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We propose a projection approach to perform quantum Monte Carlo (QMC) simulation on the infinite-U
Hubbard model at some integer fillings where either it is sign problem free or surprisingly has an algebraic
sign structure—a power law dependence of average sign on system size. We demonstrate our scheme on the
infinite-U SU (2N ) fermionic Hubbard model on both a square and honeycomb lattice at half filling, where it is
sign problem free, and suggest possible correlated ground states. The method can be generalized to study certain
extended Hubbard models applying to cluster Mott insulators or two-dimensional Moiré systems; among one of
them at certain non-half-integer filling, the sign has an algebraic behavior such that it can be numerically solved
within a polynomial time. Further, our projection scheme can also be generalized to implement the Gutzwiller
projection to spin basis such that SU (2N ) quantum spin models and Kondo lattice models may be studied in the
framework of fermionic QMC simulations.
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Introduction. The Hubbard model [1–4] provides a starting
point to understand physics in strongly correlated electronic
systems, such as cuprates [5–9], iron-based superconduc-
tors [10,11], and heavy-fermion materials [12,13], as well as
ultracold-atom-simulated correlated systems [14] and recently
found multiple Morié superlattice systems [15–17]. In those
strongly correlated electronic systems, the possible phases of
the strong correlation limit are extremely important, outlining
possible topology of phase diagrams or serving as mother
states to generate more exotic phases.

The infinite-U Hubbard model provides an important
perspective on strong correlation physics [18–20]. Solid con-
clusions can only be made on limited and specific cases, e.g.,
Nagaoka’s theorem [18] applies to low hole density limit of
the infinite-U Hubbard model on bipartite lattice and Lieb’s
theorem [21] imposes constraints on the ground state of the
Hubbard model with bipartite hopping at half filling. While
numerical methods may provide important hints [19,20], dis-
putes still exist on questions such as which phase is the true
ground state of the large-U SU (N ) Hubbard model on several
lattices [22–26]. Recently, large-U SU (N ) Hubbard models
are getting more and more attention in ultracold atom simula-
tions [27–34].

Alternatively, an infinite-U Hubbard model can be used
as a constraint on local Hilbert space; a typical example is a
study of Kondo lattice models, where the local spin is written
in terms of fermion operators and a constraint is imposed to
restore the local spin Hilbert space by introducing a Hubbard-
U term [35,36]. A finite Hubbard-U term plays as a soft
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constraint, while if U goes to infinity, it becomes an exact
constraint, and an elegant form for the SU (2) case is pointed
out in Ref. [37].

Inspired by the mentioned former works [35,37], in this
Letter we propose a general projection approach, such that
controllable large-scale quantum Monte Carlo (QMC) simu-
lations on various infinite-U Hubbard models may be done at
some integer fillings. Our scheme can be well demonstrated
on the infinite-U SU (2N ) fermionic Hubbard models on both
square and honeycomb lattices at integer fillings, and the
Monte Carlo results are presented at half filling where it is sign
problem free. We found the infinite-U SU (4) Hubbard model
with Dirac dispersion on square and honeycomb lattices may
stabilize a spin liquid (SL) state. We further show how to
generalize our scheme to study extended Hubbard models,
such as a cluster charge Hubbard model on both square and
honeycomb lattices, and obtain possible ground states at half
filling. Finally, we apply the projection approach to more ex-
otic SU (4) extended Hubbard models with only an interaction
term. It is sign problem free at half filling and it has an SU (4)
ferromagnetic ground state. For a certain non-half-integer fill-
ing, there is a sign problem, but the average sign happens to
be only power law dependence on system size, such that it is
also simulatable. This finding inspires a different perspective
on finding Monte Carlo simulatable models.

