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Bulk-edge correspondence in the adiabatic heuristic principle
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Using the Laughlin’s argument on a torus with two pinholes, we numerically demonstrate that the discontinu-
ities of the center of mass work well as an invariant of the pumping phenomena during the process of the flux
attachment, trading the magnetic flux for a statistical one. This is consistent with the bulk-edge correspondence
of the fractional quantum Hall effect of anyons. We also confirm that the general feature of the edge states
remains unchanged during the process while the topological degeneracy is discretely changed. This supports the
stability of the quantum Hall edge states in the adiabatic heuristic principle.
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Introduction. The characterization of quantum matter with
topological invariants is a modern notion in condensed matter
physics [1–4]. The adiabatic deformation of gapped systems
is a conceptual basis in the theory of topological phases
beyond the Landau’s symmetry breaking paradigm [5,6].
Meanwhile, augmented by the symmetry, this notion leads to
a more unified picture exemplified by the “periodic table” for
topologically nontrivial states [7–10] and demonstrates the ex-
istence of rich topological phases. The adiabatic deformation
also gives a useful way to characterize concrete models by
reducing them to simple systems [11–17].

The adiabatic heuristic argument of the quantum Hall (QH)
effect [11–13] is the historical example in which the adia-
batic deformation has been successfully used. The fractional
QH (FQH) effect [18,19] is a topologically ordered phase
[20] with fractionalized excitations [21–23]. Even though it
is intrinsically a many-body problem of correlated electrons
unlike the integer QH (IQH) effect [1,24–26], the composite
fermion theory [27,28] gives a unified scheme to describe
their underlying physics: The FQH state at a filling factor
ν = p/(2mp ± 1) with p, m integers can be interpreted as the
ν = p IQH state of composite fermions. By continuously trad-
ing the external flux for the statistical one [29,30], both states
are adiabatically connected through intermediate systems of
anyons (adiabatic heuristic principle [11–13]). Even though
the ground state degeneracy [31,32] is wildly changed in the
periodic geometry [12,33], the energy gap remains open and
its many-body Chern number [34] works well as an adiabatic
invariant [33].

Generally, bulk topological invariants such as the Chern
number are intimately related to the presence of gapless
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edge excitations. This is the so-called bulk-edge correspon-
dence [35–37], which is a universal feature of topological
phases [3,4,38–46]. The edges of the QH systems demon-
strate the nontrivial transport properties enriched by the
bulk topology, which has attracted great interest for decades
[20,25,26,35,47–67]. The main goal in this work is to re-
veal how the quantum Hall edge states are evolved during
the process of flux attachment in the adiabatic heuristic
principle.

In this Letter, we analyze the fractional pumping phenom-
ena associated with the Laughlin’s argument of the anyonic
FQH effect. We show that the general feature of the energy
spectrum with edges shows little change during the process
of flux attachment while the topological degeneracy is wildly
changed. Furthermore, the total jump of the center of mass
works well as an invariant of this process, which is consis-
tent with the bulk-edge correspondence of the FQH effect of
anyons. This implies that the total jump of the center of mass
characterizes the fractional charge pumping of the adiabatic
heuristic principle. Also, this supports the stability of the QH
edge states in the adiabatic heuristic principle.

Charge pumping. Let us consider the QH system on a
square lattice with Nx × Ny sites, where Nx/Ny = 2 and the pe-
riodic boundary condition is imposed. As shown in Fig. 1(a),
local fluxes ±ξ are set at two plaquettes A± with the same
y coordinate. Their distance is Nx/2. Particles are pumped
from A− to A+ as ξ varies from 0 to 1 [see Fig. 1(b)], which
we call the (fractional) charge pump [68–79] throughout this
Letter.

This charge pump can be mapped into a one-dimensional
pump with edges [Fig. 1(d)]. As shown in Fig. 1(c), we
first project the system into the x axis. Then, projecting it
into the green line shown in Fig. 1(c), we finally define a
new coordinate for site �i = (ix, iy) as x�i = (1/2) cos θ�i with
θ�i = 2π (ix − ax )/Nx, where ax is the x coordinate of A+ [see
Fig. 1(d)]. In this projection, the two pinholes A± are mapped
into the edges x�i = ±1/2.

