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We demonstrate that phase-coherent heat transport constitutes a powerful tool to probe Majorana physics
in topological Josephson junctions. We predict that the thermal conductance transverse to the direction of
the superconducting phase bias is universally quantized by half the thermal conductance quantum at phase
difference φ = π . This is a direct consequence of the parity-protected counterpropagating Majorana modes
which are hosted at the superconducting interfaces. Away from φ = π , we find a strong suppression of the
thermal conductance due to the opening of a gap in the Andreev spectrum. This behavior is very robust with
respect to the presence of magnetic fields. It is in direct contrast to the thermal conductance of a trivial Josephson
junction which is suppressed at any phase difference φ. Thus, thermal transport can provide strong evidence for
the existence of Majorana modes in topological Josephson junctions.
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I. INTRODUCTION

Topological insulators (TIs) have received considerable in-
terest during the past decade [1–3]. They are characterized by
an insulating bulk and topologically protected surface states.
Two-dimensional TIs that can be realized in HgTe/CdTe
quantum wells manifest themselves in the quantum spin Hall
effect [4,5] where two helical edge states give rise to a quan-
tized electrical conductance of 2e2/h [6]. In three-dimensional
TIs, such as strained HgTe [7,8], two-dimensional Dirac sur-
face states with linear dispersion and spin-momentum locking
arise due to relativistic corrections.

Similarly, topological superconductors have a gapped bulk
and topologically protected surface states. These surfaces
states, at zero energy, are Majorana modes which are their own
particle-hole conjugate [9,10]. Majorana modes have received
attention in the past few years [11–13] because they can form
nonlocal qubits for fault-tolerant quantum computing. The
manipulation of quantum information in such qubits becomes
possible via braiding of Majorana fermions due to their non-
Abelian braiding statistics [14]. Majorana modes occur in the
form of localized zero modes whose braiding is, however,
challenging and requires a sophisticated three-turn protocol
[15]. One-dimensional Majorana modes provide a promising
alternative for easier braiding [16]. They have been predicted
to occur in superconductor-quantum anomalous Hall systems
where they give rise to a half-integer quantization of the
electrical two-terminal conductance [17,18]. However, the
same signature occurs when the superconductor shorts oppo-
site Hall edges. Indeed the robust appearance of half-integer
quantized electrical conductances in recent experiments [19]
indicates that its observation does not provide any evidence of
chiral Majorana modes in contrast to earlier claims [20].

In this Letter, we propose phase-coherent heat transport
as an alternative method to probe the presence of one-
dimensional Majorana modes. It can overcome the issues
of electrical detection schemes because superconductors are
perfect electrical conductors but thermal insulators. Phase-
dependent, longitudinal thermal transport of a temperature-
biased Josephson junction was studied theoretically [21–26]
and observed in conventional Josephson junctions [27].
Phase-dependent thermal transport arises due to thermally
excited quasiparticles above the superconducting gap. It is
sensitive to Andreev bound states in the superconducting gap
due to a direct connection of the thermal conductance to the
local density of states. In particular, for Josephson junctions
based on TIs, the longitudinal thermal conductance exhibits a
robust minimum at a phase difference of π which is linked to
the presence of localized, zero-dimensional Majorana modes
in the junction [28–30].

Contrary to previous studies, in this Letter, we con-
sider four-terminal devices where the gradient of temperature
is applied perpendicular to the phase-dependent Joseph-
son junction. We dub transport in these devices transverse
phase-dependent thermal conductance, see Fig. 1(a). To get
signatures of Majorana states, we analyze the transverse
thermal conductance due to transport below the gap in
phase-biased Josephson junctions based on surface states of
three-dimensional TIs proximitized by s-wave superconduc-
tors (S). We predict that the transverse thermal conductance
is quantized as a half of the thermal conductance quantum
when the junction hosts one-dimensional helical Majorana
modes, while it is exponentially suppressed otherwise. The
thermal conductance quantization is very robust and per-
sists in the presence of magnetic fields as long as transport
is dominated by counterpropagating Majorana modes. For
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FIG. 1. (a) Short S-TI-S Josephson junction of width W em-
bedded in a point contact geometry to measure heat transport
perpendicular to the direction of phase bias φ. Thermal transport
is driven by a temperature difference �T between the two TI leads
and occurs via two counterpropagating modes (red and blue arrow)
in the leads and in the superconducting region. (b) Quasiparticle
transmission T given by Eq. (9) as a function of energy ε and phase
difference φ for μ = 10�0 and Z0 = π/4. For φ = π , we find per-
fect transmission while for φ �= π , the transmission is exponentially
suppressed at low energies.

trivial junctions, the phase dependence of thermal transport
is markedly different. Therefore, we conclude that transverse
heat transport offers a compelling tool to distinguish between
trivial and nontrivial junctions. Moreover, our setup is very
different from that of Refs. [31,32] where intrinsic p-wave
superconductors are considered and where chiral Majorana
modes give rise to a quantized thermal Hall effect.