Projection approach. We implement our projection ap-
proach in the framework of determinant QMC (DQMC) [38].
We illustrate our projection approach through an SU (Nf )
Hubbard model with Hamiltonian H = Ht + HU on a general
lattice, with the kinetic part Ht = −∑

i jα[ti jc
†
i,αc j,α + H.c.],

and Hubbard interaction part HU = U
2

∑
i(ni − ν)2. Here the

fermion density operator ni = ∑
α ni,α at each site is a sum

2469-9950/2021/104(24)/L241104(6) L241104-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9399-6681
https://orcid.org/0000-0002-8615-7396
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.L241104&domain=pdf&date_stamp=2021-12-14
https://doi.org/10.1103/PhysRevB.104.L241104


YUNQING OUYANG AND XIAO YAN XU PHYSICAL REVIEW B 104, L241104 (2021)

FIG. 1. Different fermiology considered. (a) Square lattice with uniform hopping. (b) Square lattice with π -flux hopping. We choose a
gauge where the solid line denotes ti j = t and the dashed line denotes ti j = −t . (c) Honeycomb lattice with uniform hopping. (d) Energy band
for (a) with nesting FS, denoted as �-nesting-FS. (e) Energy band for (b) with Dirac dispersion, denoted as �-Dirac. (f) Energy band for
(c) with Dirac dispersion, denoted as �-Dirac

over fermion flavor density operator ni,α = c†
i,αci,α with α =

1, . . . , Nf . We focus on the repulsive Hubbard interaction
case (U > 0). In DQMC, one starts with partition function
Z = tr[e−βH ] and observables 〈O〉 = tr[O e−βH ]/Z , where β,
the inverse temperature, is Trotter decomposed into Lτ slices,
i.e., β = Lτ�τ . One needs to further make a Trotter de-
composition, i.e., e−�τ H ≈ e− 1

2 �τ Ht e−�τ HU e− 1
2 �τ Ht . For the

integer-filling infinite-U case, HU plays the role of constraint
on local Hilbert space, i.e., it defines a projection operator, and
we observe the following exact relation in the infinite-U limit
[39]:

e− �τ U
2 (ni−ν)2 ∣∣

U→+∞ = 1

M

M∑

si=1

e
i2πsi

M (ni−ν), (1)

with M = Nf
2 + |ν̃| + 1, and an effective filling ν̃ ≡ ν − Nf

2
in reference to half filling. As we only focus on integer
fillings, the effective filling ν̃ takes values ν̃ = −Nf

2 ,−Nf
2 +

1, . . . , Nf
2 , where ν̃ = 0 (ν = Nf

2 ) corresponds to half filling.
The projection is done by introducing a sum over auxiliary
fields si. With the above projection operator, the trace over
fermions can be easily performed [38,40], and the partition
function Z = ∑

c wc and observables 〈O〉 =
∑

c Ocwc∑
c wc

depend
on auxiliary fields c = {si,l} (l is the time slice index), and
the sampling over auxiliary fields {si,l} can be done with
Monte Carlo simulation. We note the above finite temperature
DQMC scheme can be easily adapted to the zero-temperature
projection DQMC [41–43]. As the auxiliary fields here only
take finite values, a local update with Metropolis algorithm
is efficient. One caution here on the sign problem: for the
Hubbard model with bipartite hopping at half filling, one can

easily prove the sign problem free [44], and numerical rigor-
ous results can be obtained; for some special cases we find
very likely ground state candidates at certain non-half-integer
fillings even with the sign problem.

Infinite-USU (2N ) Hubbard model on bipartite lattice. We
apply the above projection approach to the SU (2N ) Hubbard
model both on two dimensional (2D) square and honey-
comb lattices. We use a zero-temperature projection DQMC,
with Lτ = 600 and �τ t = 0.1, in our calculation. We have
performed about 0.3 × 104 warmup sweeps and 1.2 × 104

measurement sweeps (grouped into 20 bins) for each parame-
ter running. For a square lattice, we consider two conventional
fermionologies—one is the typical uniform nearest neighbor
hopping which gives a nesting Fermi surface at half filling
(denoted as �-nesting-FS) as shown in Figs. 1(a) and 1(d)
and the other is π -flux hopping, which gives Dirac dispersion
(denoted as �-Dirac) as shown in Figs. 1(b) and 1(e). For
the honeycomb lattice, we consider uniform nearest neigh-
bor hopping which also gives Dirac dispersion (denoted as
�-Dirac) as shown in Figs. 1(c) and 1(f). We performed
simulations on the infinite-U SU (2N ) Hubbard model with
the above mentioned fermionology and identify a possible
ground state as shown in Table I.

