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Antisymmetric Berry frictional force at equilibrium in the presence of spin-orbit coupling
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We analytically calculate the electronic friction tensor for a molecule near a metal surface in the case where
the electronic Hamiltonian is complex valued, e.g., the case where there is spin-orbit coupling and/or an external
magnetic field. In such a case, even at equilibrium, we show that the friction tensor is not symmetric. Instead, the
tensor is the real-valued sum of one positive definite tensor (corresponding to dissipation) plus one antisymmetric
tensor (corresponding to a Berry pseudomagnetic force). Moreover, we find that this Berry force can be much
larger than the dissipational force, suggesting the possibility of strongly spin-polarized chemicurrents or strongly
spin-dependent rate constants for systems with spin-orbit coupling.
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I. INTRODUCTION

When nuclear degrees of freedom (DOF) are allowed to
fluctuate in the presence of a continuum of electronic DOFs,
not only will the electronic wave function change at different
nuclear positions (in accordance with the Born-Oppenheimer
picture), but the nuclear wave packet will also change as it
receives feedback from the electronic DOF. In the adiabatic
limit, the electronic feedback on the nuclei is composed of
three parts: the adiabatic force Fμ, the random force operator
ζμ, and the frictional damping force. The friction tensor γμν

captures the strength of the nuclear damping force in the
μ direction as caused by nuclear motion in the ν direction
and reflects how fast electronic transitions inevitably interfere
with simple nuclear (Newtonian) motion. Mathematically, the
nuclei follow a stochastic Langevin equation [1,2] of the form

MμR̈μ = Fμ −
∑

ν

γμνṘν + ζμ, (1)

where Mμ is the mass of a nuclei and Rμ is the nuclear position
in the μ direction.

Several important general properties (and proofs) about
γμν , including the positive definiteness and the fluctuation-
dissipation theorem, are provided in the Supplemental Ma-
terial (SM) A-D [3]. Historically, electronic friction was
first considered as a first-order correction to the Born-
Oppenheimer approximation for dynamics near a metal
surface, and though there have been many separate approaches
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for calculating the electronic friction tensor [2,4–21], all agree
in the Markovian limit [2]. γμν can be divided into a sym-
metric part γ S

μν and an antisymmetric part γ A
μν . For a system

at equilibrium, γ S
μν is positive definite; this term can only

dissipate energy to the surroundings (which avoids unstable
dynamics). Such relaxation processes have been reported as
important for molecule-metal interface dynamics (scattering,
adsorption, etc.) [22–25], electron transfer within electronic
devices [26], and heating due to the phonon motion [27,28].
The diagonal component (μ = ν) can significantly change
the electron-hole pair induced vibrational lifetime [29,30],
and the off-diagonal elements of a symmetric friction tensor
(μ �= ν) can also be crucial [31,32].

We have far less experience with the antisymmetric compo-
nent of the friction tensor γ A

μν which contributes a Lorentz-like
force. Within the chemical physics condensed matter commu-
nity, the usual assumption is that γ A

μν = 0 at equilibrium. That
being said, for a strictly real-valued Hamiltonian describing
a typical molecule on a typical metal, von Oppen and oth-
ers [16,17] have demonstrated that γ A

μν �= 0 when molecules
are in contact with two metals that are out of equilibrium
(i.e., with a current).

Now, within the description above [16,17], there has
been the assumption of a strictly real-valued Hamiltonian.
However, for molecule-metal interfaces or for surface het-
erostructures, due to the short electron screening length of
a metal, the effective electric field gradient on the sur-
face should lead to strong Rashba spin-orbit coupling [33].
Furthermore, a built-in molecular spin-orbit coupling can
be enhanced due to molecular geometry, i.e., molecules
with large curvature or torsion in geometry are believed to
have larger spin-orbit coupling [34,35]. For these reasons, a
complex-valued Hamiltonian may be quite relevant. Moreover,
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Robbins and Berry have demonstrated that antisymmetric
(Berry) forces may appear if the Hamiltonian is complex
valued [36]. Exact scattering calculations have shown that,
for a closed model complex-valued Hamiltonian, the resulting
Berry force effects can be large and strongly affect electron
transfer processes [37].

