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CaCo2−yAs2 is an unusual itinerant magnet with signatures of extreme magnetic frustration. The conditions
for establishing magnetic order in such itinerant frustrated magnets, either by reducing frustration or increas-
ing electronic correlations, is an open question. Here, we use results from inelastic neutron scattering and
magnetic susceptibility measurements and density functional theory calculations to show that hole doping in
Ca(Co1−xFex )2−yAs2 suppresses magnetic order by quenching the magnetic moment while maintaining the
same level of magnetic frustration. The suppression is due to tuning the Fermi energy away from a peak in
the electronic density of states originating from a flat conduction band. This results in the complete elimination
of the magnetic moment by x ≈ 0.25, providing a clear example of a Stoner-type transition.
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Iron and cobalt pnictide metals harbor weak to moder-
ate magnetism driven by features in their electronic-band
structure lying close to the Fermi energy EF. Tuning the chem-
ical composition of such materials has resulted in intriguing
properties related to the underlying magnetism including
non-Fermi-liquid behavior [1], magnetic glassiness [2], elec-
tronic nematicity [3], and unconventional superconductivity
[4–6]. While often discussed using a local-moment descrip-
tion [7–9], it is clear that the itinerant nature of the magnetism
in these compounds is essential for facilitating the tunabil-
ity of these phenomena. More generally, compared to our
knowledge of local-moment magnetism, our understanding
of itinerant magnetism is limited by the relatively poorer ex-
perimental representation of purely itinerant-moment systems
[10]. In this Letter, we report the direct observation of quench-
ing of the magnetic moment in a Co pnictide by a Stoner-type
transition [11].

The ThCr2Si2-type (122) pnictide CaCo2−yAs2, where y
corresponds to vacancies on the Co site, has the crystal struc-
ture shown in Fig. 1(a) [12,13] which is closely matched to the
Fe-pnictide superconductors [7,14–16]. Contemporary studies
of CaCo2−yAs2 were initially aimed at discovering the con-
ditions necessary to create a superconducting state similar to
that found in the Fe-based pnictides. However, its A-type anti-
ferromagnetic (AFM) order [shown in Fig. 1(a)] was found to
be quite intriguing, exhibiting ferromagnetic (FM) Co layers
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with evidence for extreme magnetic frustration [8,17] and
signatures of itinerant magnetism [12,18–20].

Extreme frustration was found in CaCo1.86As2 via inelastic
neutron scattering (INS) measurements made below the Néel
temperature of TN = 52(1) K [12,19,20]. These data show
quasi-one-dimensional (1D) spin fluctuations dominated by
the FM Co layers instead of well-defined spin waves [8].
As explained below, describing this behavior using a local-
moment (Heisenberg) model places the compound at the
border between FM and stripe-AFM ordering which indicates
extreme frustration. On the other hand, CaCo1.86As2 exhibits a
weak ordered magnetic moment of μ = 0.80(9)μB/f.u. [20],
temperature-independent contributions to the magnetic sus-
ceptibility χ , and a somewhat large Sommerfeld coefficient of
γ = 27(1) mJ/mol K2 [19] which all point to its magnetism
being itinerant.

In general, frustrated and itinerant magnetic systems each
have different conditions for establishing magnetic order. In
the former case, some relief from frustration, for example, by
modifications of the exchange constants within a Heisenberg
model, is needed. The latter case can occur by exceeding the
Stoner criterion α0 = ρ(EF)I > 1, where ρ(EF) is the density
of electronic states at the Fermi energy and I is the effective
Coulomb repulsion [11,21,22]. Here, we address which phe-
nomenon is operable in CaCo2−yAs2 and present a compelling
example of Stoner ferromagnetism in the presence of extreme
frustration. Our INS and χ data reveal the complete elimi-
nation of the fluctuating magnetic moment μfluct at x = 0.25
without any measurable change to the magnetic frustration.
Our density functional theory (DFT) calculations establish
that Fe substitution dopes holes into the system and shifts
EF away from a flat electronic band that creates a large peak
in ρ(E ) [18,23]. We conclude that a Stoner-type transition is
induced by hole doping.
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FIG. 1. (a) The unit cell (space group I 4
m mm) of CaCo1.86As2

