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Observing Floquet topological order by symmetry resolution
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Symmetry-protected topological order in one dimension leads to protected degeneracies between symmetry
blocks of the reduced density matrix. In the presence of periodic driving, topological Floquet phases can be
identified in terms of a cycling of these symmetry blocks between different charge quantum numbers. We discuss
an example of this phenomenon with an Ising Z2 symmetry, using both analytic methods and real quantum
computers. By adiabatically moving along the phase diagram, we demonstrate that the cycling periodicity is
broken in Floquet topological phase transitions. An equivalent signature of the topological Floquet phase is
identified as a computational power allowing for the teleportation of quantum information.
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Introduction. Floquet symmetry-protected topological
(FSPT) phases are emergent condensed matter phenomena
[1–9] that extend the concept of symmetry-protected topo-
logical (SPT) order to periodically driven systems [10–13].
A key aspect of one-dimensional (1D) SPTs is having ground
states with protected degeneracies in their entanglement spec-
trum [14–18]. For unitary symmetries, these degeneracies
can be detected with symmetry-resolved entanglement (SRE)
measures [19–27], and allow one to use SPTs as universal
computational resources [28–30]. Whether and how these
properties show up for FSPT order are the questions that we
address in this Letter.

In periodically driven systems, the key object that ad-
mits topological features is the unitary Floquet operator
describing the time evolution for one cycle, F = U (T, 0),
where T is the time period. Its eigenvalues, λi = e−iT εi ,
which define the quasienergies ωi = T εi mod 2π , have topo-
logical characteristics such as protected 0- and/or π -edge
modes [2]. In contrast to static SPTs, the eigenstates of F
are not necessarily entangled, even in nontrivial FSPTs. In-
stead, entanglement in FSPTs is hidden in the time evolution
within a period, which is often referred to as micromotion
and is generically characterized by quantized charge pump-
ing [5,31]. Here, we study and experimentally observe this
phenomenon by focusing on the dynamics of the SRE, de-
rived from the block diagonal structure of the reduced density
matrix ρA = TrB ρ [17]. In the static case, the SRE structure
can be used to identify SPT phases via degeneracies between
the symmetry blocks [16]. Our key observation here is that
nontrivial FSPT order is reflected by an exact cycling of the
symmetry blocks upon Floquet evolution, as illustrated in
Fig. 1. As an experimentally detectable [16,32] consequence,
the first moment of the SRE, defined as the subsystem charge,
displays cyclic switching. This is demonstrated for a Z2 FSPT
phase on a noisy intermediate-scale quantum (NISQ) com-
puter. We quantify the parity switching as an order parameter,

and observe its dynamics across a Floquet topological phase
transition. We propose a generalization of measurement-based
quantum computation (MBQC) to the FSPT case. Lastly,
static SPT order can also coexist with nontrivial Floquet order,
in which case the protected entanglement is associated with
degeneracies between cyclically switching symmetry blocks.

Cohomological classification. Before discussing our main
result, we put it in the mathematical context of the classifi-
cation of 1D bosonic SPTs. A 1D SPT phase protected by
the symmetry group G is characterized by a ground state
accompanied by a symmetry operator U (g) representing the
group G. While U (g) acts on the full system as a conventional
representation, it acts near the edges [28,33] via a projective
representation that classifies the different SPT phases into
H2[G,U (1)] classes [13].

One-dimensional bosonic FSPTs are characterized by an
additional discrete symmetry, namely translations in time by
integer multiples of the period, or equivalently, discrete pow-
ers of F . Because this operator commutes with the static
symmetry G, the total system is characterized by a G × Z
symmetry. As a result, there are H2[G × Z,U (1)] bosonic
FSPT phases [4,5,34]. For finite Abelian groups G we find
that [35] (see also Refs. [36–38] therein)

H2[G × Z,U (1)] = H2[G,U (1)] × G. (1)

One can understand the two factors in Eq. (1) as a bulk SPT
order classified by H2[G,U (1)], which results in degeneracies
between the symmetry blocks of ρA, and additional |G| phases
that characterize the possible cyclic permutations of the SRE,
after applying F . Importantly, even symmetry groups whose
cohomology group is trivial and cannot support static SPT
phases can protect nontrivial Floquet topology.

