
PHYSICAL REVIEW B 104, L220404 (2021)
Letter Editors’ Suggestion

Superexchange dominates in magnetic topological insulators
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It has been suggested that the enlarged spin susceptibility in topological insulators, described by interband
Van Vleck’s formalism, accounts for the ferromagnetism of bismuth-antimony topological chalcogenides doped
with transition metal impurities. In contrast, earlier studies of HgTe and related topological systems pointed
out that the interband analog of the Ruderman-Kittel-Kasuya-Yosida interaction (the Bloembergen-Rowland
mechanism) leads to antiferromagnetic coupling between pairs of localized spins. Here, we critically revisit
these two approaches, show their shortcomings, and elucidate why the magnitude of the interband contribution
is small even in topological systems. From the proposed theoretical approach and our computational studies of
magnetism in Mn-doped HgTe and CdTe, we conclude that in the absence of band carriers, the superexchange
dominates and its sign depends on the coordination and charge state of magnetic impurities rather than on the
topological class of the host material.
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Introduction. In the traditional approach to localized mag-
netism in solids, one considers pairwise exchange interactions
between spins Ji j comprising the Ruderman-Kittel-Kasuya-
Yosida (RKKY) coupling brought about by band carriers and
the Anderson-Goodenough-Kanamori superexchange medi-
ated mainly by anion orbitals [1]. However, it has been
demonstrated that in the case of p-type dilute magnetic
semiconductors (DMSs), the Zener model [2] is remarkably
versatile, in which the local magnetization M(r) plays a role
of a continuous order parameter. This approach has allowed
understanding the physics of bound magnetic polarons [3,4]
and ferromagnetism of p-type DMSs [5], and subsequently de-
scribing quantitatively a wealth of micromagnetic properties
and spintronic functionalities of (Ga,Mn)As and related ferro-
magnets [6,7]. Notably, the equivalence between the RKKY
and Zener models was established within the mean-field ap-
proximation (MFA) [8].

Ferromagnetic topological insulators [9,10], such as
(Bi,Sb,Cr)2Te3, have made possible the experimental realiza-
tion of the quantum anomalous Hall effect [11], the axion
insulator [12], efficient magnetization reversal by spin cur-
rents [13], and the much disputed chiral Majorana fermions
[14,15]. Interestingly, the appearance of ferromagnetism in
these systems is also attributed to their topological character,
as the inverted band structure enhances the interband spin
susceptibility leading to carrier-independent spin-spin cou-
pling [16], referred to as the Van Vleck magnetism [9,10,16].
That appears surprising, however, as early studies of spin-spin
coupling mediated by an interband analog of the RKKY in-
teraction (the Bloembergen-Rowland (BR) mechanism [17])
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found predominately antiferromagnetism in topological Mn-
doped zero-gap HgTe [18–20].

In this Letter, we resolve this puzzle by demonstrat-
ing that the mean-field Zener–Van Vleck model fails in
the case of magnetism associated with interband bulk ex-
citations in insulators. Furthermore, by making use of the
recent progress in the theory of the indirect exchange inter-
action [21] and in the quantitative description of exchange
splitting of bands in the whole Brillouin zone (BZ) [22],
we determine various contributions to spin-spin coupling in
nontopological CdTe and topological HgTe doped with Mn
ions. We find that the superexchange dominates not only in
(Cd,Mn)Te [23,24], but also in topological (Hg,Mn)Te. We
also show that the conclusion about the predominant role
of the superexchange substantiates the experimental results
on (Cd,Hg,Mn)Te [25,26] and explains hitherto challenging
chemical trends in the magnetic properties of V, Cr, Mn, and
Fe-doped tetradymite topological insulators observed experi-
mentally [9,10,27] and found in ab initio studies [28–30].