Where does this leave us as far as understanding the molec-
ular dynamics near a metal surface? For the most part, a
molecule on a metal surface is occupied by a fractional num-
ber of electrons; as electrons are shared between a molecule
and metal, the molecular nuclei will feel different forces de-
pending on the fluctuating electronic charge state. While such
fluctuations are known to lead to fast vibrational relaxation
of a diatomic on a metal surface [23] through the symmetric
tensor, one can ask the following question: Does a significant
nonzero antisymmetric friction tensor (i.e., a pseudomag-
netic field) also appear when we consider a complex-valued
Hamiltonian describing a molecule near a metal surface in
equilibrium? Note that, except for a few analogous examples
in the realm of spintronics [38], to date, the effect of a mag-
netic field or spin-orbit coupling has been ignored in friction
tensor calculations (even though γμν is general). Note also that
Ref. [39] predicts that a huge Berry force can be generated for
an isolated molecular system near a sharp avoided crossing in
the presence of spin-orbit coupling. One must wonder whether
such a huge Berry force will still exist when one considers a
molecule strongly coupled to a metal surface.

Below, we will address these questions. In particular, we
will show that (i) as for the case of an isolated molecular sys-
tem, a Berry force exists whenever a molecular system with a
complex-valued Hamiltonian is coupled to a bath (regardless
of whether or not the total system is in equilibrium). (ii)
Unlike the case of an isolated molecular system, the strength
of the Berry force does not require a tiny energy gap (i.e.,
a sharp avoided crossing) to achieve a large Berry force (in
fact, an energy gap is necessary). (iii) γ A

αν is comparable or
can even be one order of magnitude larger than γ S

μν and thus
affects the experimental observable. These facts suggest that
nuclear motion at surfaces should promote a certain flavor
of electronic spin selectivity, e.g., perhaps spin selectivity in
transport with chiral molecules.

II. MODEL SYSTEM

We consider a model in which a two-level system is
coupled to two leads and the two-level system depends on
two-dimensional nuclear DOF. While there is an immense
amount known about the (symmetric) friction tensor that
arises for a resonant level model [17,40], results or intuition
still need to be derived for the antisymmetric friction tensor
even in the case of a two-level model at equilibrium.

Here, we will derive the friction tensor analytically. The to-
tal electronic Hamiltonian Ĥ is divided into three components,
the system Ĥs, the bath Ĥb, and the system-bath coupling Ĥc:

Ĥ = Ĥs + Ĥb + Ĥsb, Ĥs =
∑
mn

hs
mn(R)b̂†

mb̂n + U (R),

Ĥb =
∑
kα

εkα ĉ†
kα

ĉkα, Ĥc =
∑
m,kα

Vm,kα b̂†
mĉkα + H.c.

Above, m, n label system orbitals, and b̂†
m (b̂m) creates (anni-

hilates) an electron in the system orbital m. ĉ†
kα

(ĉkα) creates
(annihilates) an electron in the kth orbital of a lead α. Note
that, for the sake of generality, all expressions below will
be derived for the case of two electronic leads; α = L, R
indicates left and right leads. If we set the Fermi levels μα

of both leads to be equal, μL = μR, there is no difference
between having one lead (with 2N orbitals) or two leads (with
N orbitals). hs

mn is the molecular electronic Hamiltonian that
depends explicitly on R, the molecular nuclear DOFs, and we
know that this dependence on R leads to a symmetric friction
tensor [2]. U (R) is a purely nuclear potential energy. Vm,kα

represents the tunneling element between the system orbital
m and the lead orbital kα, which we assume independent of
R (the so-called Condon approximation). Within this model,
the most general system Hamiltonian can be written in Pauli
matrices representation (σi [41]) as

hs = h(x, y) · σ =
∑

i=1,2,3

hi(x, y)σi,

where {hi} is real. Note that the inclusion of h2 makes the
Hamiltonian possibly complex valued, as might arise from an
external magnetic field or spin-orbit coupling.

If we now evaluate γμν for the case of noninteracting
electrons (following Ref. [42]; h̄ = 1), we find that the (exact)
final results are (see SM A [3])

γμν =
∫

dε

2π
Tr{∂μhs∂εGR∂νhsG<} + H.c., (2)

where GR = (ε − hs − 
R)−1 is the (two-level) system re-
tarded Green’s function, 
R

mn = ∑
kα Vm,kαgR

kαV ∗
n,kα is the

system self-energy, and gR
kα = (ε − εkα + iη)−1 is the lead

retarded self-energy (η → 0+). G< is the system lesser
Green’s function and, provided that an imaginary surround-
ing is quadratic [42] or the system spectral broadening
due to the leads is finite [43], G< can be calculated
by the Keldysh equation, G< = GR
<GA. Here, 
<

mn =∑
kα Vm,kαg<

kαV ∗
n,kα is the system lesser self-energy, and

g<
kα (ε) = i2π fα (ε)δ(ε − εkα ) is the lead lesser Green’s func-

tion. ( f (ε) = 1/{exp [β(ε − μ)] + 1} is the Fermi-Dirac dis-
tribution with the inverse temperature β and the chemical
potential μ.)