SRE switching. For a system characterized by a unitary
symmetry G with a conserved charge Qtot, the density ma-
trix of the reduced system A has a decomposition [39] ρA =
⊕Qρ̃A(Q) associated with subsystem charge Q ≡ QA. We
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FIG. 1. FSPT order is characterized by cyclic switching of sym-
metry blocks of the reduced density matrix upon applying the
Floquet operator F = U (T, 0).

define the nth Rényi SRE as Sn(Q) = Tr[�Qρn
A], where �Q

projects subsystem A to charge sector Q. For example, for the
symmetry group G = ZN , the charge Q is an integer, modulo
N . This group has a trivial cohomology group H2[ZN ,U (1)]
and hence cannot support static SPTs. According to Eq. (1),
we have exactly |ZN | = N distinct FSPT phases. Each phase
is labeled by an integer c = 0, 1, . . . , N − 1, which represents
the pumped charge of the FSPT phase. Let us focus on eigen-
states of the Floquet operator in the bulk, but not necessarily
on the edges. After one cycle ρ → ρ ′ = FρF †, and, as we
now demonstrate,

Sn(Q) → S′
n(Q) = Tr[ρ ′

A
n
�Q] = Sn(Q′), (2)

where Q′ = Q + c. Equation (2) tells us that the symmetry
sector Q goes to Q′ upon acting with F . Being valid for any n,
this relation implies the cycling of the entire spectrum of each
symmetry block ρ̃A(Q), as schematically shown in Fig. 1.

We now prove this result using the framework of Ref. [6].
Assuming that the FSPT phase with symmetry G is integrable
or many-body localized (MBL) (see Refs. [41–43]), we have
an edge-bulk decomposition of the one-period time evolution
operator

F = vLvRe−i f , (3)

where vL (vR) is a unitary operator localized at the left (right)
part of the system and f is a functional of the symmetric (with
respect to G) constants of motion associated with the MBL
[6]. Additionally, we have the identity

U (g)vLU †(g)v†
L = κc(g),

U (g)vRU †(g)v†
R = κ−1

c (g), (4)

for unitary symmetries represented by U (g), where g ∈ G and
κc(g) is the 1D representation of the FSPT matching the group
element c such that U (c) |g〉 = κc(g) |g〉 [6]. As the state is
an eigenstate of F in the bulk, it is an eigenstate of e−i f .
If we consider Floquet phases that do not break any sym-
metry (including time translations) the state is an eigenstate
of e−i f and this phase factor drops out of the evolved state
ρ ′ = FρF † = vLvRρv

†
Rv

†
L [6].

We now calculate the first moment S1(Q) = Tr[�QρA] of
the SRE, which is the probability that the reduced system has
charge Q. For Abelian unitary finite symmetries, the projec-
tors can be written in terms of the group characters χQ(g)
[18,44],

�Q = 1

|G|
∑

g∈G

χQ(g)UA(g), (5)

where UA(g) is the symmetry acting on the reduced
system A. If subsystem A includes the left but not the
right edge, we have that ρA → ρ ′

A = vLρAv
†
L and �Q

commutes with vR. Thus, after one cycle S1(Q) → S′
1(Q) =

Tr[v†
L�QvLρA] = 1

|G|
∑

g∈G χQ(g)Tr[v†
LUA(g)vLρA]. Using

the identity v
†
LUA(g)vL = κc(g)UA(g), which derives from

Eq. (4) by partial tracing, we obtain

v
†
L�QvL = �Q+c. (6)

Then Eq. (2) follows for the case n = 1. Generaliz-
ing this result to any n is straightforward: After one
cycle, we have that ρn

A → (vLρAv
†
L )n = vLρn

Av
†
L as vL

is unitary and satisfies v
†
LvL = I . As a result, the nth

Rényi SRE evolves as Sn(Q) = Tr[�Qρn
A] → S′

n(Q) =
Tr[v†

L�QvLρn
A] = 1

|G|
∑

g∈G χQ(g)Tr[v†
LUA(g)vLρn

A]. Together
with the assumptions and derivations above, this proves
Eq. (2) for any n.

Parity switching through a phase transition. The subsys-
tem charge can serve as a measurable order parameter of
FSPT phases that can be observed even on small noisy quan-
tum computers. We now study its evolution across a phase
transition.

To showcase the use of this order parameter, we consider
the kicked Ising model F (α, β ) = UZZ (β )UX (α) where

UX (α) = ei α
2

∑L
l=1 Xl ,

UZZ (β ) = ei β

2

∑L−1
l=1 Zl Zl+1 , (7)

and Xl , Zl are Pauli matrices acting on the lth site of a chain
with open boundary conditions. This model has a G = Z2

symmetry represented by the parity operator P = ∏L
l=1 Xl . Its

phase diagram [40] is displayed in Fig. 2(a). The four phases
are labeled by the number of single Majorana fermion excita-
tions at quasienergies 0 and π [see Fig. 2(b)]. The phases with
an odd number of Majoranas spontaneously break the Ising
symmetry, and correspond to a ferromagnet (0 phase) and to a
time crystal (π phase) [45–48]. The latter phase was realized
using trapped ions [49] and superconducting circuits [48,50–
52]. The Floquet topological phase 0π was realized in Ref. [8]
using cold atoms.