RKKY-BR vs Zener–Van Vleck models. For concreteness,
we consider xN randomly distributed Mn spins S = 5/2 in
zero-gap Hg1−xMnxTe in which both the conduction and va-
lence bands are of �8 symmetry at the BZ center. In the
high-temperature expansion of the partition function for the
pairwise interactions [25], the contribution of the RKKY-BR
term to the Curie-Weiss temperature (equal to spin ordering
temperature Tc within MFA) assumes the form [18,20,31]

�CW = xS(S + 1)

3NV
∑
i �= j,q

exp[iq · (Ri − R j )]

×
∑

k,n,n′,σ,σ ′

2|〈un,k,σ |βsz|un′,k+q,σ ′ 〉|2
V (En′,k+q − En,k )

fn,k(1 − fn′,k+q),

(1)
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where the Boltzmann constant kB = 1; V is the crystal vol-
ume, and k, k + q ∈ BZ. We see that if the p-d exchange
integral β were k independent, the summation over k would
provide the spin susceptibility χ̃ (q) of the �8 bands n and
n′, as defined in Refs. [32] and [33]. Furthermore, if the
contribution of the self-interaction energy were small com-
pared to interaction energies for i �= j, the term i = j could
be included in Eq. (1), transferring the sum over the cation
positions Ri and R j into the structure factor that is nonzero
for q = 0 only. This is the case of the long-range RKKY
coupling, for which the sum over i, j can be approximated by
N2β2χ̃ (0), as presumed within the Zener–Van Vleck model
[16,32,33]. However, in the case of the BR mechanism, the
decay of the interaction with the interspin distance is faster
[17–20] and, therefore, χ̃ (q) beyond q = 0 determines the
sign and magnitude of �CW and TC. In conclusion, atom-
istic computations of pair exchange energies Ji j are necessary
in order to meaningfully evaluate the role of the interband
contribution [34].

Theoretical methodology. We consider exchange inter-
actions between Anderson magnetic impurities occupying
cation substitutional positions in considered semiconductor
compounds, whose band structures are described within the
empirical tight-binding approximation taking into account
spin-orbit interactions. This approach [35–37] was success-
fully applied to elucidate the nature of ferromagnetism in
(Ga,Mn)N [38,39] and has recently been generalized by us
to simultaneously take into account various contributions
to the spin pair exchange energy [21], including the BR
interband term. Assuming time-reversal symmetry (no sponta-

neous magnetization) and within the fourth-order perturbation
theory in the p-d hybridization energy Vhyb between band
states Ek,n and Mn d orbitals residing at Ed = E (d5) − E (d4)
and Ed + U = E (d6) − E (d5), the spin Hamiltonian is

Ĥ(4)
eff = −

∑
i �= j

J (4)
i j,αβ Ŝi,α Ŝ j,β , (2)

where the tensor of exchange integrals (parameters) for spins
at sites (i, j) can be written as a double integral over the BZ
[k ≡ (k, n)],

J (4)
i j,αβ = − 1

2(2S)2

∑
m,m′

∑
k,k′

A(4)
kk′Wiα,k′k,mWjβ,kk′,m′ , (3)

where m labels the d orbitals and

Wiα,k′k,m =
∑

a,b=↑,↓
〈k′|V †

hyb|dima〉〈a|σα|b〉〈dimb|Vhyb|k〉, (4)

where a and b are spin directions and σα the Pauli matrices.
For an insulator in a zero-temperature approximation and us-
ing the notation

wk = 1

Ed + U − Ek
, w′

k = 1

Ed − Ek
, (5)

wk′ = 1

Ed + U − Ek′
, w′

k′ = 1

Ed − Ek′
, (6)

one can write A(4)
kk′ in terms of the Heaviside step function �

as

A(4)
kk′ ≈ �(EF − Ek )�(EF − Ek′ )wkwk′ (wk + wk′ ) + �(EF − Ek )�(Ek′ − EF )

(wk − w′
k′ )

2

Ek − Ek′

+�(Ek − EF )�(EF − Ek′ )
(wk′ − w′

k )2

Ek′ − Ek
− �(Ek − EF )�(Ek′ − EF )w′

kw
′
k′ (w′

k + w′
k′ )