The charge can be transformed from x�i = −1/2 to x�i =
1/2 as ξ increases. The pumped charge is given by the
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FIG. 1. (a) Sketch of a 6 × 3 square lattice. The gauge ξi j (red
arrows) describes the two local fluxes ±ξ at A±. (b) Charge pump
from A− to A+. (c) One-dimensional projection into the x axis. The
projected sites for (a) are shown. The angle θ�i is measured from ax

that is the x coordinate of A+. (d) One-dimensional charge pump on
−1/2 � x�i � 1/2.

integration of ∂ξ P(ξ ), where P is the center of mass,

P(ξ ) = Tr

⎡
⎣ρ(ξ )

∑
�i

x�in�i

⎤
⎦, (1)

where ρ is the zero temperature density matrix in the grand
canonical ensemble and n�i is the number operator at the
site �i (see Sec. S1 of Supplemental Material [80], where we
derive the pumped charge by using the current operator).
As ξ varies, P(ξ ) jumps several times due to the sudden
change of the particle number [43,44,81]. Accordingly, the
pumped charge between the period ξ ∈ [0, 1] is given by

Q = (
∫ ξ−

1
0 + ∫ ξ−

2

ξ+
1

+ · · · + ∫ 1
ξ+

N
)dξ ∂ξ P(ξ ), where ξ1, . . . , ξN are

the jumping points in the period and ξ±
α = ξα ± 0. Using the

periodicity P(1) = P(0) and 	P(ξα ) ≡ P(ξ+
α ) − P(ξ−

α ), we
get [43]

Q = −
N∑

α=1

	P(ξα ) ≡ −	Ptot. (2)

As shown below, the total jump 	Ptot, i.e., the sudden changes
of the particle number, comes from the (dis)appearance of
edge states. Equation (2) implies that the pumped charge is
given only by the information of edges.

Bulk-edge correspondence. In this Letter, we numerically
show the following bulk-edge correspondence for the FQH
states of anyons,

C = −ND × 	Ptot, (3)

where C is the many-body Chern number [34] of the ND-fold
degenerate ground state multiplet at ξ = 0. This is consistent
with the Laughlin’s argument applied to the FQH systems
[1,25,26,34,36,43,68,76,82–84] that implies Q = C/ND. In
the following, we clarify how the fractional charge pumping
is deformed to the standard pumping phenomena by the flux-
attachment transformation. As mentioned below, the relation
in Eq. (3) results in the stability of the QH edge states in the
adiabatic heuristic principle.

Fermion pumping. As a first step, we confirm Eq. (3) for
the IQH system of noninteracting fermions. The Hamiltonian

FIG. 2. (a) Single-particle energy ε on 40 × 20 lattices with
φ = 1/10. The green (orange) plots represent the bulk (edge) states.
The blue line is μ = −3. (b) Center of mass P. The two jumps are
	P(ξ1) ≈ 	P(ξ2) ≈ −0.48.

is H = −t
∑

〈i j〉 eiφi j eiξi j c†
i c j , where c†

i is the creation operator
for a fermion on site i and t = 1. The phase factors eiφi j and
eiξi j describe the uniform magnetic field [85,86] and the local
fluxes at A± [see Fig. 1(a)], respectively. We plot in Fig. 2(a)
the single-particle energy ε with Nx × Ny = 40 × 20 and φ ≡
Nφ/(NxNy) = 1/10, where Nφ is the total uniform fluxes. Each
set of Nφ (=80) states forms the Landau level (LL) at ξ = 0.
As ξ increases, some edge states go over to the midgap region.
In Fig. 2(b), we compute P(ξ ) with ρ = |G〉〈G| in Eq. (1),
where |G〉 is the ground state completely occupying the first
LL under the chemical potential (Fermi energy) μ = −3. The
sudden change of the particle number Np causes the jumps
of P(ξ ) at ξ1 and ξ2. Both values of 	P(ξα )’s are approxi-
mately −1/2, which is consistent with Fig. 2(a) where one
edge state at x�i = 1/2 goes over across μ and then another
at x�i = −1/2 goes back. Although a finite-size effect gives
	Ptot = 	P(ξ1) + 	P(ξ2) ≈ −0.96, we confirm 	Ptot = −1
in the thermodynamic limit (see Sec. S2 of Supplemental
Material [80]). This is consistent with Eq. (3) with ND = 1 and
C = 1. The cases for C = 2 and 3 have been also confirmed.