Here, we focus on the transition from the FSPT (0π ) phase
to the ferromagnetic (0) phase. The former phase has two in-
terconnected properties: protected edge states at quasienergy
π and SRE swapping. The probability of the even subsys-
tem parity S1(even) = 1+〈PA〉

2 [with S1(odd) = 1 − S1(even)]
is obtained by evaluating the subsystem parity PA = ∏

i∈A Xi

where A includes LA sites from the left boundary. In the topo-
logical phase, S1(even) and S1(odd) are expected to swap their
values at each time step. This behavior is trivially seen, for
example, at the sweet spot β = π and α = 0 where UZZ (π ) =
(−i)L−1Z1ZL and UX = 1. Then the evolution over one period
F = UZZUX simply flips the two edges from + to − and
S1(even) and S1(odd) alternate between 0 and 1.

To see that this property persists in the entire topological
phase, but disappears in the ferromagnetic phase, we adiabat-
ically change the parameters of F . Specifically, we follow the
path α = r0 cos θ and β = π − r0 sin θ , shown as a red curve
in Fig. 2(a), in Nsteps equal steps, such that the topological
phase transition is crossed at θ = π/4, i.e., at the Nsteps/2 step.
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FIG. 2. (a) Phase diagram of the model (7) reproduced from Ref. [40]. The phases PM, 0, π , and 0π are, respectively, the paramagnet,
ferromagnet, time crystal, and topological phase. Dark blue represents the topological phase exhibiting SRE switching. The red curve indicates
the adiabatic path which we transverse in Nsteps steps. (b) Single-particle quasienergy spectrum along the path in (a) exhibiting a π mode
for θ � π/4. (c), (d) Exact calculation of subsystem parity probability S1(even) and 〈Xl〉 for L = 2LA = 50 and Nsteps = 250. S1(even) in
(c) displays parity switching in the topological (0π ) phase up to the phase transition at step ∼Nsteps/2 followed by a beating structure in the
ferromagnetic phase. 〈Xl〉 in (d) displays edge state parity switching (see inset) in the topological phase. (e), (f) Same quantities as in (c),
(d) measured on an ion-based quantum computer on the cloud for L = 2LA = 4 and Nsteps = 10.

We set r0 = 1 throughout, and initialize the system in the state
|+〉 = ⊗l |+〉l .

The switching of S1(even) is shown along an adiabatic pro-
tocol with Nsteps = 250 in Fig. 2(c) for a system with L = 50
qubits and LA = L/2 [35] (see also Refs. [53–56] therein).
Figure 2(d) gives a real-space picture of 〈Xl〉, showing that
for small θ , the edge spins are responsible for the switching.
As approaching θ = π/4, the extent of the switching zone
increases, and eventually the two edges merge at the Floquet
topological phase transition.

For θ > π/4, S1(even) gives rise to a beating structure,
persisting into the ferromagnetic phase. The frequency of
this beating is determined by the difference between two
quasienergies of the instantaneous Floquet operator F (θ ).
Specifically, our initial state |+〉 can be combined with the
state Z1ZL|+〉 to form a pair of Floquet eigenstates of F (θ =
0), denoted by |1〉 and |2〉, with quasienergies ω1 and ω2 =
ω1 + π . As we vary θ adiabatically, the quasienergies fol-
low their instantaneous values ω1,2(θ ) [see Fig. 2(b) for the
single-particle quasienergies]. In the thermodynamic limit
(L → ∞), ω2(θ ) − ω1(θ ) is pinned to π in the topologi-
cal phase, giving rise to a periodic switching of S1(even).
For finite systems, there are small deviations, which become
significant near the phase transition. Moving into the fer-
romagnetic phase ω2 − ω1 deviates from π and eventually
becomes the energy difference of a domain wall in the fer-
romagnetic order [35]. This picture allows us to show that

the beating amplitude vanishes in the thermodynamic limit
as 1/

√
L [35], implying that the parity switching is an FSPT

order parameter. The parity switching is observable on a
quantum computer as shown in Figs. 2(e) and 2(f) for L = 4
and LA = L/2 and Nsteps = 10 steps (See Ref. [35] for the
Amazon Braket quantum algorithm used to generate these
plots).

Teleportation through an FSPT phase. The existence of
a Floquet operator that switches the symmetry blocks of
the reduced density matrix leads to computational power. In
the case of SPTs, computation power relies on their entan-
glement [30,57]. By measuring the state in specific bases, the
correlations that compose the entanglement cause the input
information to flow. Here, we discuss how FSPT order, with
generically unentangled eigenstates, allows teleportation of a
quantum state.