+ 2

U
[�(EF − Ek )wk + �(Ek − EF )w′

k][�(EF − Ek′ )wk′ + �(Ek′ − EF )w′
k′], (7)

where we assume that the Fermi energy EF lies in the range
Ed < EF < Ed + U . Average values of the exchange integrals
and �0 = �CW/x are obtained by tracing the tensors,

J (4)
i j = 1

3

∑
α

J (4)
i j,αα, �0 = 2

3
S(S + 1)

∑
i�1

ziJ
(4)
0i , (8)

where zi is a number of cation sites in the consecutive coordi-
nation spheres i � 1.

We represent A(4)
kk′ as a sum of three contributions [23,40]:

the superexchange (or hh) term includes contributions pro-
portional to �(EF − Ek )�(EF − Ek′ ), the two-electron (or ee)
term includes those proportional to �(Ek − EF )�(Ek′ − EF ),
and the electron-hole (he) term includes those proportional to
�(EF − Ek )�(Ek′ − EF ) or �(Ek − EF )�(EF − Ek′ ). Such a
decomposition leads to the analogous decomposition of J (4)

i j
and �0 = �hh + �ee + �he.

We use a 16-orbital sp3 tight-binding model of the band
structure together with the parameter values obtained recently

by us employing a modified generalized gradient approxima-
tion (GGA)+U ab initio approach with UMn = 5 eV. These
parameters are presented in Tables II and III of Ref. [22].
In particular, Ed in our Eqs. (5)–(7) is a mean value of Eeg↑
and Et2g↑, whereas Ed + U is a mean value of Eeg↓ and Et2g↓.
Finally, matrix elements of Vhyb are spin-averaged values of
Vsdσ , Vpdσ , and Vpdπ [22]. Extensive magneto-optical data
collected for Cd1−xMnxTe and Hg1−xMnxTe at the � and
L points of the BZ served to benchmark the model [22].
Importantly, our tight-binding model reconfirms, for these
compounds, stronger hybridization of t2g orbitals with the
band states, compared to the eg case, which is crucial for the
sign and magnitude of the interaction between localized spins.

In topological materials, the most interesting is the he term.
It appears whenever transitions between the fully occupied
valence bands and the empty conduction bands are symmetry
allowed (the BR mechanism) or when there is a nonzero
density of states at the Fermi level (the RKKY mechanism).
This term features an energetic denominator Ek − Ek′ . In
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insulators, the latter is guaranteed to be nonzero by the
Heaviside-� prefactors (it is understood that each term van-
ishes whenever the zero Heaviside-� prefactor does, even
despite singular denominators). However, in a semimetal, the
denominator is singular at the Fermi level (i.e., when either
Ek → E+

F and Ek′ → E−
F , or vice versa). In undoped (or iso-

electronically doped) HgTe, this happens at the � point of the
BZ. For this reason, it has been essential to elaborate a special
integration method. The Supplemental Material [41] presents
issues associated with k and k′ integrations in simple models
[18–20] and a comparison of the second-order perturbation
theory in the p-d exchange integral compared to the fourth-
order perturbation theory in the hybridization matrix element
Vhyb employed here.

Brillouin-zone integration. Although our goal is to find
the exchange integrals J (4)

i j in the limit of an infinitely large
system, it is typical in numerical calculations to replace the
BZ integration by a summation over a discrete set of k points
in the BZ. As pointed out in Ref. [42], such discrete k-
point mesh may be defined through the introduction of the

superlattice vectors {gi}, being the linear combinations of
primitive crystal translations {ai},

gi =
3∑

j=1

a jMji. (9)

In cubic systems, the three gi can be taken as vectors along the
three Cartesian axes with length La. This defines the equidis-
tant k-point mesh κ{m} = 2π

La (mx, my, mz ) of L3 grid points. In
addition, the grid points can be shifted.

