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Biasing topological charge injection in topological matter
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We explore the interplay between topologies in the momentum and real spaces to formulate a thermodynamic
description of nonequilibrium injection of topological charges under external bias. We show that the edge modes
engendered by the momentum-space topology can play a functional role of connecting the external reservoirs to
the bulk transport of topological charges in the real space. We illustrate our general results with two examples:
the spin-torque injection of skyrmions in an electrically biased integer quantum Hall system, and the vortex
injection in a topological p + i p superconductor coupled to heat reservoirs. Based on the universal fractional
entropy of the Majorana zero modes bound to the vortices, their controllable injection proposed in this work
could provide a route for creating and manipulating Majorana fermions.

DOI: 10.1103/PhysRevB.104.L201401

Introduction. Topology is ubiquitous. In condensed mat-
ter, topology provides a description for knotted structures of
quasiparticle bands in the momentum space, as well as various
real-space defect configurations in ordered media. Moreover,
the two often coexist. For example, the interplay between
Weyl electrons and magnetic vortices has attracted much at-
tention in the recently discovered family of magnetic Weyl
semimetals. The new tool of magnetic topological quantum
chemistry will certainly reveal more materials with coexisting
band topology and magnetic order, where magnetic defects
also naturally dwell. Such systems may exhibit new transport
phenomena with applications in electronics and spintronics.

In this article, we study the interplay between real-
and momentum-space topologies in two-dimensional gapped
topological phases of matter hosting pointlike topological
defects in the real space. These defects carry quantized topo-
logical charges defined by the homotopy mapping of the
order-parameter fields [1]. Obeying the topological conserva-
tion law, the flow of topological charges can be particularly
robust, enabling long-distance transport useful for informa-
tion transmission [2]. The bulk band topology dictates the
existence of gapless modes localized at the edges, accord-
ing to the bulk-boundary correspondence [3,4]. We suggest
a general functional aspect of topological media in addition
to their bulk-edge transport. The gapless edges, when biased
by external sources, can serve as interconnects for controlling
the bulk topological charges. We illustrate this idea with two
examples: an integer quantum Hall semiconductor and a two-
dimensional topological p + i p superconductor.

The bulk of the integer quantum Hall state at filling factor
ν = 1 is an insulating ferromagnet, if we neglect the Zeeman
energy. Its lowest-lying charged excitation is a skyrmion [5],
which is a real-space topological spin texture. In response to
an electrical bias, the chiral edge mode develops a ballistic
current. This scenario is geometrically analogous to running
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an electric current through a metal in contact with a thin film
of magnetic insulator, which results in skyrmion pumping
into the magnet [6]. In the quantum Hall system, we reduce
the Ohmic energy loss in generating the skyrmion current by
exploiting the otherwise dissipationless edge mode.

In general, depending on the transport aspects of the edge
modes, we can also utilize other means of biasing instead
of an electric voltage. Thermal bias can be generally appli-
cable to different topological systems with heat conducting
edges, which we explore with our second example. The
two-dimensional topological p + i p superconductor supports
chiral Majorana edge states. As a manifestion of the interplay
between momentum- and real-space topology, a Majorana
zero mode (MZM) arises as a bound state in a vortex ex-
citation of the superconducting phase [7]. We show in this
case that the edge in contact with an external heat source
can facilitate the injection of vortices and their associated
Majorana modes into the bulk. This could potentially provide
a method for controllable creation and manipulation of Majo-
rana fermions, for the purpose of quantum computing [8].

In both cases, the edge does work on the bulk dynamics
and thus becomes dissipative. This is usually undesirable for
being detrimental to the quantized transport properties. In
systems with both momentum- and real-space topology, how-
ever, we point to the possibility of utilizing this interplay to
create and manipulate topological charges, such as skyrmions
and vortices, which are promising candidates proposed for
future spintronic and quantum devices for information stor-
age and processing [9]. We also discuss the thermodynamic
description of the facilitated defect nucleation in general, as a
nonequilibrium process.

Stimulated nucleation of topological charges. We focus
on the real-space topology in this section and consider the
thermally activated nucleation of dilute topological charges
at the boundaries, which thereafter enter the bulk as stable
particlelike objects protected by topology. Let us write the net
topological charge flux injected into the bulk as J = γ − ργ̄ ,
taking into account the nucleation rate γ , and the escape rate
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γ̄ per unit charge density ρ. If in thermal equilibrium J = 0,
the ratio γ /γ̄ is given by the equilibrium charge density,

ρ0 ∝ e−βF0 , (1)

which is controlled by the Boltzmann factor with F0 � kBT
being the free energy needed to create a unit of topological
charge and β = 1/kBT at temperature T .

