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Circuit realization of a tilted Dirac cone: Platform for fabrication of curved spacetime
geometry on a chip
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We present an LC circuit model that supports a tilted “Dirac cone” in its spectrum. The tilt of the Dirac cone
is specified by the parameters of the model consisting of mutual inductance between the neighboring sites and a
capacitance C0 at every lattice site. These parameters can be completely measured by impedance spectroscopy.
Given that a tilted Dirac cone can be described by a background spacetime metric, the impedance spectroscopy
can perfectly provide (local) information about the metric of the spacetime. Nonuniform spatial dependence of
the mutual inductance or capacitance induces a nontrivial geometrical structure on the emergent spacetime. Our
work extends the range of usefulness of circuit models to emulate nontrivial spacetime structures.

DOI: 10.1103/PhysRevB.104.L241108

Introduction. The dynamics of electrons in solids is shaped
by the lattice structure on which they are mounted [1]. The
constituent electron/ion system cannot be separated from the
underlying lattice. Circuit electrodynamics offers an alterna-
tive to place circuit elements on complicated lattices. For
example, the topology of electron bands of solids can be em-
ulated by circuits [2,3]. But lattices can offer more than band
topology: A lattice first breaks the Poincaré group [4] into one
of 230 possible space groups (SGs) [5]. Hence the elementary
excitations in the solids can be drastically distinct from those
in elementary particle physics [6]. The irreducible representa-
tions of the SG do not allow the band structures to arbitrarily
disperse and restricts them by the compatibility relations of
little groups of various high-symmetry points/lines/surfaces
[7]. Breaking the Poincaré group [4] also invalidates the spin-
statistics theorem [4,6] and hence on some lattices fermions
may belong to nonspinor representations [8], such as a spin-1
representation known as triple fermions [9]. As we will see
shortly, the reverse is also possible and a bosonic theory can
acquire a spinor representation.

Lattices offer yet another fascinating perspective: It ap-
pears that the continuum limit of certain SGs corresponds to
a spacetime geometry (metric) as detailed below. A simple
nearest-neighbor model of fermions hopping on the honey-
comb lattice describes the Dirac fermions of graphene [10]
that can be interpreted as an emergent Minkowski spacetime.
It turns out that in certain materials—notably the 8Pmmn
borophene that belongs to SG number 59—the Dirac cone
gets tilted [11–14]. The tilting can be embedded into an emer-
gent metric [15–20] ds2 = −v2

F dt2 + (dr − ζvF dt )2, where
vF replaces the speed of light c and is the velocity scale
for this emergent spacetime. In two space dimensions with
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ζ = (ζx, ζy), one has

gμν =
⎡
⎣−1 + ζ 2 ζx ζy

ζx 1 0
ζy 0 1

⎤
⎦,

gμν =
⎡
⎣−1 −ζx −ζy

−ζx 1 − ζ 2
x −ζxζy

−ζy −ζxζy 1 − ζ 2
y

⎤
⎦,

where ζ 2 = ζ 2
x + ζ 2

y and the above two matrices are the in-
verse of each other [21,22]. ζ appears as a redshift factor in
many quantities, including the density of states [23]. At ζ = 0,
the above metric reduces to ημν = diag(−1, 1, 1).

The relation between the space geometry and certain
graphs is well known [24–26]. Hence it is feasible that the
dynamics on certain SGs mimics an emergent spacetime.
The purpose of this Letter is to present an LC circuit model
on which the dynamics of the voltage and current at long
time/distances is governed by the above metric. We will show
how the “square root” of the resulting Klein-Gordon equation
is equivalent to a theory of tilted Dirac fermions. The same
tilted Dirac theory emerges in electron theories of 8Pmmn
borophene [27]. This suggests that the resulting Dirac theory
is a property of the underlying lattice.

Honeycomb lattice circuit model. Inspired by our coarse
grained [28,29] fermionic model introduced in Ref. [27], in
Fig. 1 we consider an LC circuit based on the periodic hon-
eycomb lattice. Here, L0 (black) denotes inductance between
the nearest neighbors. The second neighbor inductances are
of two types, L1 (blue) and L2 (red). The third neighbors
along the horizontal direction are connected with L3 (green).
Every site is grounded by a capacitance C0. The inductance
connection enriches the graph structure of a simple honey-
comb lattice similar to an effective fermionic hopping model
[2], where the further neighbor connections set the location
[30] and tilt [27] of the Dirac cone. The honeycomb lattice
is composed of two Bravais sublattices A and B [10]. Set-
ting the length of a bond by a0 = 1/