However, the expressions for the Ji j tensor components
involve double integration over the BZ. Here, we present
an efficient method to deal with the double BZ integration
facilitated by the specifics of the integrand. In particular,
this method allows for accurate treatment in the he contri-
bution for Ji j in the case of zero-gap systems. Indeed, the
product Wiα,k′k,mWjβ,kk′,m′ includes a phase factor exp[i(κ −
κ ′)(Ri − Rj )], and the summation over the images of Ri,
Ri + Lalat(nx, ny, nz ) yields (by the principle of the Poisson
summation) a set of Dirac δ’s at κ − κ ′ = 2π

Lalat
(mx, my, mz ),

∑
nx,ny,nz

exp {i(κ − κ ′)[Ri − Rj + Lalat(nx, ny, nz )]}

=
(

2π

Lalat

)3

exp [i(κ − κ ′)(Ri − Rj )]
∑

mx,my,mz

δ

[
κ − κ ′ + 2π

Lalat
(mx, my, mz )

]
, (10)

where the δ suppresses only one integration. To handle this issue, we first sum over a shifted grid of equidistantly spaced k
points,

κ = 2π

Lalat

(
mx + ϑx

2π
, my + ϑy

2π
, mz + ϑz

2π

)
, κ ′ = 2π

Lalat

(
m′

x + ϑx

2π
, m′

y + ϑy

2π
, m′

z + ϑz

2π

)
, (11)

then integrate over the common shift (ϑx, ϑy, ϑz ) ∈ [0, 2π )3 ≡ T 3 (T 3 stands for the three-dimensional torus).
In order to calculate J0 + ∑

i�1 ziJi, we rewrite (10) with L = 1 as

∑
j

exp [i(κ − κ ′)(Ri − Rj )] =
(

2π

alat

)3 ∑
mx,my,mz

δ

[
κ − κ ′ + 2π

alat
(mx, my, mz )

]
. (12)

Since 2π/alat is the lattice constant of the reciprocal lattice, only the term with mx = my = mz = 0 remains in the last sum, and
the Dirac δ suppresses one integration. Therefore, J0 + ∑

i�1 ziJi and, thus, χ̃ (0) can be computed as a single integral over the
BZ.

In insulators, the integration over ϑ’s is approximated by
a sum over an equally spaced grid (the trapezoids method).
The number of required ϑ points in each Cartesian direction
gets smaller as the larger supercells are considered. Ulti-
mately, just one ϑ point is sufficient; it can be chosen as,
e.g., ϑx = ϑy = ϑz = 0 or ϑx = ϑy = ϑz = π , in correspon-
dence with the boundary conditions imposed on the electronic
wave functions. In contrast, in semimetals, if the boundary
conditions dictate ϑ = 0, finite summation is not appropriate
because the denominator Ek − Ek′ in Eq. (7) renders the quan-
tity undefined. Therefore, a special set of ϑ points has been
chosen here, which is equivalent to the transformation ϑ ′

i �→
ϑi = ϑ ′

i − sin ϑ ′
i under the BZ integral. This transformation,

besides possessing analytic properties, preserves periodicity
while dϑi/dϑ ′

i = 0 at ϑ ′
i = 0. As a result, the divergence of

the integral at the origin cancels with the zero of the Jacobian
of the transformation and the integral can be computed with
the trapezoids method. Indeed, the singularity of the inte-
grand at ϑ = 0 is integrable, as long as the dimensionality
is sufficient and the band structure is well behaved (k-linear
terms, k3 terms, and the anisotropy may play a role here). The
RKKY (i.e., intraband) term is omitted in this discussion, as
the density of states vanishes if the Fermi energy EF → 0.