We now take the system out of equilibrium by coupling
it to an external energy source. If a free energy kick could
be provided accompanying the nucleation of the topological
charges, the thermal excitation of them would become more
likely. For example, if a certain amount of work is done on
the bulk order-parameter dynamics associated with the nu-
cleation, a chemical potential μ can be defined locally as the
work done per unit charge, which shifts the energy exponent
to e−β(F0−μ) in the Boltzmann factor (1). The ratio between
the nucleation and escape rates is therefore enhanced by the
fugacity:

R ≡ γ

γ̄
= ρ0eβμ, (2)

yielding a nonvanishing J and a locally increasing ρ. A den-
sity gradient then develops across the bulk and drives the
injected topological charges into diffusion. When they ar-
rive at another unbiased edge, they are allowed to annihilate,
triggering an Onsager-reciprocal pumping process. Therefore,
instead of reaching an equilibrium with a uniformly shifted
charge density, the system eventually reaches an inhomoge-
neous steady state with a finite topological charge current J in
the bulk. In the linear-response regime, J ∝ μ/kBT .

An alternative way to provide a thermodynamic kick is
through a thermal bias, when there is a fixed entropy change
�S associated with the injection of a topological charge. We
assume the local temperature at the edge is Tr in contact
with an external thermal reservoir, higher than the reference
(typically phononic) temperature T in the bulk. To see the
nucleation of topological charges is favored in this situation,
we consider a charge passing into the bulk from the edge
adiabatically. The amount of heat taken from the edge during
this process should be Tr�S, which goes into the work W on
the topological charge. Therefore, we have

R = ρ0eδT �S/kBT , (3)

suggesting that the nucleation is favored if δT ≡ Tr − T > 0,
where the excitation gap F0 that controls ρ0 remains un-
changed. In the reaction theory, this way to bias the reaction
rate is known as the Erying equation, which provides an
approach to measure the entropy change [10]. Similar to the
discussion above, the stimulated injection results in a topolog-
ical charge current in the bulk J ∝ (�S/kB)δT/T in the steady
state.

In the two detailed examples to follow, we show how the
edge modes engendered by the momentum-space topology
can effectively induce the abovementioned chemical potential
μ or the entropy change �S under a nonequilibrium bias.
In this way, the edge modes play the role of connecting the
external sources to the bulk transport.

The quantum Hall system. We first test our idea with the
ν = 1 integer quantum Hall system by reproducing some of
its well-known transport properties. To this end, we consider

FIG. 1. Skyrmion injection in quantum Hall system with a 2D
strip geometry where the left edge is kept at a constant bias voltage V .
Such a setup facilitates a transport of electric charge e per skyrmion
across the bulk, as shown in the insets. At the right edge, the current
is induced by the outflow of skyrmions.

a quantum Hall strip in contact with a source electrode held at
voltage V , and a grounded drain electrode. See Fig. 1. The
left edge state flowing out of the source electrode carries
the Hall current. When the entire edge is equilibrated with
the voltage V of the charge reservoir, the Hall conductance is
exactly quantized to σH = e2/h and the current j = V σH ŷ is
dissipationless.

In the bulk, exchange interactions between the electron
spins lead to ferromagnetism with a vectorial order parame-
ter n, where skyrmion excitations are characterized by their
topological charge,

q = 1

4π

∫
d2r n · (∂xn × ∂yn). (4)

We therefore consider the following dissipation channel.
The spin-polarized electric current j along the edge exerts
a spin-transfer torque on the ferromagnetic order parameter
[11,12],

τ = − h

4πe
(j · ∇ )n. (5)

In the presence of spin dynamics, this torque performs work
[6],

W =
∫

d�dt ṅ · τ × n = h

e

∫
d�dt ẑ · (J × j) = h

e
j�q,

(6)
where J = −(1/4π )[(ẑ × ∇ )n × ṅ] · n is the skyrmion cur-
rent density, and the integral is taken along the edge.

This defines a local chemical potential for the skyrmions
μ = δW/δq = (h/e) j. Substituting in j = V (e2/h), we ob-
tain μ = eV > 0, which is precisely the local electrochemical
potential provided by the charge reservoir. As expected, each
skyrmion, as the lowest-lying charged excitation in the quan-
tum Hall system, carries one electron charge [5].
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FIG. 2. Schematic of a topological superconductor at a temper-
ature T whose edge is coupled to a heat reservoir at temperature
Tr = T + δT . The thermal bias instigates an entropy flow carried by
the MZMs, which are bound to the vortex core.

The work done by the edge current facilitates the skyrmion
nucleation, as described by Eq. (2),

R = ρ0eβeV . (7)

The injected skyrmion current in the bulk can be described by
a combination of the density-driven diffusion and the trans-
verse gyrotropic motion due to its nonzero topological charge
[6,13]. At the opposite edge of the strip, according to the
Onsager reciprocity, the spin dynamics associated with the
skyrmion annihilation induces an electromotive field [14],

E = − h

4πe
(∇n × ṅ) · n, (8)

which drives the current,

j̃ = e2

h

∫
d� · E = eq̇. (9)

Again recalling each topological charge corresponds to one
electron charge e, the skyrmion transport infers a partially
charge-conductive bulk. This reproduces the standard picture
for the integer quantum Hall leakage at finite temperatures.
The quantization breaks down as the injected skyrmion cur-
rent is nonvanishing even in the macroscopic limit. The
electric leakage (and the associated backflow) is governed
by skyrmion diffusion [6], whose impedance scales with the
strip width. From our perspective, using the edge mode as
an interconnect, we can effectively tune the skyrmion charge
current in the quantum Hall bulk by an external electric charge
reservoir. More complex multiterminal circuits therefore can
potentially be utilized for skyrmion manipulations.