with its A-type antiferromagnetic (AFM) structure shown by red
arrows; a = b = 3.9906(1) Å and c = 10.280(1) Å at T = 300 K
[12,13]. (b) Phase diagram for the J1-J2 Heisenberg model on a
square lattice. FM corresponds to the A-type order of CaCo1.86As2.
(c) Magnetic phase diagram for Ca(Co1−xFex )2−yAs2 [20] showing
the Néel temperature TN and ordered magnetic moment μ vs x. PM is
paramagnetic. The “quenched moment” region has neither static nor
dynamic spin correlations. (d) Plots of the x dependence of μ2, the
square of the fluctuating moment μ2

fluct, and the square of the effective
moment μ2

eff. μ2
eff for x = 0 is from Ref. [19]. Open squares indicate

values for which the modified Curie-Weiss fits used to determine μ2
eff

are not valid [17]. Lines are guides to the eye.

Without getting into the microscopic details of the ex-
change pathways, which is a subject of some debate, we note
that the the J1-J2 Heisenberg model for a square lattice, with
exchange constants J1 and J2 between nearest-neighbor (NN)
and next-nearest-neighbor spins, respectively, has been used
for many 122 pnictides [17,24]. This includes CaCo1.86As2

[8] where the effective exchange-interaction strength between
transition metal layers is much weaker than the effective in-
teractions within the planes [8].

Within this model, the quasi-1D spin fluctuations in
CaCo1.86As2 give the ratio η = J1/(2J2) = −1.03(2) ≈ −1
[8]. This indicates extreme frustration because it locates the
compound at the border between the FM and stripe-AFM
phases in Fig. 1(b). CaFe2As2, on the other hand, lies in the
stripe region with an AFM J1 and exhibits stripe-AFM order
[7,14], whereas the stripe-AFM spin fluctuations in param-
agnetic (PM) SrCo2As2 require a smaller value of η. This
suggests that the exchange constants and, hence, magnetic
frustration in these cobalt arsenides, are tunable [9,25]. Such
tunability, which in principle might be possible by carrier
doping, offers the enticing prospect of finding a quantum
phase transition [26] and spin-liquid ground states [27,28].
More discussion of the Stoner and J1-J2 models is given in
the Supplemental Material (SM) [17].

In this respect, it is interesting to study the evolution of
the spin fluctuation spectrum of Ca(Co1−xFex )2−yAs2 since Fe
substitution (nominal hole doping) suppresses magnetic order
by sending both TN and μ → 0 at x = 0.12(1) [20]. Further,

FIG. 2. The powder average of the static magnetic susceptibility
χave vs T for various x. The inset shows the partial electronic density
of states per transition metal atom ρ for x = 0, 0.125, and 0.25 and
y = 0. EF is the Fermi energy.

a large body of work on the A(Fe1−xCox )2As2, A = Ca, Sr,
or Ba, high-Tc superconductors and related compounds shows
that the ratio of Co to Fe rigidly shifts EF albeit with some
small level of band broadening due to disorder [1,4,5,29,30].
Thus, a careful study of Ca(Co1−xFex )2−yAs2 can address
fundamental questions regarding the origin of its collective
magnetism and whether critical compositions lead to strong
quantum fluctuations and novel properties.

Platelike single crystals of Ca(Co1−xFex )2−yAs2 were so-
lution grown using Sn flux and their compositions were
measured using energy-dispersive x-ray spectroscopy. INS
data were collected at T = 5.5 K for a 2.1-g coaligned single-
crystal sample of Ca(Co0.85Fe0.15)2As2 using the MERLIN
spectrometer at the ISIS Neutron and Muon Source at the
Rutherford Appleton Laboratory [31]. Measurements were
made with c fixed parallel to the incident neutron beam
which links the L reciprocal lattice direction to E . χ (T )
was determined using using a Quantum Design supercon-
ducting quantum interference device (SQUID) magnetometer.
The powder average of χ [χave = (2/3)χab + (1/3)χc] was
found by measuring χ perpendicular (χab) and parallel (χc) to
c. DFT calculations were performed using the full-potential
linear-augmented-plane-wave (FP-LAPW) method [32] with
the generalized gradient approximation (GGA) [33]. Further
details are given in the SM [17]. Potential effects of chemical
disorder on the magnetic order are discussed in Ref. [20].
Since Ca(Co1−xFex )2−yAs2 exists in the collapsed-tetragonal
phase for x � 0.5 [20,34–36], and CaFe2As2 is nonmagnetic
in the collapsed-tetragonal phase [37–39], we expect Fe to be
nonmagnetic for the values of x studied here.