√
3, the primitive lattice
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FIG. 1. (a) The structure of a honeycomb circuit. Curly lines of
various colors indicate the inductance between various neighbors.
For clarity only the neighbors of a single site are drawn. Every node
of the lattice is grounded by a capacitance C0. (b) Brillouin zone
in both Wigner-Seitz (solid honeycomb) and primitive cell (dashed
rhombus) constructions. The reciprocal vectors b1 and b2 are shown.
The blue arrows show the direction of movement of the Dirac nodes
when we vary L3. The red and purple points label the saddle points
M1 and M2 (see the text). Two other possible extrema denoted by
green S1 and S2 are vertically displaced from a Dirac point on both
sides.

vectors are a1|2 = (
√

3,±1)/2. Corresponding reciprocal lat-
tice vectors depicted in Fig. 1(b) are b1|2 = 2π (1,±√

3)/
√

3.
Suppose that the voltage at site r at time t in sublattice A(B)
is V1(2)(r, t ). The Kirchhoff current law for site A reads

∑
δ

V1(r) − V2(r + δ)

L0
+

∑
i,λ

V1(r) − V1(r + λai )

L1

+
∑

λ

V1(r) − V1(r + λ(a1 − a2))

L2

+V1(r) − V2(r − a1 − a2)

L3
+ C0

d2V1(r)

dt2
= 0,

where δ runs over the three first neighbors, and i = 1, 2 la-
bels the basis vectors a1 and a2, λ = ±. A similar equation
for sublattice B can be written by δ → −δ and ai → −ai.
Harmonic solutions of the type Vi(r, t ) = Vi(r)e−iωt subject to
translational invariance Vi(r) = Vi(k)eik·r give

V1(k)[ν0 − 2a(cos k · a1 + cos k · a2) − 2b cos k · (a1 − a2)]

−V2(k)
[
(1 + e−ik·a1 + e−ik·a2 ) − ce−ik·(a1+a2 )

]
= ω̄2V1(k),

where we have defined dimensionless (and positive) parame-
ters a = L0

L1
, b = L0

L2
, c = L0

L3
, and ν0 = 3 + 4a + 2b + c. The

frequency ω2
∗ = (L0C0)−1 is the natural frequency of the sys-

tem that allows us to define the dimensionless frequency ω̄ by
ω = ω∗ω̄. Putting together the equations for A and B results
in the eigenvalue problem for the dynamical matrix D(k),

(
ε(k) 	(k)

	∗(k) ε(k)

)(
V1(k)
V2(k)

)
= ω̄2(k)

(
V1(k)
V2(k)

)
, (1)

where ε(k)=ν0 − 4a cos kx

√
3

2 cos ky

2 − 2b cos ky and 	(k) =
|	|eiφ = −1 − 2e−ikx

√
3

2 cos ky

2 − ce−ikx

√
3. Despite that quan-

tization of the current-voltage oscillator gives a bosonic
theory, a spinor structure naturally emerges from the
two-sublattice nature of the honeycomb lattice 〈Vk| =(
V1(k) V2(k)

)
. Equation (3) gives ω̄2

±(k) = ε(k) ± |	(k)| and

|V±,k)〉 = 1√
2
(
±eiφ

1
), where φ is the phase of the complex

number 	. The splitting between the upper (+) and lower (−)
frequency bands is controlled by 	(k) where

|	(k)|2 = 4

[
cos2 ky

2
+ (1 + c) cos

ky

2
cos

kx

√
3

2

+ c cos2 kx

√
3

2
+

(
1 − c

2

)2]
. (2)

The upper and lower bands meet when 0 � c � 1 (see Supple-
mental Material [31] for details). When c = 0, the gap closing
points (nodes) are located on the corners of the Brillouin zone
(BZ) as shown in Fig. 1(b) in the Wigner-Seitz and primitive
cell representations. The coordinates of K/K′ are (0,∓4π/3).
Upon increasing c, the horizontal coordinates of these points
do not change, but because of the increase in cos ky

2 , K and
K′ move vertically towards each other. Hence the role of
parameter c is to control the location of the two independent
(see the rhombus primitive cell BZ) nodes. Increasing c from
0 to 1 shifts the two nodes toward each other. At c = 1 these
two points collide and annihilate at the M1 point—due to their
opposite topological charge—giving a fully gapped spectrum
for c > 1.

Dirac theory. ε(k) and 	(k) near the gap closing point
become

ε(k) ≈ ω̄2
0 + ταyδky, 	 ≈ −iwxδkx + τwyδky,

ω̄2
0 = (3 + c)[1 + 2a + b(1 − c)], (3)

where τ = ± marks the node (valley) around which the lin-
earization has been made, (δkx, δky) are the deviations from
the gap closing point, and αy = √

(1 − c)(3 + c)[a − b(1 +
c)] while wx = √

3(1 − c)/2 and wy = √
(1 − c)(3 + c)/2

that determine the dynamical matrix (1). By a Taylor expan-
sion of the square root of the matrix D(k) around ω̄2