II. MODEL

We consider a Josephson junction based on the surface
states of a three-dimensional topological insulator located in
the x − y plane, see Fig. 1. The junction has a width W in the y
direction. Its length L in the x direction is assumed to be short
compared to the superconducting coherence length ξ . We con-
sider the limit L/ξ → 0 for convenience but our results also
apply to short junctions of finite length as demonstrated in the
Supplemental Material [33]. The central part of the junction
contains a potential barrier of strength V0 and a Zeeman field B
pointing in an arbitrary direction. A phase bias of φ is applied
between the two superconductors which both have chemical

potential μ. The junction is embedded into a point-contact
geometry in the y direction. Thermal transport along the y
direction is driven by a temperature bias �T between the left
and the right lead which are formed by the normal surface
states of the topological insulator.

We describe transport in the y direction in terms of an
effective one-dimensional Hamiltonian

H ( p̂y) =
{

HS ( p̂y) |y| < W/2

HN ( p̂y) |y| > W/2
, (1)

where the central part of the junction is described by HS ( p̂y)
while the two leads are described by HN ( p̂y) with p̂y = −ih̄∂y

denoting the transverse momentum. The Hamiltonian HS ( p̂y)
is obtained by projecting the transverse modes of the setup
onto the two-level system formed by the two topological An-
dreev bound states (ABS) which emerge in the short S-TI-S
junction at energies below the superconducting gap �0. This
is a reasonable approximation as long as the base temperature
satisfies kBT � �0. The modes are localized in the x direction
but propagate along the y direction and can be described by

HS ( p̂y) = E0(φ)σz + vM (φ) p̂yσy + vJ (φ) p̂yσ0. (2)

The first term E0(φ)σz provides the 4π -periodic spectrum of
the two topological ABS branches for zero transverse momen-
tum. Explicitly,

E0(φ) = �0 cos(φ/2 + Zy)√
cos2(Z ) + Z2

0 sin2(Z )/Z2
, (3)

with Z2 = Z2
0 − Z2

x − Z2
z , Z0 = V0/(h̄vF) and Zx,y,z =

Bx,y,z/(h̄vF). In the absence of any Zeeman field,
E0(φ) reduces to the well-known energy spectrum
E0(φ) = �0 cos(φ/2) [34]. The second term vM (φ) p̂yσy

describes the two counterpropagating modes while the third
term vJ (φ) p̂yσ0 emerges only in the presence of a Zeeman
field along the x direction and describes a tilting of the
dispersion. Just like E0(φ), the two velocities vM (φ) and
vJ (φ) depend on the Zeeman field B and the barrier strength
V0. The explicit dependence on these parameters as well as
a detailed derivation of HS are given in the Supplemental
Material [33].

We assume that the leads support two propagating modes
which are not subject to superconductivity or any Zeeman
field. Therefore, we can model the TI leads by

HN ( p̂y) = vN p̂yσy − μN , (4)

where vN > 0 denotes the Fermi velocity in the leads and
μN takes into account a mismatch of the chemical potential
with respect to the superconducting region. As we will see
below, the thermal conductance is actually independent of μN

and vN . Furthermore, we demonstrate in the Supplemental
Material that the choice of Pauli matrices in HN does not have
any qualitative effect on our results because backscattering at
the junction is forbidden due to spin-momentum locking and
Majorana-parity conservation.

In order to calculate the thermal conductance in the y
direction, we determine the transmission T from a scattering
approach. An incoming quasiparticle from the left lead can
either be reflected with reflection amplitude r or transmitted
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to the right lead via the superconducting region with trans-
mission amplitude t . This leads to the plane-wave ansatz

	(y) =
⎧⎨⎩

ψ+ei k+y + rψ−eik−y y < −W/2
aψ̃+ei k̃+y + bψ̃−eik̃−y |y| < W/2
tψ+eik+y y > +W/2

, (5)

where ψ± and ψ̃± are the right- and left-moving scattering
states of HN and HS , respectively, for a given energy ε. They
are given by