Normalized jumps. As mentioned above, the jump 	P(ξα )
is not quantized to ±1/2 due to the finite-size effect. Let
us then properly normalize each jump: When P jumps
positively or negatively at ξα , we assign it as 	P(ξα ) �→
1/2 or −1/2. Hereafter “�→” denotes this normalization;
e.g., we have 	Ptot = P(ξ1) + P(ξ2) �→ −1/2 − 1/2 = −1 in
Fig. 2(b). This gives the bulk-edge correspondence in Eq. (3)
even for finite systems.

Fractional anyon pumping. Let us consider the fractional
pumping of anyons. To this end, we take the Hamilto-
nian as H = −t

∑
〈i j〉 eiφi j eiξi j eiθi j c†

i c j , where the phase factor
θi j [87–89] depends on the configuration of all particles
{rk}1�k�Np , which describes the fractional statistics eiθ . Note
that although c†

i is the creation operator for a fermion, H
is the Hamiltonian of anyons and includes intrinsically the
many-body interactions. Due to constraints of the braid group,
dim H depends on θ even for the same Np [87,90]: The Hilbert
space for θ/π = n/m (n, m: coprime) is spanned by the basis
|{rk}; w〉, where w = 1, . . . , m is an additional internal degree
of freedom. When a particle hops across the boundary in the
x direction, the label is shifted from w to w − 1. As for the
boundary in the y direction, the phase factor eiwθ is given. Ow-
ing to this, global requirements of anyons hold [87,88,90,91].
Also, we introduce ξi j only for the basis with w = 1 [92].

In the following, we focus on a family of the ν = 1
IQH states connected by trading the magnetic fluxes for
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FIG. 3. (a) Energy gaps as functions of 1/ν at ξ = 0 with Np = 5. The statistical angle θ is determined by ν = p/[p(1 − θ/π ) + 1] with
p = 1. The color expresses the denominator of θ/π . (b) Ground state degeneracy ND. (c1)–(c8) Energy spectra as functions of local fluxes ξ .
Each value of (ν, θ ) is represented above (b). We set μ = −3 in (c1) and choose μ in (c2)–(c8) so that the lowest energy at ξ = 0 is same
as that in (c1). In (c3) and (c8), the ND lowest-energy states are marked by dots. In (a)–(c), we plot the lowest Ncut energies with Ncut = 2 for
Np = 6 and Ncut = 20 for Np = 5, 4. (d)–(h) Center of mass P as for (c3) and (c8). ξI, ξII and ξi–ξiv represent the gap-closing points.

statistical ones [11,12,27,33]: ν = p/[p(1 − θ/π ) + 1] with
p = 1. Fixing Nx × Ny = 10 × 5, Np = 5, and ξ = 0, we plot
the energy gaps as functions of 1/ν in Fig. 3(a). Due to the lat-
tice, the topological degeneracy is lifted. We here define the
low-energy states with En − E1 < 0.2 as the ground state mul-
tiplet. The ground state at ν = s/t (s, t : coprime) in Fig. 3(a)
gives the degeneracy ND = t numerically [see Fig. 3(b)] and
the Chern numbers of the multiplets are always C = 1 [33].
Namely, the many-body Chern number is used as an adiabatic
invariant. The gap closing at ν ≈ 1/2 is expected due to finite-
size effects [33].

Let us investigate the pumping phenomena. As for
each parameter (1/ν, θ/π ) shown in Fig. 3(b), we plot in
Figs. 3(c1)–3(c8) the eigenvalues of the Hamiltonian includ-
ing the chemical potential, H − μNp, as functions of ξ with
4 � Np � 6 [93]. Figure 3(c1) is in the same setting of Fig. 2
but for smaller system sizes. In Fig. 3(c1), the particle number
Np of the unique ground state is changed as ξ increases due
to the (dis)appearance of the edge state as mentioned pre-
viously. The gap between the two red lines at ξ ≈ 0.5 is a
finite-size effect. As shown in Figs. 3(c1)–3(c8), even though
the topological degeneracy is wildly changed as 1/ν and θ/π

vary, the general feature of the spectra remains unchanged.
The degenerate ground states at ξ = 0 are lifted as ξ increases
and then one or two states float up in energy to cross with
another state having one particle less.