We further make the following standard assump-
tions [44]: (i) The tunneling-width matrix �mn =
2π

∑
kα Vm,kαV ∗

n,kαδ(ε − εkα ) is independent of ε (i.e., the
wideband limit approximation), (ii) �mn = �̃ is a constant,
(iii) the tunneling elements Vm,kα are independent of k,
and (iv) the left lead couples only to orbital 1 and the
right lead couples only to orbital 2, with the two coupling
constants the same real value. Therefore, 
R = − i

2 �̃, and

< = i�̃( fL 0; 0 fR), where fL and fR are the Fermi-Dirac
distributions of the left and right leads, respectively. Please
see SM E for a schematic picture (equilibrium case) [3].

A calculation (see SM F [3]) shows that the friction tensor
[from Eq. (2)] is

γμν = γ S
μν + γ A

μν, (3)
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γ S
μν = 2

π

∫ ∞

−∞
dε{− 2 Re{Cε̃}(∂μh · ∂νh)(h · κ)

+ 2 Re{Cε̃}(∂μh · h)(∂νh · κ)

+ 2 Re{Cε̃}(∂νh · h)(∂μh · κ)

+ κ0 Re{C(ε̃2 + h2)}∂μh · ∂νh}, (4)

γ A
μν = 2

π

∫ ∞

−∞
dε{− Im{C(ε̃2 + h2)}κ · (∂μh × ∂νh)

+ 2κ0 Im{Cε̃}h · (∂μh × ∂νh)}. (5)

Here,

C ≡ −
(

1

ε̃2 − h2

)2

i�̃

∣∣∣∣ 1

ε̃2 − h2

2∣∣∣∣,
where ε̃ = ε + i�̃/2 is a complex number, and h2 = h · h.
The κ’s are defined as

κ0 = 1
2

[
( fL+ fR)

(
h2

1+ h2
2

)+ fL|ε̃ + h3
2| + fR|ε̃− h3|2

]
,

κ1 = Re{[ fL(ε̃∗ + h3) + fR(ε̃ − h3)](h1 + ih2)},
κ2 = Im{[ fL(ε̃∗ + h3) + fR(ε̃ − h3)](h1 + ih2)},
κ3 = 1

2

[
( fR− fL)

(
h2

1+ h2
2

)+ fL|ε̃ + h3
2| − fR|ε̃− h3|2

]
.

Note that κ0 and κ = (κ1, κ2, κ3) are real functions. When the
total system is in equilibrium, namely fL = fR = f ,

κ0 = f

(
ε2 + h2 + �2

4

)
, (6)

κ = 2 f εh. (7)

Equations (3)–(5) represent a very general electronic friction
tensor for a minimal model of a molecule near metal surfaces
in the presence of spin-orbit coupling.

III. RESULTS AND DISCUSSIONS

According to Eq. (3) we can make two important and
general conclusions regarding Berry forces for a molecule at
equilibrium near a metal surface. First, according to Eqs. (5)
and (6), γ A

μν is proportional to h · (∂μh × ∂νh). Therefore, γ A
μν

will vanish when at least one element of h is zero, or when
two elements of h are the same. These facts demonstrate not
only that an imaginary off-diagonal coupling (h2) is required
for a nonzero γ A

μν , but also that the key source of a nonzero γ A
μν

is the spatial dependence of the phase of the off-diagonal cou-
pling, tan−1 (h2/h1). After all, if h1 = 0 or h1(x, y) = h2(x, y),
we can find a constant change of basis transformation that
guarantees a globally real-valued Hamiltonian and therefore
γ A

μν = 0. In other words, in such a case, there is no Lorentz-
like force.