ψ± = 1/
√

2 (1,±i)T ,

ψ̃± ∝ (±vJE0 + γ ,±ivM (ε − E0))T , (6)

where we dropped the φ dependence of E0 for brevity

and defined γ =
√

(v2
J − v2

M )E2
0 + v2

Mε2. The corresponding

wave vectors read k± = ±(ε + μL )/(h̄vL ) and k̃± = [vJε ∓
γ ]/[h̄(v2

J − v2
M )]. The conservation of quasiparticle currents

at the interfaces y = ±W/2 is ensured by the boundary condi-
tions

Ĵ+1/2
N 	(±(W/2 + 0+)) = Ĵ+1/2

S 	(±(W/2 − 0+)), (7)

where ĴN,S = ∂p̂y HN,S are the quasiparticle current operators
of the leads and the superconducting region. In the absence of
a Zeeman field in the x direction (vJ = 0), Eq. (7) reduces to
the standard continuity of the wave function. From the wave-
function matching procedure, we find t and subsequently the
transmission function T (ε, φ) = |t |2.

If the temperature bias �T is small compared to the base
temperature T , thermal transport is fully characterized by the
linear thermal conductance which is given by

κ (φ) = 1

h

∫ ∞

0
dε εT (ε, φ)

df

dT
. (8)

Here, f = [exp(ε/(kBT )) + 1]−1 denotes the equilibrium
Fermi function.

III. QUANTIZED THERMAL CONDUCTANCE

First, we focus on the setup without Zeeman field. Then,
vJ = 0 in Eq. (2) and we find

T (ε, φ) = ε2 − E2
0 (φ)

ε2 − E2
0 (φ) cos2

(
W

√
ε2−E2

0 (φ)
h̄vM (φ)

) , (9)

which is plotted in Fig. 1(b). At phase difference φ = π , we
find that the system is universally transparent T = 1 indepen-
dent of all other system parameters because of the presence
of gapless, counterpropagating Majorana modes with E0(φ =
π ) = 0. The unitary transmission can be understood directly
from a symmetry argument. For φ = π , the mass term E0σz

in HS drops out and the full Hamiltonian (1) represents a
chain of gapless helical systems. Consequently, backscatter-
ing processes are forbidden and the junction becomes fully
transparent. In contrast, the energy spectrum of HS is gapped
if we tune φ away from φ = π where a finite mass term
E0σz appears. On the one hand, this implies that quasi-
particles can be backscattered for ε > E0(φ). On the other
hand, transport is additionally suppressed by tunnel processes
for ε < E0(φ). The combination of both effects leads to a
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FIG. 2. Heat conductance κ (φ) in units of the thermal conduc-
tance quantum GQ = π 2k2

BT/(3h) in the absence of any Zeeman
field. (a) Width dependence at fixed base temperature kBT = 0.1�0.
(b) Temperature dependence at fixed width W = ξ/2. The thermal
conductance κ (φ = π ) = GQ/2 is quantized independently of the
chosen parameters. Other parameters as in Fig. 1.

strong suppression of the transmission for φ �= π . This be-
havior of the quasiparticle transmission translates directly into
the thermal conductance κ (φ) given by Eq. (8). As shown
in Fig. 2(a), κ is perfectly quantized by half the thermal
conductance quantum GQ = π2k2

BT/(3h) for φ = π and de-
creases rapidly for φ �= π . The suppression of the thermal
conductance arises in particular at low energies ε < E0(φ)
where transport is dominated by tunneling processes. In con-
sequence, the conductance peak at φ = π becomes more
pronounced as the width W of the junction in the y direction
is increased, cf. Fig. 2(a). Furthermore, Figure 2(b) illustrates
that a lower base temperature kBT reduces thermal broadening
and consequently also leads to a more pronounced peak in the
phase-dependent thermal conductance.

IV. MAGNETIC MANIPULATION

From an experimental point of view, it is highly desirable to
probe and manipulate the quantized thermal conductance by
additional parameters. Therefore, we now discuss the effect
of a Zeeman term in the center of the S-TI-S junction. Due
to the parity protection of the Majorana modes, this term
cannot remove the protected zero-energy crossing. At most,
the crossing is shifted in φ space [34,35].