Before we discuss more details of all cases listed in Ta-
ble I, we consider some analytical arguments. For the SU (2N )
Hubbard model on bipartite lattice, one can perform a t/U
expansion, giving Heisenberg interaction J

∑
〈i j〉 Si · S j at

second order, with effective exchange coupling J ∼ t2

U > 0.
Therefore, the SU (2N ) Heisenberg model may capture some
physics of the SU (2N ) Hubbard model at half filling, but
be cautioned that they are different and may have different
ground states in the infinite-U limit, as the t/U expansion
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TABLE I. Possible ground state of infinite-U SU (2N ) Hubbard
model at half filling on bipartite lattice with different fermiology. In
the table, U ∞ denotes infinite U .

SU (2N )-U ∞ �-nesting-FS �-Dirac �-Dirac

SU (2) Néel Néel Néel
SU (4) Néel SL? SL?
SU (�6) VBS VBS VBS

will give zero J in that limit. For the SU (2) case, it is well
known that the SU (2) Heisenberg model on bipartite lattice
has a Néel type ordered ground state. For N larger than a
certain value, it has a valence bond solid (VBS) order (also
called spin-Peierls state) [24,45–49], and the critical Nc is es-
timated about 2Nc = 4.57(5) through QMC calculations [47].
Comparing with our numerics, the SU (2) and SU (� 6) are
quite consistent with the SU (2N ) Heisenberg model, while
the SU (4) case is very special. For �-nesting-FS, Néel type
order is favored also for SU (4), but for �-Dirac and �-Dirac,
it is very likely that a SL state is stabilized.

In the following, we investigate possible ordered states.
One possible order is Néel type spin order. As the gen-
erators of SU (Nf ) can be written as Sα

β (ri ) ≡ c†
i,αc j,β −

δα,β

Nf

∑
γ c†

i,γ ci,γ , the matrix form of the Néel operator can

be defined as Nα
β (ri ) ≡ 1

Nf
e−iQ·ri Sα

β (ri ) with Q = (π, π ) on

square lattice and Nα
β (ri ) ≡ 1

Nf
[Sα

β (ri + τ1) − Sα
β (ri + τ2)] on

honeycomb lattice, where τ1 and τ2 are inner-cell co-
ordinates of two independent sites of each unit cell of

honeycomb lattice. Another possible order is the VBS order,
with the gauge invariant bond operator defined as B(ri ) ≡
1

Nf
e−iQ·ri

∑
α ti,i+δc†

i,αci+δ,α + H.c., where i, i + δ are a pair of
sites of two ends of the nearest neighbor (NN) bond in a fixed
direction, with Q = (π, 0) corresponding to columnar VBS
for square lattice and Q = ( 2

3π, 2
3π ) for Kekulé type VBS

for honeycomb lattice. In the simulation, we measure Néel
operator correlations CN (ri − r j ) = ∑

αβ〈Nα
β (ri )Nβ

α (r j )〉 −
〈Nα

β (ri )〉〈Nβ
α (r j )〉 as well as bond operator correlations

CB(ri − r j ) = 〈B(ri )B(r j )〉 − 〈B(ri )〉〈B(r j )〉. With those cor-
relations, we can extract Néel order parameter mN and the
VBS order parameter mB. The square of the Néel order pa-
rameter can be calculated as m2

N = 1
L4

∑
i, j CN (ri − r j ) and

the square of the VBS bond order parameter can be calculated
as m2

B = 1
L4

∑
i, j CB(ri − r j ). As shown in Fig. 2, we plot the

1/L extrapolation of the Néel and VBS order parameters for
SU (2), SU (4), and SU (6) infinite-U Hubbard models with
different fermiology. For SU (2), we have a finite Néel order
parameter and, for SU (6), we have a finite VBS order param-
eter, while, for SU (4), we have a finite Néel order parameter
for �-nesting-FS, but for �-Dirac and �-Dirac both the Néel
and VBS order are very likely zero in the thermodynamic
limit. The softening of static form factors for both spin and
bond further rules out any possible trend to ordinary magnetic
orders for the infinite-U SU (4) Hubbard model with Dirac
dispersion. We conjecture a SL may be stablized here. To fur-
ther identify the possible ground state of the infinite-U SU (4)
Hubbard model with Dirac dispersion, we plot the real space
decay of spin-spin and bond-bond correlations as shown in
Fig. 3, and found they have algebraic behavior approximately,