We begin the presentation of our results by showing the
overall suppression of χ (T ) with increasing x in Fig. 2. Peaks
occur in χ near TN for samples exhibiting A-type AFM order.
We quantify the suppression of χ with x by determining the
effective magnetic moment μeff(x) per formula unit through
fitting a modified Curie-Weiss law to χ−1

ave (T ) as shown in
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the SM [17,40,41]. Figure 1(d) shows that μ2
eff decreases with

increasing x, remaining finite across the T = 0 K AFM-PM
transition. Whereas the Curie-Weiss law is generally valid
for well-localized spins, the self-consistent renormalization
theory for itinerant magnetism, which extends Stoner theory,
shows that correlated spin fluctuations can drive Curie-Weiss-
like behavior at high T [10,21,22]. As shown in the SM,
the Rhodes-Wohlfarth ratio [42] calculated from our data is
1.5–3 which indicates itinerant magnetism [17]. The SM also
presents an analysis using Takahashi’s theory for itinerant
magnets [17].

We next relate χ to the electronic structure by plotting the
partial ρ(E ) contributed by the Co and Fe orbitals for x = 0,
0.125, and 0.25 and y = 0 in the inset of Fig. 2. The total and
partial ρ(E ) for x = 0 and y = 0 are given in the SM [17].
A large peak crosses EF which has contributions from a flat
band with Co dx2−y2 orbital character. The flat band’s density
of states drives Stoner FM when α0 > 1. This is supported by
work showing that the absence of magnetic order in ACo2As2,
A = Sr and Ba, is a consequence of the flat band lying above
EF [18]. Our DFT calculations indicate an almost rigid shift
in EF with increasing hole doping x with some broadening of
the peak in ρ(E ) due to the disorder introduced by substitut-
ing Fe for Co. Thus, increasing x pushes EF below the flat
band and decreases ρ(EF). Taken together, our χ (T, x) and
DFT results point to a Stoner-type transition where x tunes
α0. When α0 < 1, μ vanishes and the continued decrease in
μeff with increasing x indicates that μfluct is also strongly
suppressed. INS can verify this hypothesis by measuring the
spin fluctuations throughout the Brillouin zone.

Constant-energy slices of the INS cross section S(Q, E )
in the (HK ) plane for x = 0.15 are presented in Figs. 3(a)
and 3(b). Figures 3(c) and 3(d) show the data plotted as
the imaginary part of the dynamical magnetic susceptibility
χ ′′(Q, E ) after subtracting off an isotropic and nonmagnetic
background estimated from the main data set and averaging
over symmetry-equivalent quadrants of the (HK ) plane. (See
the SM [17] and Ref. [43] for more details.) The arrows in
Fig. 3(d) indicate the transverse (TR) [HH] and longitudinal
(LO) [−KK] directions.

Similar to data for x = 0 [8], magnetic scattering in
Figs. 3(a)–3(d) extends longitudinally from (0,0) and is
much sharper in the TR direction. Previous INS data for
cobalt arsenides demonstrate weak magnetic intensities due
to the combination of a small μfluct and a large energy scale
[8,9,25,44]. By normalizing S(Q, E ) for x = 0 and 0.15 by the
mass of the sample used, we find that the magnetic scattering
is 100 times weaker for x = 0.15 than for x = 0 and is close
to the limit of detection.

Figure 3(e) shows χ ′′ in the E -[HH] plane for incremental
integration ranges along the LO direction. χ ′′(E ) is steep and
extends past 90 meV, which is characteristic of itinerant mag-
netism [21]. Figures 4(a) and 4(b) show cuts of χ ′′ for the TR
and LO directions, respectively, for different E . The TR width
of χ ′′ is only slightly wider than the calculated experimental
resolution [17] and slightly broadens with increasing E . For
the LO direction, χ ′′ is practically constant with increasing
Q for a given E and exhibits an overall change in magnitude
consistent with the χ ′′(E ) cut in Fig. 4(c).