Now we focus on the anyonic system in Fig. 3(c3) and
show its bulk-edge correspondence. Here, θ/π = 6/7, ν =
7/8, and ND = 8 at ξ = 0. To define the center of mass of the

ground state multiplet suitably, we define the density matrix
as ρ(ξ ) = (1/ND)

∑ND
k=1 |Gk (ξ )〉〈Gk (ξ )|, where |Gk (ξ )〉 is the

kth lowest-energy state. Using it with Eq. (1), we plot ND ×
P(ξ ) in Fig. 3(d). There are two jumps at ξI and ξII, where the
NDth and (ND + 1)th lowest-energy states cross each other in
the spectrum. Because of NDρ = ∑ND

k=1 |Gk〉〈Gk|, the obtained
jumps are solely given by P with ρ = |GND〉〈GND | shown in
Fig. 3(e). This figure gives 	Ptot = 	P(ξI ) + P(ξII ) �→ −1,
which implies ND × 	Ptot �→ −1 in Fig. 3(d). This is con-
sistent with Eq. (3) with C = 1. Because of Q = −	Ptot, we
have the fractional pumped charge Q = 1/8. In this argument,
we assume the absence of the gap closing between states with
the same Np apart from ξ = 0 since there are no symmetry
except for the charge U (1). The gap at ξ ≈ 0.7 between |GND〉
and |GND−1〉 is very small but finite [94] as shown in the inset.

Let us here mention the finite-size effect in Fig. 3(d). The
value of ND × 	Ptot before normalizing is about −0.46, which
is far away from −1. Although this value in the IQH system
in Fig. 3(c1) is about the same magnitude (about −0.60; see
the data point at ν = 1 of Fig. 4), it approaches −1 as the
system size increases as confirmed in Sec. S2 of Supplemental
Material [80]. Since the bulk gaps of the two systems are com-
parable and their system sizes are same, the deviation from −1
in Fig. 3(d) is also expected to be the finite-size effect.

Let us next focus on the system in Fig. 3(c8), where
θ/π = 2/3, ν = 3/4, and ND = 4 at ξ = 0. Unlike the pre-
vious case, there are four gap-closing points, ξi · · · ξiv, as
for the ND lowest-energy states. However, P(ξ ) with ρ =
(1/ND)

∑ND
k=1 |Gk〉〈Gk| in Fig. 3(f) jumps only at ξi and ξiv
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FIG. 4. The total jump of the center of mass ND × 	Ptot. The
solid and dotted lines mean the normalized and the unnormalized
data, respectively. The systems in Figs. 3(c1)–3(c8) are marked. The
sudden change in the dotted line, represented by a red arrow, is due
to the gap collapse of the (ND − 1)th lowest-energy state, compare
Figs. 3(c5) and 3(c6). The jumps are calculated by discretizing the
period ξ ∈ [0, 1] into Nξ meshes with Nξ = 48 [only at the (c6) point,
we set Nξ = 240].

because the jumps at ξii, ξiii cancel each other [see Figs. 3(g)
and 3(h)]. Consequently, the total jump is given by ND ×
	Ptot �→ −1, which is consistent with Eq. (3) with C = 1.
This implies the fractional pumped charge Q = 1/4. The gap
at ξ ≈ 0.5 is very small but is finite as mentioned before [see
the inset in Fig. 3(c8)].

The results shown in Figs. 3(c3) and 3(c8) suggest that
ND × 	Ptot is the invariant of the bulk gap in the process of
the flux attachment. To demonstrate it, we plot the total jumps
as functions of 1/ν in Fig. 4, where both data before/after
normalizing each jump are shown. The normalized data justify
that ND × 	Ptot works well as the invariant. This nature is also
indicated by the unnormalized data in Fig. 4: The plots are
smooth as 1/ν and θ/π vary even though (i) the degeneracy
ND is wildly changed and (ii) the dimension of the Hamilto-
nian is discretely changed depending on the denominator of
θ/π : E.g., with Np = 5, dim H = (NxNy

Np

) = (50
5

) = 2 118 760

for θ/π = n while dim H = 11
(50

5

) = 23 306 360 for θ/π =
n/11 (this is due to the additional internal degree w of the
basis |{rk}; w〉 as mentioned above). We stress that this non-
trivial smoothness in Fig. 4 implies the stability of the QH
edge states in the adiabatic heuristic principle.

Conclusion. In this Letter, we demonstrate the bulk-edge
correspondence of the FQH states of anyons. The results
indicate that the total jump of the center of mass, which corre-
sponds to the many-body Chern number, is an invariant with
respect to the flux attachment. This implies the stability of
edge states in the adiabatic heuristic principle. Recently, direct
observation of the center of mass in pumping phenomena
has been conducted in cold atoms [70,71]. The behavior of
the center of mass that we focus on would be observed in
cold atoms, although the experimental realization of the two-
dimensional anionic system is still a challenging problem.
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