries a quantized
Chern number 2hz when each eigenstate on the FSS is a
superposition of |s, hz, k̂〉’s with the same hz. Thus, the inner
and outer FSSs carry the Chern numbers 3 and 1, respectively.

The low-energy effective model near R is analogous to that
near �. Up to first order in k, the electronic band structure
around sixfold and twofold nodal points at R is described by
two copies of coupled spin-1 and spin-0 fermions H1⊕0

k ⊕
H1⊕0

k , where H1⊕0
k is given by

H1⊕0
k =

(
H (1)

k TR,k

T †
R,k H (0)

k

)
=

(−vRk · S(1) TR,k

T †
R,k −mR

)
, (3)

where the two nodal points are coupled by TR,k =
vRk|1, 0, k̂〉〈0, 0, k̂|. Here, vR > 0 since the Nielsen-
Ninomiya theorem [56] requires v�vR > 0.

As shown in Fig. 1(c), two bands of H1⊕0
k cross the Fermi

level when it lies above the sixfold nodal point, whose eigen-
states are given by

|R, in, k〉 = |1,−1, k̂〉,
|R, out, k〉 = cos θR,k|1, 0, k̂〉 + sin θR,k|0, 0, k̂〉, (4)

where θR,k = tan−1(
√

fR,k−mR

fR,k+mR
) with fR,k =

√
m2

R + 4v2
Rk2.

Equation (4) is very similar to Eq. (2). The Chern numbers
carried by the inner and outer FSSs are −2 and 0, respectively,
for each copy. Then the total Chern number of the Fermi
surface around R is −4 compensating the Chern numbers
from the FSSs around the RSW and KW nodes at �.

TSC from s+ ⊕ s− pairings. Considering the two coupled
nodal points at � or R, TRI TSC can arise even from the sim-
plest k-independent gap functions represented by a direct sum
of two trivial matrices respecting all the spatial symmetries
of the system. Besides the trivial gap function, the multinodal
nature of each TRIM in the system allows the s+ ⊕ s− gap
functions:

��
± =

(
I4

−2I2

)
, �R

± =
(

I3

−3I1

)
, (5)

where I2s+1 acts on spin-s fermions. ��(R)
± looks like the trivial

gap function if we just focus on one of the two nodal points
at � (R), but the sign of the gap function on each nodal point
is opposite. Note that the s+ ⊕ s− gap functions indicate spin-
triplet pairing (see Sec. II of the SM [51]). We shall show
later that, for generic electron-electron interactions, the TRI
solution of the linearized gap equation can be written as

�� (β� ) = α� (��
± cos β� + I6 sin β� ),

�R(βR) = αR(�R
± cos βR + I4 sin βR), (6)

near � and R, respectively. Here, α�(R) corresponds to the
overall magnitude of the gap function and β�(R) ∈ [−π

2 , π
2 ]

parametrizes the ratio between the trivial gap function and the
s+ ⊕ s− gap function. We assume α�, αR > 0 here (see Sec.
III of the SM [51] for more general cases).

To understand the topological nature of the superconduct-
ing phase with the gap function �� (β� ), we first focus on the
multifold fermions at � and study the Bogliubov–de Gennes
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(BdG) Hamiltonian ĤBdG = 1
2

∑
k �̂

†
k HBdG(k)�̂k with

HBdG,� (k) =
(

H3/2⊕1/2
k − μ� �� (β� )

�� (β� ) μ� − H3/2⊕1/2
k

)
. (7)

Here, �̂
†
k = (Ĉ†

k , ĈT
−kγ ) is a spinor with the creation (de-

struction) operator Ĉ†
k (Ĉk) for electrons of the H3/2⊕1/2

k and
γ = exp[−iπS(3/2)

y ] ⊕ exp[−iπS(1/2)
y ] is the unitary part of

the time-reversal operator, and μ� is the Fermi level measured
from the fourfold nodal point.

In the weak pairing limit with α� much smaller than the
energy separation between the bands near the Fermi level,
the BdG spectrum and its topology are largely determined by
the intraband gap functions given by

δ�,in ≡ 〈�, in, k|�� (β� )|�, in, k〉|k=kF,in

= α� cos β� (tan β� + 1),

δ�,out ≡ 〈�, out, k|�� (β� )|�, out, k|〉|k=kF,out

≈ α� cos β�[tan β� − g� (μ�/m� )], (8)

with g� (x) = 3x2−2x−1
3x2+2x+1 , while the interband gap functions can

be treated perturbatively. The approximation in Eq. (8) is valid
as long as α� is sufficiently small compared to |3μ� + m�|.

The key insight here is that μ� determines the sign of δ�,out

when |β�| < π/4. This is most apparent in the case of β� = 0
in Eq. (6) from the wave function character in Eq. (2). Because
�� (0) ∝ ��

± in Eq. (6), δ�,out > 0 for small μ� > 0 since the
outer FSS is mainly composed of the RSW fermion. As μ�

is increased, however, so does the composition of the KW
fermion in the outer FSS, and ��

± gives δ�,out < 0. Hence, the
variation in the wave-function character switches the sign of
δ�,out.