The computations have been performed with an efficient al-
gorithm based on the fast Fourier transform on a 16 × 16 × 16
supercell (16 384 cation lattice sites) that also determines the
grid density of k and k′ points employing periodic boundary
conditions. For Cd1−xMnxTe and Hg1−xMnxTe, the grids with
up to two and eight different ϑ values have been employed,
respectively. Figure 1 demonstrates that the magnitude of �he
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FIG. 1. Convergence of the interband he term for Mn pairs in
HgTe with respect to the number m of ϑ points in each space di-
rection in the trapezoids quadrature. Squares: the sum of exchange
integrals including J0 calculated for the 4 × 4 × 4 supercell as a
single BZ integral (abscissa provides m/4); triangles: the value of
J0 to be subtracted in order to obtain �CW (abscissa provides m).

in Hg1−xMnxTe converges with the number of employed ϑ

values. This means that in contrast to the static dielectric
function [43,44], the spin susceptibility, though enhanced,
is not singular at q → 0 in the symmetry-induced zero-gap
semiconductors. Aitken’s δ-squared process served to accel-
erate the integration convergence. We have checked that �0

calculated by the single integral, as outlined in a preceding
paragraph, and after subtracting J0, is in excellent numeri-
cal agreement (better than 1 K) with the value obtained by
summing ziJi, i � 1, obtained by the double BZ integration.
Actually, the coupling to the nearest neighbors (J1) contributes
over 50% to the value of �0.

Discussion of theoretical results vis-à-vis experimental
data. As expected theoretically for the random distribution
of magnetic ions, experimental values of �CW show a lin-
ear dependence on x in II-VI DMSs [25,51]. As shown
in Table I, our theory, together with the employed tight-
binding parametrization, explains the interaction sign but
overestimates by 60% the absolute values of J1 and �0 in
Cd1−xMnxTe and by 30% in the case of Hg1−xMnxTe.

Extensive experimental studies of spin-glass freezing tem-
perature Tf in wide-gap Mn- and Co-based DMSs, including
Cd1−xMnxTe, indicate that �CW 
 Tf ∼ xα , where α =
2.25 ± 0.1 [39,49,50,52]. A scaling argument [49,53] then
implies Ji ∼ d−n

i , where di is the distance between spin pairs
and n = 3α = 6.8 ± 0.3 [49]. Figure 2(a) demonstrates that
the dependence of Ji on di obtained here for Cd1−xMnxTe is
in agreement with the experimentally determined power law.
However, an exponential decay would describe the computed
data over a wider range of di.

Comparing Ji,he values displayed in Figs. 2(c) and 2(d) to
Jl data in Figs. 2(a) and 2(b), we find that the BR mecha-
nism dominates at large d . It decays exponentially with d
in the wide-gap Cd1−xMnxTe, but for topological zero-gap

TABLE I. Consecutive nearest-neighbor exchange energies
−(Ji = Ji,hh + Ji,ee + Ji,he), i = 1, 2, 3, 4 (from the fourth-order per-
turbation theory), and Curie-Weiss parameter −�0 in Kelvins
compared to experimental results. Contributions from the superex-
change (hh), electron-electron (ee), and interband (he) terms to �0

are also shown.

Cd1−xMnxTe Hg1−xMnxTe

Theory Expt. Theory Expt.

−J1 9.77 6.3 ± 0.3 [45] 6.46 5.1 ± 0.5 [46]
6.15 ± 0.05 [47] 4.3 ± 0.5 [48]

−J2 0.810 1.9 ± 1.1 [45] 0.842
1.80 ± 0.05 [47]

−J3 0.352 0.4 ± 0.3 [45] 0.394
1.39 ± 0.05 [47]

−J4 0.255 0.81 ± 0.05 [47] 0.467
−�0 801 470 ± 34 [25] 666 500 ± 10 [25]

660 ± 88 [26]
Theory

−J1,he −0.396 −�hh 772 −1.583 651
−J2,he 0.421 −�ee 8.9 0.492 19.0
−J3,he 0.131 −�he 20.0 0.112 −3.9
−J4,he 0.061 0.154