0, one
obtains a new matrix h(k) whose eigenvalues are ω̄(k):

h(k) = (ω̄0 + vt · δk)σ0 + (−ivxδkxσx + τvyδkyσy),

vx = wx

2ω̄0
, vy = wy

2ω̄0
, vty = αy

2ω̄0
, vtx = 0, (4)

where vt is the “tilt” velocity scale that defines the tilt parame-
ter by ζa = vta/va, a = x, y. Therefore, close to the operation
frequency ω̄0 given by Eq. (3), the matrix, whose eigenval-
ues give the eigenfrequencies of our circuit system are given
in Eq. (4), describes tilted Dirac fermions. The above tilted
Dirac theory can be regarded as the “square root” of theory
described by D(k), the same way that the Dirac equation is
regarded as the square root of the Klein-Gordon equation [4].
The square root operation connecting mechanical/bosonic
systems with corresponding fermionic systems can be prop-
erly defined on the lattice as well [32,33].
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TABLE I. Extrema and their corresponding values of �.

k �± Type

� (0,0) 0, 6 + 2c Max/Min
M1 (± 2π√

3
, 0) 2 + 8a + 2c, 4 + 8a Saddle

M2 (± π√
3
, ±π ) 2 + 4a + 4b + 2c, 4 + 4a + 4b Saddle

S1 [± 2π√
3
, 2 cos−1(∓ 1+2a

4b )] 1
4b (1 + 2a + 4b)2 Max/Min

S2 [± 2π√
3
, 2 cos−1(∓ 1−2a

4b )] 2c + 6 + 1
4b (−1 + 2a + 4b)2 Max/Min

Spectral density. For the rest of this Letter we do not need
h(k) and continue to work with D(k). So we define a new sym-
bol �(k) = ω̄2(k) to label its eigenvalues. This is because the
impedance spectroscopy will directly measure the spectrum
of the D(k), not the Dirac Hamiltonian (4). The resolvant [34]
of the D(k) that describes the dynamics of the voltage/current
on the graph is

G(k, z) = 1

2

1

[z − ε(k)]2 − |	(k)|2
(

z − ε(k) 	(k)
	∗(k) z − ε(k)

)
,

the imaginary part of which is defined by ρ = − 1
π

Im{tr[G+]},
where G+(k, λ) = G(k, λ + i0+) gives the density of states
(DOS). The trace includes a summation over the diagonal
elements of G and integration over the whole BZ.

When the spectral density is plotted as a function of �, it
contains a great deal of information. The first important fea-
ture of the density of � values is the location of the Dirac node
[Eq. (3)] ω̄2

0 = �0 that corresponds to �+(k) = �−(k). This
gives the first relation among the model parameters a, b, c that
can be directly read off from the DOS. The extrema of DOS
are determined from ∇k�(k) = 0 (see Supplemental Material
[31] for details). In Table I we list the positions and values
of � at two van Hove singularities M1 and M2 shown in
Fig. 1(b). Because M1 and M2 are saddle points, they give
logarithmic van Hove singularities whose locations directly
relate to the model parameters as

(�+ − �−)|M1 = (�+ − �−)|M2 = 2(1 − c), (5)

�+|M2 − �+|M1 = �−|M2 − �−|M1 = 4(b − a). (6)

The first equation tells us that the van Hove singularities
arising from a given point in the upper and lower branches are
separated by deviations of c from 1. This helps to immediately
read off the parameter c. The second equation above implies
that the separation of van Hove singularities in the upper
branch is controlled by b − a, and when a = b the van Hove
singularities for M1 and M2 points coincide and hence the
number of van Hove singularities is reduced by two. Now
let us see how one can measure the location of the above
singularities.

Impedance spectroscopy. This measurement consists in
sending a current through one node into our LC lattice and
extracting the current through another (arbitrary) node, which
corresponds to adding a nonzero current to the right-hand side
of Eq. (1) [35]. The operation frequency can be adjusted at
will to probe the Dirac physics near the crossing point �0.
If the current is sent in to site ra on sublattice ν1 and is
extracted from site rb on sublattice ν2, then one has to add
Iν (r) = I0[δνν1δ(r − ra) − δνν2δ(r − rb)] or in Fourier repre-
sentation Iν (k) = I0(δνν1 e−ik·ra − δνν2 e−ik·rb ) to the right-hand

side of Eq. (1) that gives [D(k) − �σ0] |V 〉 = −iωL0 |I (k)〉.
By D(k) − �σ0 = −G−1(k,�), we obtain the matrix equa-
tion Vμ = iωL0GμνIν where μ, ν = 1, 2 label the sublattices.
By the definition of impedance (the difference between the
voltages of the nodes divided by the current) we get