The effects of a finite Zeeman field are the following: (i)
an in-plane field By in y direction only shifts the spectrum and
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FIG. 3. (a) Heat conductance κ (φ) in units of the thermal con-
ductance quantum GQ for an in-plane Zeeman field Zxy = π/5.
While a finite Zx broadens the conductance peak, a finite Zy leads
to a phase shift. The thermal conductance is quantized even in the
presence of a finite Zeeman field. The remaining parameters are
chosen as in Fig. 2 with W = ξ/2 and kBT = 0.1�0.

thus the transmission,

T (ε, φ) → T (ε, φ + 2Zy); (10)

(ii) field components in x or z direction lead to a renor-
malization of E0(φ) and vM (φ); (iii) in addition, a finite x
component of the Zeeman field also gives rise to a finite
vJ (φ) in Eq. (2). Even though vJ (φ) leads to an asymmetry
of the group velocities v ∝ ∂kyε for the left- and right-moving
modes, one finds from Eq. (7) that quasiparticle current con-
servation still ensures a transparent junction at φ + 2Zy = π

as long as transport occurs via two counterpropagating modes
which is the case for |vM | > |vJ | [33]. Consequently, κ (φ)
remains quantized even in the presence of a Zeeman field,
independent of its orientation. For illustration, Fig. 3(a) shows
the effect of an in-plane Zeeman field Zxy on the thermal
conductance peak. While the x component Zx = Zxy cos(α)
leads to a broadening of the thermal conductance peak, the y
component Zy = Zxy sin(α) shifts the peak position in φ space
according to Eq. (10).

V. COMPARISON WITH TRIVIAL JUNCTIONS

We will now show that the quantization of κ (φ) at φ = π

allows us to distinguish topological from trivial junctions. To
this end, we compare our results for the S-TI-S system to the
phase-dependent transverse thermal conductance of a short
junction based on a trivial S-N-S system without Zeeman
field. Similar to the topological case, one can derive an effec-
tive two-level Hamiltonian corresponding to a projection onto
the two ABS forming in short trivial junctions. For φ = π ,
we find that the modes which propagate parallel to the SN
interfaces can be described by

H̃S (ky) =
[

Ẽ0(φ = π ) + h̄2k2
y

2mE

]
σz. (11)

Here, Ẽ0(φ) = �0

√
1 − sin2(φ/2)/(1 + Z2

0 ) denotes the
spectrum of trivial ABS while mE is a renormalized
effective mass [33]. A key observation here is that a
simple potential barrier in the N region of the SNS
junction (giving rise to a finite Z0) leads to a gapped
system. Therefore, quasiparticle transport is exponentially
suppressed as exp[−W/(h̄vF /Ẽ0(φ = π ))] at φ = π in this
case. Consequently, the junction is no longer transparent
(T � 1 for Z0 	 1) and the thermal conductance of the
SNS system is not quantized (κ/Gq � 1/2) at φ = π . In
contrast, the S-TI-S setup is always gapless at φ = π due
to the topological protection of the Majorana modes. The
clear distinction between topologically trivial and nontrivial
junctions is a direct consequence of our geometry where
the finite width W of the Josephson junction in y direction
suppresses tunnel processes which result from the gapped
SNS spectrum.

VI. EXPERIMENTAL FEASIBILITY

We now comment on the experimental feasibility of our
proposal. Thermal conductances have by now been measured
in various nanosystems ranging from Josephson junctions [27]
over quantum Hall setups [36] to quantum dots [37]. Topo-
logical Josephson junctions have been realized in a number
of recent experiments. The induced superconducting gaps are
of the order of �0 ≈ 100 μeV [38]. At a base temperature
of T ≈ 30 mK [38] our assumption �0 	 kBT is thus well
fulfilled. For a Fermi velocity h̄vF = 250 meVnm [39], the
superconducting coherence length is ξ ≈ 2.5 μm such that
junctions with widths W ∼ ξ are experimentally accessible.
A Zeeman term can be proximity-induced by a ferromagnetic
insulator [40–42] or by an in-plane magnetic field such that
orbital effects of the magnetic field can be neglected. Using
the above parameters and a g factor of 20, we estimate that the
helical Majorana modes exist up to fields of about 1.5 T. For
large magnetic fields, the probability density of the Majorana
modes is no longer constant across the junction; instead they
become localized at opposite junction edges with a localiza-
tion length ∝ (B2

x + B2
z − μ2)−1/2.

VII. CONCLUSION

We have demonstrated that phase-coherent heat transport
provides a powerful method to probe the properties of he-
lical Majorana modes in topological Josephson junctions. In
particular, we have shown that the thermal conductance per-
pendicular to the direction of the phase bias is quantized for a
phase difference of φ = π . This is a direct consequence of the
presence of gapless Majorana modes propagating parallely to
the S-TI interface. Away from φ = π , the Majorana mode is
destroyed by broken time-reversal symmetry, a gap opens in
the spectrum and leads to an exponential suppression of ther-
mal conductance. The quantization of thermal conductance
persists even in the presence of magnetic fields and is in stark
contrast to the thermal transport properties of conventional
Josephson junctions where the conductance is suppressed at
any phase difference. The predicted effect is within the reach
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of current experimental technology, paving the way for future
phase-coherent caloritronics with Majorana modes.
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