FIG. 3. (a), (b) Slices of the INS cross section S(Q, E ) in the
(HK ) plane at T = 5.5 K integrated over (a) E = 10–20 meV
and (b) 50–60 meV. (c), (d) Data corresponding to (a) and (b),
respectively, plotted as χ ′′(Q, E ) after an isotropic background
subtraction [17] and averaging over symmetry-equivalent quad-
rants of the (HK ) plane. Data in (a) and (c) [(b) and (d)] are
for Ei = 75 meV (125 meV). The transverse (TR) [HH ] and
longitudinal (LO) [−KK] directions are indicated in (d). (e) TR
slices of Ei = 125 meV data corresponding to (d). TR slices for
Ei = 75 meV are shown in the SM [17]. From left to right,
plots are for integration ranges of (−K, K ) = (−0.25 ± 0.05, 0.25 ±
0.05), (−0.35 ± 0.05, 0.35 ± 0.05), (−0.45 ± 0.05, 0.45 ± 0.05),
and (−0.55 ± 0.05, 0.55 ± 0.05) r.l.u.

The cut in Fig. 4(c) is for integration ranges of (H, H ) =
−0.1 to 0.1 r.l.u. and (−K, K ) = 0.2–0.7 r.l.u. χ ′′(E ) peaks
around 20 meV and diminishes with increasing E . The dip at
≈25 meV comes from errors in the background subtraction
due to strong contamination by Al phonons. The lack of peri-
odic variations in χ ′′(E ) indicates practically zero dispersion
along L. Summarizing, other than the much lower intensity,
which is consistent with the suppression of χ in Fig. 2, the INS
data for x = 0.15 are similar to those for x = 0 [8], showing
quasi-1D spin fluctuations.

Magnetic fluctuations in the PM, AFM, and supercon-
ducting phases of various 122 pnictides have been de-
scribed by a diffusive model for 2D spin fluctuations in
a nearly AFM or nearly FM Fermi liquid [21] using the
J1-J2 Heisenberg model for exchange within the transi-
tion metal planes [7–9,24,43,45–47]. Within a random-phase
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FIG. 4. (a) Transverse (TR) (left) and (b) longitudinal (LO)
(right) cuts of χ ′′(Q, E ) at T = 5.5 K for values of E corresponding
to L ≈ 1, 3, and 5 r.l.u. TR (LO) cuts are integrated over 0.2–0.7
r.l.u. (−0.1 to 0.1 r.l.u.) in the LO (TR) direction. Data sets are offset
by 0.5μ2

B/eV f.u. Data for E = 10–15 meV (E � 45 meV) are for
Ei = 75 meV (125 meV). (c) χ ′′(E ) at T = 5.5 K from integrating
over −0.1 to 0.1 r.l.u. (0.2–0.7 r.l.u.) along the TR (LO) direction.
The E = 7.5 meV point is from Ei = 75 meV data, points between
10 and 60 meV are the average of Ei = 75 and 125 meV data, and
E > 60 meV data correspond to Ei = 125 meV. An isotropic back-
ground subtraction has been performed [17] and data were averaged
over symmetry-equivalent quadrants of the (HK ) plane. Lines are the
results of fits described in the text.

approximation, the model gives

χ ′′(Q, E )

= χ ′(Qτ, 0)�E

�2{1 + 4ξ 2

a2 [η(c+ + c−) + c+c− − 2η − 1]}2 + E2
.

(1)

Here, χ ′(Qτ, 0) is the staggered static susceptibility at Qτ , ξ is
the magnetic correlation length, � quantifies damping of the
fluctuations, c± = cos [(qx ± qy)a/2], where x and y denote
perpendicular directions connecting NN spins, and q = Q −
Qτ . Qτ is a reciprocal-lattice position corresponding to the
magnetic propagation vector τ. For our case, τ = (0, 0).

We simultaneously fit Eq. (1) to TR, LO, and E cuts of
the INS data but found that the value for � had too much
uncertainty. To mitigate this, we fit the data in Fig. 4(c) using
the typical quasielastic diffuse magnetic scattering form of
χ ′′(E ) = AE/(�2 + E2), where A is a scale factor [48]. We
next simultaneously fit TR and LO cuts taken every 5 meV
to Eq. (1) while keeping � fixed. Lines in Fig. 4 show exam-
ples of the fits with χ ′(Qτ, 0) = 3.4(3) × 10−4μ2

B/meV f.u.,

ξ/a = 1.01(8), � = 21(3) meV, and η = −0.97(1). Simu-
lated slices of χ ′′(Q, E ) are shown in the SM [17].