FIG. 2. 1/L extrapolation of Néel order parameter mN and VBS order parameter mB. Panels (a) and (b) are for �-nesting-FS, (c) and (d) for
�-Dirac, and (e) and (f) for �-Dirac.
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FIG. 3. Real space decay of Néel and VBS correlations. Panels
(a) and (b) are for �-Dirac and (c) and (d) for �-Dirac. The green
solid line is a power law fitting of L = 20 data points (x = 2, . . . , 7)
for �-Dirac and L = 15 data points (x = 2, . . . , 5) for�-Dirac. Due
to size limit, a systematic finite size scaling of the power law decay
still cannot be realized.

which may indicate an algebraic SL state [9,50–54]. Based
on limited system sizes, it is hard to determine precisely the
scaling dimensions of spin and bond operators and thus it is
hard to tell whether the SL stabilized here is a Dirac SU (4),
U (1), Z4, or Z2 SL [9,50–54]. The absence of a Néel or
VBS order parameter for the SU (4) infinite-U Hubbard model
is also well anticipated from former studies [24,25], where
people find VBS order at intermediate U , but the VBS order
parameter decreases when people further increase U . There-
fore, a transition from VBS to SL is expected, but whether it
will happen at a finite larger U or only happen in the infinite-U
limit is an open question.

Infinite-USU (2N ) extended Hubbard model on bipartite
lattice. Further, we apply our projection approach to extended
Hubbard models H = Ht + HU , where the interaction part is
defined as HU = Up

∑
p(Qp − νp)2, where Qp is the plaquette

charge operator defined on the elemental plaquette of the
lattice, Qp = 1

z

∑
i∈p ni, where the factor z is used to normalize

the filling of each plaquette as each site is shared by z plaque-
ttes: z = 4 for square lattice and z = 3 for honeycomb lattice.
Similar to the Hubbard model, we have the following relation
in the infinite-U limit for the extended Hubbard model [39]:

e−�τUp(Qp−ν)2 ∣∣
Up→+∞ = 1

M

M∑

sp=1

e
i2πzsp

M (Qp−νp ), (2)

with M = zηNf

2 + z|ν̃p| + 1, where η is the effective number of
sites per plaquette, η = 1 for square lattice, and η = 2 for hon-
eycomb lattice. Here νp is defined as the filling per plaquette,
which is different from the ν defined in the on site Hubbard

TABLE II. Ground state of infinite-U SU (2N ) extended Hubbard
model [denoted as SU (2N )-U ∞

p ] at half filling on bipartite lattice
with different fermiology. For N � 3 we have VBS as the ground
state for all three cases.

SU (2N )-U ∞
p �-nesting-FS �-Dirac �-Dirac

SU (2) Néel Néel Néel
SU (4) Néel SL? VBS
SU (�6) VBS VBS VBS

model, where ν is the filling per site. The cluster charge
model is originally motivated to describe magic angle twisted
bilayer graphene [55,56], and we will explore the infinite-U
correlated ground state. Again, we consider several different
kinds of fermiology, including �-nesting-FS, �-Dirac, and
�-Dirac. The possible ground states are listed in Table II.
For SU (2) and SU (� 6), the ground states are the same with
the Hubbard model as shown in Table I, while for the SU (4)
case with �-Dirac dispersion, the extended Hubbard favors
a Kekulé type VBS order. This is consistent with the large-U
result in Ref. [57].