Second, according to Eqs. (3)–(7), one can construct
several nonequivalent Hamiltonians that generate equivalent
friction tensors. To see this, note that, when the system is
in equilibrium, the symmetric terms in Eq. (3) all have a
dot product dependence on h, namely h2,

∑
i ∂μhi∂νhi, and∑

i ∂μhihi. Thus, the symmetric terms are invariant to any
permutation of h = {h1, h2, h3}. Moreover, the two terms
comprising γ A

μν depend on h · (∂μh × ∂νh), which are also
invariant under cyclic permutation of the h elements. Thus,
different Hamiltonians can generate the same friction tensor

FIG. 1. Friction tensor calculation results: γxx (top left), γ S
xy (top

right), γ A
xy (bottom left), and γyy (bottom right). Parameters: �̃ = 1,

μR = μL = 0, β = 2, A = 1, B = 1, � = 3. Notice that all the re-
sults have mirror symmetry about x = −1.5 = −�/(A2 + 1) and
y = 0, because all six terms in Eqs. (4) and (5) are functions of
[x + �/(A2 + 1)]2 and B2y2 when the system is in equilibrium.

and, as a practical matter, this must have experimental con-
sequences as some Hamiltonians are undoubtedly easier to
realize than others. For example, in Eq. (8) we will consider a
model Hamiltonian with diagonal coupling h3 = x + �; here,
as in standard Marcus theory, � is a driving force that will be
shown to play an important role in generating a large antisym-
metric friction tensor. Nevertheless, if one imagines permut-
ing the h elements by substituting h1 → h3 → h2, then the
parameter � will enter on the off-diagonal of the Hamiltonian
and can be realized, e.g., by tuning an external magnetic field.

These are the only direct, general conclusions we can make
from Eqs. (3)–(7). Next, let us focus on a model problem
which can yield further insight using a numerical analysis. We
imagine the standard case of two shifted parabolas, expressed
in a nuclear space with two dimensions and with a driving
force of 2�. Mathematically, the system Hamiltonian is taken
to be of the form

hs =
(

x + � Ax − iBy
Ax + iBy −x − �

)
, (8)

and U = x2/2 + y2/2 + 1/2. We calculate the electronic fric-
tion tensor by using Eq. (3). Note that the purely nuclear
potential U does not contribute to the friction tensor. Recall
that γ A

μν ∝ hs · (∂μhs × ∂νhs) = AB�. Thus, as argued above,
if there is no change in the phase of the off-diagonal cou-
pling (A = 0 or B = 0) in the nuclear space, we will find
that γ A

xy = 0. Also notice that when the driving force � = 0,
again γ A

μν = 0. Beyond these two extreme cases, we will find
both symmetric and antisymmetric components of the friction
tensor.

In Fig. 1, we show contour plots for the friction tensor
with β = 2, A = B = 1. Here, A = B corresponds to a strong
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FIG. 2. Friction tensor calculation results (only γxx and γ A
xy are

shown). Parameters for (a) and (b) are �̃ = 1, μR = μL = 0, β = 2,
A = 0.05, B = 1, � = 3; (c) and (d) have the same parameters as
(a) and (b), except that A = 0.01.

change of phase in the off-diagonal coupling. Several features
are clear from the contour plot. First, the antisymmetric
friction tensor γ A

xy is one order larger than all other symmetric
friction tensors. Thus, clearly Lorentz-like motion can be as
important as any dissipative process. Second, the magnitude
of γ A

xy is maximized around the avoided crossing at (−1.5, 0),
but for each component of the symmetric friction tensor,
the magnitude is maximized far from the avoided crossing.
Therefore, depending on the preparation of the initial nuclear
wave packet, one might imagine that slow nuclei will
equilibrate before feeling any Lorentz-like force. That being
said, the exact details for any calculation must be evaluated
on a case-by-case basis.

In Fig. 2, we further investigate how the relative strength
of the antisymmetric friction tensor changes as a function of
how the off-diagonal coupling changes phase. Here, we keep
the same parameters as in Fig. 1, except we change A. In
Figs. 2(a) and 2(b), we set A = 0.05 and find that the anti-
symmetric friction tensor γ A

xy has the same order of magnitude
as the symmetric friction tensors. In Figs. 2(c) and 2(d), we
reduce A so that A = 0.01; we find the antisymmetric friction
tensor approaches zero rapidly. We conclude that whenever
one considers an external magnetic field or/and spin-orbit
coupling with reasonable changes for the phase (here larger
than 5%) in the nuclear space, we cannot ignore the effect
of the antisymmetric friction tensor. We have also performed
several ab initio calculations so as to extract parameters for a
real system—a diphenylmethane junction (see SM J [3]). The
results are consistent with the conclusion above—even when
spin-orbit coupling is small, γ A