With the exception of the extraordinarily small value of
χ ′(Qτ, 0), which is consistent with the χ (T ) data, the deter-
mined parameters are analogous to those for x = 0. Thus, our
fits find a similar level of frustration exists for x = 0 and 0.15
since η ≈ −1 for both compositions. A table listing the fitted
parameters for x = 0 and 0.15 and for other 122 pnictides
is given in the SM [17]. The INS data can also be used to
determine μfluct by integrating χ ′′ over Q and E [17]. We find
an extraordinarily small value of μfluct = 0.09(1)μB/f.u. for
x = 0.15, which is 10–100 times smaller than μfluct for related
compounds [17].

As noted above, even though χ ′(Qτ, 0) for x = 0 has yet
to be measured on an absolute scale, we know that S(Q, E )
is ≈100 times stronger for x = 0 than for x = 0.15 [8]. Thus,
μfluct substantially decreases with increasing x. Taken together
with the decrease in μeff and the elimination of μ with in-
creasing x, the exceedingly small value of μfluct for x = 0.15
indicates that hole doping weakens the spin correlations asso-
ciated with the A-type order. However, since η ≈ 1 for both
x = 0 and 0.15, the weakening is not due to modifying the
degree of frustration. Rather, taking into account the decrease
in μ and μfluct with increasing x and extrapolating the decrease
in μ2

eff with x in Fig. 1(d) indicates elimination of the total
magnetic moment at x ≈ 0.25.

Since ferromagnetism within the Co planes dominates the
magnetic energy scale [8] and our DFT results indicate that
hole doping shifts EF away from a peak in ρ(E ), the quench-
ing of the moment can be explained in terms of a Stoner
transition: A decrease in ρ(EF) lowers α0 = ρ(EF)I below
1 at x = 0.12 and eliminates the FM order within the Co
planes and, in turn, the A-type order. As evidenced by the
further decrease in μeff and μfluct, more hole doping eventually
completely destroys FM correlations within the Co planes
which results in a quenched moment for x ≈ 0.25.

Quenching of the total moment has also been observed
for CaFe2As2 which exhibits stripe-AFM order. However,
in this case the quenching accompanies a pressure-induced
first-order structural phase transition into the collapsed tetrag-
onal (cT) phase characterized by c/a � 2.8 [37,38,49]. The
Fermi surface in the ambient-pressure uncollapsed phase ex-
hibits features consistent with nesting which are not present
in the cT phase [50,51] and DFT calculations indicate that
there disappearance is not due to a rigid shift in EF [50].
Ca(Co1−xFex )2−yAs2, on the other hand, crosses over to the
cT phase at x ≈ 0.5 [20], well past x = 0.25.

Finally, a Stoner transition is a quantum phase transi-
tion (QPT) since it occurs at T = 0 K [10,26]. Indeed, the
heat capacity data for x = 0.15 shown in the SM [17] in-
dicate that non-Fermi-liquid behavior occurs below ≈10 K
which is attributed to a QPT similar to previous reports for
NixPd1−x [52] and YFe2Al10 [53]. QPTs in clean itinerant
FMs are expected to be first order [26], however, the mag-
netic transitions in Ca(Co1−xFex )2−yAs2 appear continuous
[20]. Disorder caused, for example, by Fe substitution and
Co vacancies can drive a continuous QPT. On the other hand,
even though the FM Co planes dominate the magnetic en-
ergy, A-type AFM order is present. These considerations give
compelling reasons to look for quantum fluctuations in other
values of x, particularly those around x = 0.12 and 0.25.
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Summarizing, we report the observation of quenching of
a magnetic moment by a Stoner-type transition. Our results
indicate that in addition to the loss of A-type AFM or-
der at x = 0.12, increasing x eliminates the remaining FM
spin correlations in Ca(Co1−xFex )2−yAs2 by x ≈ 0.25 while
maintaining extreme frustration. Our DFT calculations show
that increasing x results in hole doping that rigidly shifts EF
away from a peak in ρ(E ) from a flat conduction band. Fu-
ture investigations looking for more evidence of a QPT for x
spanning the disappearance of AFM order and the quenching
of the moment should be insightful.
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