In the same manner, we define δR,in and δR,out, which have
the same form as those in Eq. (8) but with gR(x) = 2x−1

2x+1 , and
find that the sign of δR,out also can be flipped by adjusting
μR > 0 when |βR| < π/4.

Phase diagrams in Figs. 2(a) and 2(b) summarize the topo-
logical phases at � and R, respectively. When the whole
BdG spectrum is gapped, a winding number w3D deter-
mines the topology and the number of helical MZMs on the
SBZ [19]. However, as explained below, a TSC with nodal
rings (NRs) around R can appear for large μR. In this case,
the presence/absence of a MZM at �̄ can be determined by
a winding number w1D [57]. Hence, we use a pair of wind-
ing numbers (w3D,w1D) to characterize the topology of each
region in the phase diagrams.

In the weak pairing limit, w3D is expressed as [18]

w3D = 1

2

∑
n

sgn(δn)Chn, (9)

where Chn is the Chern number of the nth FSS. We break w3D

into w3D,� and w3D,R according to the centers of FSSs. For
w3D,� , we expect it to be ±2 or +1, and the latter occurs only
when δ�,outδ�,in < 0. Meanwhile, w3D,R = −2 sgn(δR,in) is al-
ways even. Consequently, w3D is odd whenever δ�,outδ�,in <

0, and we expect at least one topologically protected MZM at
�̄ on SBZ.

Unlike δ�,out, the sign flip of δR,out with μR has no effect
on w3D since ChR,out = 0. Nevertheless, it can lead to a nodal
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FIG. 2. (a),(b) Phase diagram of the TSC in RhSi with respect to
β� and μ� with α� > 0 (βR and μR with αR > 0). A pair of winding
numbers (w3D,�(R),w1D,�(R) ) on each region characterizes the topol-
ogy of the superconducting phase. w3D,R = ∅ indicates the TSC with
NRs in the bulk BdG spectrum. The dashed line represents μR =
Ec1(βR) on which the superconducting gap closes/reopens without
changing w3D and w1D. (c) The band structure around R above the
sixfold nodal point colored in red (blue) for positive (negative) δR,n.
The four bands are labeled as n = 1, 2, 3, 4 in the order of closeness
to R. (d) The FSS formed by band 2 at μ = μ2, colored in the same
manner as (c).

TSC in RhSi for sufficiently large μR, around which the band
structure can be understood by considering the anisotropic k-
quadratic correction to H1⊕0

k ⊕ H1⊕0
k . Breaking the artificial

isotropy of H1⊕0
k ⊕ H1⊕0

k in k, it modifies the band structure
in Fig. 1(c) in two ways. First, there appear band crossings
along the R� lines because of the symmetry-enforced band
connectivity [58]. Second, the double degeneracy of the model
in Eq. (3) is lifted in generic momenta in BZ except on kx,y,z =
π planes due to the local Kramers theorem from the twofold
screw symmetries and the time-reversal symmetry [35].

Both effects are clearly shown in Fig. 2(c). The bands
crossing the Fermi level μR > 0 are labeled by n = 1, 2, 3, 4
in the order of closeness to R, and the color represents the sign
of δR,n for βR = 0 in Eq (6). As explained, the signs of δR,3 and
δR,4 are flipped as μR is raised over Ec1(βR) = mR

2 ( 1+tan βR

1−tan βR
)

at which gR(μR/mR) = tan βR. For βR = 0, Ec1 = mR/2. The
switched signs are maintained for the higher energies.

The BdG spectrum around R remains gapped until μR

reaches the band crossing energy Ec2. For μR > Ec2, however,
topological NRs in the BdG spectrum appear because the
interchange of wave functions between bands 2 and 3 at the
band crossing on the R� line makes the signs of δR,2(3) on the
R� line and on the kx,y,z = π planes opposite. Suppose P (Q)
to be a point where the FSS of band 2 and the R� line (RX
line) meet as shown in Fig. 2(d). Since δPδQ < 0, there exists
at least a point where the gap function becomes zero for any
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path between P and Q on the FSS. As a result, a ring with
δR,2 = 0 wrapping the R� line appears on the FSS of band 2.
For the same reason, another NR is found on the FSS of band
3. The stability of NRs is guaranteed by the one-dimensional
(1D) winding number for the AIII class evaluated along a loop
enclosing the ring [59]. The rings from bands 2 and 3 have
opposite winding numbers of unit magnitude (see Sec. IV of
the SM [51]).

Even in the presence of NRs around R, a MZM at �̄ is still
protected by w1D evaluated along a TRI loop L connecting �

with another TRIM that is projected to �̄ on the SBZ without
intersecting with NRs in the BZ [59]. In the weak pairing
limit, w1D can be easily evaluated from [18]

w1D =
∏

n∈FSS′
sgn(δn), (10)

where FSS′ denotes the FSSs which intersect with L. Note
that the four FSSs near R do not contribute to w1D due to
the local Kramers degeneracies implying δR,2n−1 = δR,2n for
n = 1, 2. Thus, a MZM at �̄ is expected for any surfaces of
the crystal as long as δ�,inδ�,out < 0, which is consistent with
the condition in the fully gapped phase.