Strong coupling SU (2N ) extended Hubbard models with
assisted hopping term on bipartite lattice. Another interesting
application of our projection approach is for strong coupling
SU (2N ) extended Hubbard models with assisted hopping
term on bipartite lattice, where the kinetic part Ht is turned
off, H ≡ HU = Up

∑
p(Q̃p − νp)2 with Q̃p ≡ Qp + αTp, and

where the assisted hopping term Tp results from topological
obstruction when people try to construct an effective real
space lattice model for magic angle twisted bilayer graphene
(TBG) [58]. We will focus on the SU (4) case on a honey-
comb lattice, which is directly related to magic angle TBG.
It would be quite interesting to explore the possible ground
states at each integer filling, where correlated insulator phases
are found almost at all integer fillings (ν̃p = 0,±1,±2,±3)
[59–61]. We have the following relation to implement the
projection [39]:

e−�τUp(Q̃p−νp )2 ∣∣
Up→+∞ = 1

M

M∑

sp=1

e
i2πzsp

M (Q̃p−νp ). (3)

As the kinetic part Ht is turned off, we only have βUp as an in-
dependent parameter and, in the DQMC simulation, we divide
βUp into Lτ slices βUp ≡ Lτ�τUp, and we let Lτ scale with L,
Lτ = 10L. When we take the infinite-Up limit, it corresponds
to the zero temperature properties of the model. For ν̃p = 0, it
is sign problem free, as pointed out by one of us [62]. It favors
an intervalley coherent state, when the kinetic part Ht is added
back, which breaks SU (4) into two SU (2) for each valley and
a valley U (1) [62]. For the strong coupling extended Hubbard
model with assisted hopping term, we have full SU (4), and
we found an SU (4) ferromagnetic state is stabilized for any
finite α. For other integer fillings, there is a sign problem. We
define a reference bosonic system with partition function Zb =∑

c |wc| [63], and the observables become 〈O〉 = 〈O〉b

〈sgn〉b
, where

〈· · · 〉b denotes sampling according to the reference bosonic
system, i.e., 〈O〉b = ∑

c Oc|wc|/Zb. In general, 〈sgn〉b decays
exponentially with system size, as 〈sgn〉b ∼ e−βNs� f [64],
where Ns is the total number of sites and � f is the free energy
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FIG. 4. Linear system size dependence of average sign 〈sign〉.
The red dashed line is a power law fitting, getting a L−2.0(1) de-
pendence. The power law system size dependence of average sign
indicating an ∼ln(βNs )

βNs
dependence of the free energy density differ-

ence of the original system and the bosonic reference system.

density difference between the original system (with weight
wc) and the reference system (with weight |wc|). However, we
found a very interesting phenomenon at |ν̃p| = 2, i.e., the av-
erage sign decays algebraically instead of exponentially with
system size as shown in Fig. 4, such that a power law com-
putation complexity is expected and reliable QMC results can
be obtained. Our simulation suggests an SU (4) ferromagnetic
state, confirming the analytical exact argument in Ref. [58].
We conjecture that the less severe sign problem may come
from little fluctuations of the SU (4) ferromagnetic ground
state [58]. In detail, 〈sgn〉b = 〈sgn[exp(4iπz

∑
p,l sp,l/M )]〉b

and the sign problem is mild if
∑

p,l sp,l has little fluctuations
due to an SU (4) ferromagnetic ground state which usually has
less fluctuations. The algebraic sign behavior also implicitly
indicates � f is ∼ln(βNs )

βNs
small, such that a faithful mapping of

a fermionic system to a bosonic system in the thermodynamic
limit is obtained.

Discussion and conclusion. Our projection approach paves
a way to study the infinite-U Hubbard model at integer fill-
ings. We also show how to apply our projection approach
to the extended Hubbard model. As the infinite-U Hubbard
term is usually used to make a constraint on the local Hilbert
space, such as for quantum spin models and Kondo lattice
models, our projection approach can be further used to im-
plement those constraints, such that they can be simulated in
the framework of fermionic QMC simulations [65].

One important issue of QMC simulations is the sign prob-
lem. It is generally believed that, if there is a sign problem,
the average sign will decay exponentially with system size.
Our finding provides a counterexample, inspiring a different
direction to find Monte Carlo simulatable models, where the
sign does not have to be always semipositive, as long as its
average has an equal or better scaling than algebraic scaling
with system size.

We further remark that our projection approach can also
be extended to any rational filling, while the price is that we
may need a high component of auxiliary fields depending
on the filling factors [39]. In addition, we can also use a
Hubbard-type term to impose the conservation of total number
of particles, such that a hard constrained canonical ensemble
Monte Carlo method is obtained, going beyond a soft con-
strained one [66].
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