Hg1−xMnxTe, Ji,he(d ) shows a power-law dependence, also at
large d . This behavior accounts for a relatively weak decay of
Tf with decreasing x in Hg1−xMnxTe [54], leading to n = 4.8
[50]. As seen in Fig. 2(b), this value of n is consistent with our
theoretical results, though we have to note that a considerable
shift of bands with x is expected in topological materials,
while our computations have been performed for Mn pairs in
HgTe. As shown in Table I, the relevant ferromagnetic and an-
tiferromagnetic contributions Ji,he, i � 1, actually cancel each
other in �he, making the contribution of the BR mechanism to
�0 negligible in both compounds. This explains why no effect
of gap opening on �CW was found in Hg1−x−yCdyMnxTe [26].
At the same time, it is clear from Fig. 1 that the inclusion of
the self-interaction term J0,he would drastically increase the
magnitude of �he.

Conclusions and outlook. Our results demonstrate that the
interband BR term changes the sign from ferromagnetic to
antiferromagnetic as a function of Mn pair distance, with
the behavior contradicting the Van Vleck–like approach that
predicts only the ferromagnetic coupling [16]. Such an al-
ternating sign, reflecting the presence of both ferromagnetic
and antiferromagnetic excitations in χ̃ (q) [55], significantly
reduces the role of the interband contribution making the
superexchange to determine whether a spin glass or a ferro-
magnet becomes the magnetic ground state, i.e., the case of
Mn2+ in II-VI compounds and Mn3+ in GaN, respectively.

There are persisting uncertainties concerning the distribu-
tion (random vs clustering [56]) and the location of transition
metal (TM) impurities in the tetradymite lattice (substitutional
vs interstitial positions in the van der Waals gap [57]). Never-
theless, a series of arguments allows extending the conclusion
about the dominance of the superexchange to topological
tetradymite chalcogenides doped by substitutional V, Cr, or
Fe ions, whose magnetism has so far been merely attributed to
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FIG. 2. (a),(b) Computed total exchange energies Ji and (c),(d) the interband BR contribution Ji,he for Mn pairs (including the self-
interaction values J0) vs Mn-Mn distances di in the unit of the lattice parameter alat for (a),(c) CdTe and (b),(d) HgTe. Dashed lines indicate
Ji ∼ d−n

i with n = 6.8 and 4.8, as found experimentally for Cd1−xMnxTe [49] and Hg1−xMnxTe [50], respectively.

the Van Vleck mechanism [9,10]. (i) These impurities appear
isoelectronic [9,10,27], which means that d orbitals remain
fully occupied or empty. Moreover, as in other DMSs, cor-
relations, together with the Jahn-Teller effect and dilution,
enhance the d orbital localization further on. Accordingly,
the double-exchange scenario, put forward when interpreting
ab initio results [28,30], is not valid. (ii) Another ab initio
study reveals the insensitivity of the spin-spin coupling energy
of the band inversion [29], with the finding contradicting
the Van Vleck model. (iii) Recent studies of x-ray magnetic
circular dichroism and resonant photoelectron spectroscopy
demonstrate similarities of p-d hybridization effects in V-
or Cr-doped (BixSb1−x )2Te3 [30] and II-VI DMSs [40], in
particular, stronger hybridization of t2g TM levels compared
to the eg case, which implies a similar physics of spin-spin
coupling as found in tetrahedrally coordinated DMSs. (iv)
As superexchange prevails over the interband Van Vleck
mechanism in the zero-gap case, it should dominate even
more strongly in the gapped topological systems. (v) From
the direct computations for tetrahedral systems carried out

here and previously [36,37,58], supported by experimental
data [39,49,50,59,60], we know that the superexchange is
ferromagnetic for d3 and d4, whereas it is antiferromagnetic
for d5 and d6 cases. According to the experimental results
[9,10,27] and ab initio studies [28], the same sequence occurs
in tetradymite topological insulators, except for the Mn case,
as Mn acts as an acceptor [61], so that the RKKY interaction
accompanies the antiferromagnetic superexchange, such as in
(Ga,Mn)As [6,62]. Altogether, these arguments indicate that
the TM charge state and coordination, more than a topological
class, govern the magnetic properties of DMSs.
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