TSC phase diagram in various interactions. To investigate
what kind of interactions realize the s+ ⊕ s− gap functions,
we consider three types of electron-electron interactions:

Ĥint = U

2

∑
i

ρ̂iρ̂i + V

2

∑
〈i, j〉

ρ̂iρ̂ j + J

2

∑
〈i, j〉

Ŝi · Ŝ j . (11)

Here, (ρ̂i, Ŝi ) = (Ĉ†
i,↑, Ĉ†

i,↓)(s0, s)(Ĉi,↑, Ĉi,↓)T with the spin
Pauli matrices s. U , V , and J represent the renormalized
on-site Coulomb interaction, the nearest-neighbor Coulomb
interaction, and the nearest-neighbor (anti)ferromagnetic ex-
change interaction, respectively [60]. Considering only the
time-reversal invariant pairing channels from Ĥint respecting
spatial symmetries of RhSi, the pairing interaction Ĥpair can
be expressed as

Ĥpair =
8∑

i=0

Ui

4

∑
k,p

�̂i(k)�̂†
i (p), (12)

where �̂i(k) = ĈT
−kγ M†

i,kĈk, and Ui’s are the coupling con-

stants of the pairing channels �̂i�̂
†
i with U0 = U/4, U1,5 =

V − 3J , and U2,3,4,6,7,8 = V + J . Here, Mi,k are k-dependent
matrices characterizing the pairing channels (see Sec. I of the
SM [51]).

Solving the linearized gap equation with Ĥpair, the gap
function �(k) = ∑8

i=0 �iMi,k with the highest transition tem-
perature is obtained. The relationship between �(k) and
Eq. (6) can be understood by projecting �(k) to the bases of
H3/2⊕1/2

k and H1⊕0
k at � and R, respectively. At �, �(k) ∼

(�0 − �1)I6 + (�2 − �3)��
±, whereas at R, �(k) ∼ �0I4 +

�4�
R
± up to the zeroth order in k. For U < 0, the trivial gap

function largely prevails. Hence, we focus on U > 0.
Figure 3(a) shows the phase diagram in (V/U, J/U )

for U > 0 at μ = μ� = μR − 0.43 eV = 1.3m� . In the blue
“NR+MZM” region, we find that the s+ ⊕ s− gap functions
are dominant and the resultant TSC exhibits a MZM at �̄

and the NRs near R as shown in Figs. 3(b) and 3(c), respec-
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FIG. 3. (a) Phase diagram in (V/U, J/U ) at μ = 1.3m� with
U > 0. “No SC” and “Trivial” mean no superconductivity and the
topologically trivial superconducting phase, respectively, whereas
“NR” and “MZM” represent the superconducting phases with the
NRs around R, and a MZM at �̄, respectively. (b) Surface spectral
weight around �̄ at E = 0. (c) Nodal rings around R in the BZ.

tively. This region is approximately covered by V < −J with
J < 0, where the ferromagnetic interaction is stronger than
the nearest-neighborhood Coulomb interaction. In a narrow
region in red at the boundary of the blue region, the TSC
with only the NRs from �R

± appears. The beige region marked
by “Trivial” approximately overlaps with V < 3J with J > 0,
where the topologically trivial superconductivity arises from
the spin-singlet pairings due to the antiferromagnetic interac-
tion J > 0 in contrast to the “NR+MZM” region. Near the
phase boundaries, TSC phases with additional NRs around �

or R may appear due to a complicated combination of various
gap functions (see Sec. V of the SM [51]).

Discussion. The s+ ⊕ s− gap functions in our work should
be distinguished from the momentum-dependent s± gap func-
tions usually discussed in iron-based superconductors [61].
We find that an analogous gap function for our system, cor-
responding to α�αR < 0 in Eq. (6) [45,46], is not favored by
the electron-electron interaction of Eq. (11) (see Sec. V of the
SM [51]).

Regarding the experimental realization, we want to refer
to the report on the multigap superconductivity in RhGe [62]
whose electronic structure is akin to RhSi. Considering weak
ferromagnetism in RhGe, it is expected that the TSC aris-
ing from the s+ ⊕ s− gap functions could be realized by
varying its chemical compositions [63]. Also, we expect that
our result could be applied to the multigap superconductor
BeAu [64–66] in B20 structure as well as other noncentrosym-
metric superconductors such as Li2X3B (X = Pd, Pt) [46],
PtSbS [67], and BaPtP [68] supporting coupled multifold
fermions.

The TSC from the s+ ⊕ s− gap functions can be investi-
gated by probing the bulk and surface properties, respectively.
To discern the gap function from the trivial s-wave gap
function, magnetic resonance techniques and angle-resolved
photoemission spectroscopy can be used to identify the spin
state of the gap function and the size of the superconduct-
ing gap on each FSS, respectively [69,70]. Regarding the
response from the surface, drastic anisotropy in response to
magnetic fields could be a smoking gun of the MZMs on the
surface [71–73].
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