We again focus on the simplest case of G = Z2. Our basic
procedure is composed of three steps: (i) Start from a Floquet
eigenstate and encode a “qubit” state |ψ〉 = ∑

g αg|g〉 at the
left edge in the G-symmetry eigenbasis |g〉 = |±〉. Encode the
identity group element state |+〉 in the right edge qubit. (ii)
Use an ancilla qubit to apply I + eiχ F with a nonuniversal
phase factor eiχ = ei f of the Floquet eigenstate. (iii) Lastly,
measure the left edge qubit in the G-symmetry basis. If the
FSPT state is nontrivial, then the left edge qubit |ψ〉 is tele-
ported to the right. This property follows generally for the ZN

case [35] directly from the algebra in Eqs. (3) and (4) which
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FIG. 3. Teleportation protocol as a probe of FSPT order. A state
|ψ〉 is prepared on the edge. A controlled-F operator followed by a
measurement of an ancilla qubit entangles the edge states, allowing
for teleportation upon measurement of the first qubit, if and only if
F is topological.

defines the action of F and of the symmetry projectors in a
given FSPT phase.

This protocol is depicted in Fig. 3 for the point θ = 0 in the
topological phase where the edge states are localized on the
edge qubits. In this case the initial quantum state is |ψ〉1 ⊗L

i=2|+〉i, where |ψ〉1 = α+|+〉1 + α−|−〉1. We have F = Z1ZL

(we neglect additional X rotations as those do not change the
result) with some additional phase χ = α

2 (L − 2). It is easy
to see that after applying I + eiχ Z1ZL and then projecting the
left qubit, say to |+〉1, the final state is ⊗L−1

i=1 |+〉i|ψ〉L. In
Fig. 3 we implement the operator I + eiχ F using a simple
quantum circuit. Adding an ancillary qubit |0〉 and then acting
with Hadamard gate H on it we get the state 1√

2
(|0〉 + |1〉).

Then, we add the phase by rotating around the Z axis with
Rz(χ ) = e−i χ

2 Z , which takes the ancillary qubit to the state
1√
2
(|0〉 + eiχ |1〉). Next, by applying a controlled-F gate, we

only apply F on the initial state for the |1〉 ancilla state,
thus, the whole circuit is in the state 1√

2
(|0〉 ⊗ |ψ〉 + |1〉 ⊗

eiχ F |ψ〉). Lastly, applying H again on the ancillary qubit,
we have 1

2 (|0〉 ⊗ [I + eiχ F ] |ψ〉 + |1〉 ⊗ [I − eiχF ] |ψ〉). It is
now clear that in the case of measuring the ancilla in the |0〉
state we implement the operator I + eiχ F on the initial state.
As in MBQC, one can correct for the possible measurement
outcomes, and also perform general rotations by measuring in
a rotated basis. In order to probe any other point in the FSPT
phase, one can apply our adiabatic protocol on the initial state,
transforming θ = 0 → θ1 < π/4, then apply I + F (θ1)eiχ (θ1 ),
and adiabatically evolve back to θ = 0 where the final mea-
surement is done on the first qubit.

Entanglement switching. So far, we considered only unen-
tangled FSPT states with a trivial static cohomology group

H2[G,U (1)]. For nontrivial groups, the Floquet eigenstates
contain protected entanglement linked with degeneracies of
ρA between different symmetry sectors [17]. Consider for ex-
ample G = ZN × ZN , where static SPTs are classified by m ∈
H2[G,U (1)] = ZN [13] (m = 0, . . . , N − 1). In the presence
of a Floquet drive classified by an element c = (c1, c2) ∈ G
as in Eq. (1), the block Q turns into Q + c. The degen-
erate blocks Q = (q1, q2) are grouped into families whose
representative is q′ = (q′

1, q′
2), defined mod gcd(N, m). The

entanglement switching of these families is described by q′
i →

q′
i + ci mod gcd(N, m) (i = 1, 2) [35]. We discuss examples

of this general formula. If m and N have no common divisors
greater than 1, all the symmetry blocks are degenerate and
there is no nontrivial switching under the action of F . In
contrast, in SPT static phases where m > 1 divides N (for
example, m = 2, N = 4) the degeneracy is only partial [17],
leading to entanglement, and the degenerate blocks switch
from one family to another [35].

Summary. The global topological properties of 1D FSPT
phases cannot be revealed by any local measurements in the
bulk. Here, we used symmetry resolution measurements to
observe the FSPT order, both on a small system realized by
a NISQ computer, and analytically on large systems. The
latter allowed us to describe a Floquet phase transition into a
topologically trivial phase. The topological edge excitations
of the Floquet phase adiabatically evolve into domain wall
excitations of a ferromagnet. Conversely, this property allows
one to prepare adiabatically topological excitations, starting
from local excitations. Finally, we demonstrated the ability of
FSPT order to teleport a quantum state. All these topological
properties, similar to the cohomological classification, hold
for periodically driven interacting bosons in general and are
not limited to our showcase kicked Ising model which admits
a free fermion description.
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