Zν1ν2 (ra − rb) = iω∗L0

√
�

1

N

∑
k

[
Gν1ν1

+ Gν2ν2

− Gν1ν2 eik·(ra−rb) − Gν2ν1 e−ik·(ra−rb)
]
, (7)

where N is the number of unit cells. The frequency depen-
dence is implied for the Green’s function matrix elements
Gνiν j . For large enough lattices with many degrees of free-
dom, the sum over k can be replaced by an integral over
BZ. This completes the expression of the impedance in terms
of the Green’s function. It further suggests to work with
the “normalized impedance” Zνν/(ω∗L0). As can be seen
in Fig. 2, the (local) impedance measured between typical
in-out points separated by a1 clearly contains information
about the essential features of the DOS and hence serves
as a spectroscopic determination tool to measure the a, b, c
parameters. If one probes the nonlocal impedance between ar-
bitrary unit cells separated by ra − rb = ma1 + na2 = [(m +
n)

√
3/2, (m − n)/2], the diagonal component of Eq. (7) gives

∑
k

2Gν1ν1
(1 − cos [k · (ra − rb)]) =

∑
k

2Gν1ν1
	φ. (8)

FIG. 2. The impedance and DOS curves vs � for different values
of c and αy. The Dirac level �0 is held fixed at 4. The blue (orange)
curve with the axis range on the left (right) is Re{ZAA(a1)} (DOS).
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TABLE II. Selection rules for the DOS singularities in
impedance spectroscopy.

√
/✗ indicate the presence/absence of the

DOS singularity.

Parity of (m, n) M1 M2

(even, even) ✗ ✗

(odd, odd) ✗
√

(even, odd) or (odd, even)
√ √

The term in the parentheses denoted by 	φ resembles the
atomic interference term that arises in the scattering deter-
mination of crystal structure [36]. For kM1 = (± 2π√

3
, 0) and

kM2 = (± π√
3
,±π ) the interference terms become

	φM1 = 1 − cos[(m + n)π ] = 1 − (−1)m+n,

	φM2 =
{

1 − cos mπ same sign
1 − cos nπ opposite sign =

{
1 − (−1)m,

1 − (−1)n,

which shows that when m + n is even, the van Hove singular-
ity at M1 disappears by interference. In order to annihilate the
M2 singularity, both m and n must be even. Table II summa-
rizes the above interference physics of van Hove singularities.
Figure 3 compares the impedance between points separated
by a1 that contains full DOS singularities, with a few other Z
for various ma1 + na2 values, in agreement with Table II.

Outlook. We have presented a honeycomb lattice model for
the circuit realization of a tilted “Dirac cone” and its local
and nonlocal impedance spectroscopies to fully determine the
model parameters. This promotes the impedance spectroscopy
to the status of a tool to probe the emergent geometry in circuit
spacetimes. Allowing the model parameters to vary on the lat-
tice will imprint a spacetime geometry that can be arbitrarily
tuned. Our model is a step towards an “on chip” realization
of interesting spacetime geometries. The “particles” in this
system are current-voltage pulses that can be traced by ap-
propriate impedance spectroscopy whose line shape contains
complete local information about the parameter of the model,
and hence the properties of the spacetime that emerges at long
distances. Our current study shows that the relation between
the space group and the ensuing spacetime geometry at long
distances is the same for 2p electrons of 8Pmmn borophene
and current pulses. Therefore, the emergent spacetime struc-
ture of certain lattices relies on the underlying space group
(lattice) more than the atoms occupying these sites. This can

FIG. 3. The comparison between the impedance Re{ZAA(r)} at
ω̄2

0 = 4, c = 0.1, αy = −0.2 for r = a1 (blue solid curve) and r =
ma1 + na2 (red dashed curve).

be a guiding principle to discover more materials with tilted
Dirac cones.

The connection between graphs and space geometry in the
context of circuit electrodynamics [24] as well as in the band
theory [37] and possible implications for high-temperature su-
perconductivity has been discussed [38]. Our proposal differs
in that it offers a wider perspective for the fabrication and ma-
nipulation of spacetime geometry [39], not merely the space
geometry [24–26]. As such, our setup allows for emulation of
various “gravitational” phenomena. When one is dealing with
a pure space geometry, the effect of curvature can be replaced
by a pseudo U (1) gauge field, while in the case of spacetime
geomery, one requires non-Abelian gauge fields. As such, our
circuit model can be regarded as a convenient platform for the
synthesis of non-Abelian gauge fields [39].

Another important advantage of our circuit model with
respect to hyperbolic lattices [24–26] is that the physically
two-dimensional lattice that hosts the artificial spacetime is
promoted to a graph that enjoys translational invariance.
Hence, unlike the hyperbolic lattices where the concentration
of circuit elements uncontrollably increases, in our model
the circuit elements everywhere on the physical lattice have
the same concentration. As such, three-dimensional print-
ing technologies can be conveniently used to produce large
circuits that can easily realize the continuum limit of our
model.
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