xy can still be dominant.
Lastly, before concluding, we summarize a few results

that are addressed in the SM. First, we investigate the de-
pendence of γ S and γA on β and �̃ in SM H and SM I
respectively [3]. We find that the relative strength of γ A

xy grows

stronger for lower temperatures. Also, when the system-bath
coupling strength �̃ grows very large, both the symmet-
ric and antisymmetric friction tensors become smaller and
these tensors are nonzero over an effectively smaller por-
tion of nuclear configuration space. Second, while we have
considered an avoided crossing above, in SM G we inves-
tigate true complex-valued conical intersections [3]. There,
we show that the dynamical effect of a pseudomagnetic field
in the direct vicinity of a true conical intersection is likely
not very large. Third, and most importantly, throughout this
Letter, we have focused mostly on the magnitude of the
antisymmetric friction tensor. Note that, in a basis of spin
orbitals, switching spin-up and spin-down orbitals will swap
h2 and −h2 and lead to different signs of γ A

μν . Thus, differ-
ent spins will feel different directions of the Lorentz force
and the present formalism may underlie spin selectivity for
molecular processes near the metal surfaces [45–47]. As a
practical matter if we were to construct an overall electronic
friction tensor for the case of a system with multiple spin
degrees of freedom, such a tensor would be meaningful only
when the spin degrees of freedom interconvert rapidly, so
that nuclear motion remains the slowest process of inter-
est; alternatively, one would require separate friction tensors
(one for up spin, and one for down spin) as in the present
Letter.

IV. CONCLUSIONS AND OUTLOOK

We have demonstrated that a large Lorentz force can oper-
ate on nuclei in equilibrium for systems with complex-valued
Hamiltonians. For a simple model of two shifted parabolas,
with spin-orbit coupling, according to an analytic expression
for the friction tensor, the magnitudes of the relevant frictional
components (γ S

μν and γ A
μν) can be controlled by tuning the

driving force � and the inverse temperature β. The antisym-
metric part can be one order larger than the symmetric part for
low temperatures. Moreover, γ A

μν and γ S
μν can be of compara-

ble magnitude even when the phase change of the off-diagonal
coupling is very small. All of these results show that, for any
relaxation processes with an external magnetic field or/and
spin-orbit coupling, careful consideration of a Lorentz force
due to the nuclear Berry curvature is necessary. We have also
provided ab initio calculations of a diphenylmethane junction,
showing the same conclusions as above.

Looking forward, one can imagine two scenarios whereby
the antisymmetric nature of γμν will be paramount. First,
if one scatters a molecule off a surface in the presence of
spin-orbit coupling, there is the real possibility that the pres-
ence of γ A

μν will contribute meaningfully to a spin-polarized
chemicurrent. Second, there is a deep question about whether
the Lorentz force described here can help explain spin se-
lectivity as found in chiral-induced spin selectivity (CISS)
experiments [45–47]. In other words, if nuclear wave packets
attached to different spins feel different forces, might not
one consequence of such a difference be a spin-polarized
current through a system where nuclei and electrons interact?
Such a claim might be verified experimentally by the pres-
ence of an isotopic CISS effect. Finally, from a theoretical
point of view, note that a recent paper has argued empirically
that, for a molecule in the gas phase, the Lorentz force is
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accentuated dynamically when the molecule passes near a
conical intersection that is slightly modified by spin-orbit cou-
pling [39]. For our part, we find a similar result near a metal
surface, i.e., the effect of the Lorentz force is maximized if
Ĥs admits an energy gap rather than displaying a true conical
intersection. In fact, according to Eq. (5), the antisymmetric
part of the friction tensor is zero if one considers a gapless
two-dimensional linear vibronic complex-valued Hamiltonian
(see SM G [3]) [48].

Finally, in this Letter we have analyzed the antisymmetric
friction tensor that appears at equilibrium (with spin-orbit
coupling). At the same time, a set of recent calculations has
shown that a Berry force also appears when a molecule is
placed between two leads out of equilibrium (without spin-
orbit coupling) [16,17]. To that end, the question remains as
to what is the relationship between the equilibrium Lorentz

force analyzed here (derived in the case of a complex-valued
Hamiltonian) and the previously published nonequilibrium
Lorentz forces (derived in the case of real-valued Hamilto-
nian) [8,17]. One can ask the following: Can the two Lorentz
forces add to each other constructively? Can the forces be
controlled individually by the properties of two leads? The
present approach opens up the door to merge spintronics and
nonadiabatic dynamics for an accurate description of spin-
dependent current-induced forces.
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