Topological p + i p superconductor. As a second example,
we consider vortex injection into a two-dimensional topo-
logical p + i p superconductor, assuming spinless electrons
and ordinary vortices with quantized flux hc/2e (see Fig. 2).
Realization of such a topological phase has been proposed in
various heterostructures [15–18].

Here, the edge states due to the momentum-space topology
are gapless (for a thermodynamically large system) chiral
Majorana states. While electric bias is no longer a practical
option for these charge-neutral edge states, they are amenable

to thermal bias. As we will show in the following, the Majo-
rana edge states can mediate an entropically favored injection
of vortices. This is made possible by the presence of the
Majorana bound states in the vortex cores. For a vortex far
away from the edges, the energy spectrum of the bound states
is roughly given by En ∼ (�2/EF )|n| [7,19], where � is the
superconducting pair potential in the bulk, EF is the Fermi
energy, and n takes integer values. There exists one MZM,
separated from the first excited level by the minigap ω0 =
�2/EF .

We set the system at a low temperature kBT � ω0 � �,
such that the excitation of either Andreev bound states in vor-
tices or Bogoliubov quasiparticles in the bulk is negligible. In
this setting, consider the adiabatic injection of a single vortex
from the edge. After the injection, the MZM bound to the
vortex core contributes an entropy increase �S = (1/2)kB ln 2
to the bulk, which is the universal fractional entropy of an
MZM [20].

Microscopically, the entropy increase in our scheme can
be captured by a simple impurity model, where an MZM is
coupled to the chiral Majorana edge mode. Within the energy
window of thermal fluctuations, we can safely treat the edge
mode as linearly dispersing, with a constant density of state
ν0 ∝ 1/� [21]. We consider the hybridization of the MZM
and the edge mode via a local hopping interaction t , which
leads to the MZM density of states in the Breit-Wigner form:

ν(ω) = 1

π



ω2 + 2
, (10)

where the hybridization energy  = πν0t2. The entropy
contribution can then be evaluated using SM = −∂FM/∂T
with the free energy FM = −(1/β )

∫ ∞
0 dω ν(ω) ln[1 +

exp(−βω)]. Note that the integral is taken only over positive
energies. Since the hopping amplitude t is dependent on the
distance of the vortex from the edge d [22], the injection
process effectively tunes the hybridization energy  from
a large value at d � ξ to infinitesimal at d � ξ , where
ξ is the coherence length of the superconductor. In these
two limits we have, respectively, SM (β � 1) → 0 and
SM (β � 1) → (1/2)kB ln 2, which gives the entropy
increase �S. We focus on the effects due to the Majorana
states here, neglecting other generic contributions to the
entropy, such as the positional configuration of the vortices.

We now turn on the thermal bias by coupling the edge
to an external heat reservoir at a slightly higher temperature
Tr = T + δT , shown in Fig. 2, assuming the thermalization
between the edge and the bulk due to electron-phonon cou-
pling is relatively slow. Associated with nucleation of each
vortex, an MZM at temperature Tr is injected into the bulk,
delivering an energy transfer Tr�S. This heat transfer from
the Majorana edge into vortex motion is closely analogous to
the heat extraction by the adiabatic demagnetization cooling
[23]. For this thermally biased topological superconductor,
the tuning parameter that enables the energy transfer is the
hybridization energy between the MZM and the edge mode
during the vortex injection, as discussed above. We therefore
emphasize again on the functionality of the edge mode as an
interconnect between the heat reservoir and the bulk, which
is essential in realizing the facilitated injection of topological
charges.
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The energy transfer Tr�S, compared with that in the equi-
librium T �S, can effectively lower the energy barrier for
vortex injection. The raised ratio between the nucleation and
escape rates is

R = ρ0e[(1/2) ln 2]δT/T = ρ02δT/2T , (11)

as given by Eq. (3). Taking a double-log plot of the vor-
tex injection rate versus δT/T , we obtain a linear function
with the slope governed by the universal fractional entropy
of an MZM. This feature could be measured in experiments
to detect topological phases in superconductors. Our thermal
biasing scheme via the edge states could also be explored to
generate a controllable current of MZM for braiding purposes,
etc.

Discussion. Our perspective has focused on the inter-
play between momentum- and real-space topologies, leaving
out of the picture various other dissipation channels for the
edge states, and the rich dynamical effects of the topological
charges themselves, which generally exist in systems with
or without momentum-space topology. In the following, we
examine the experimental relevance of our perspective.

In order to study the Majorana vortex transport that is
affected by the MZM core state, a superconductor with a
large minigap is required to isolate MZMs from other midgap
states. Moreover, a superconductor with a short superconduct-
ing coherence length ξ can potentially reduce vortex pinning
by impurity and disorder in the bulk. At low temperatures,
the electron interaction with dilute thermal phonons leads
to the broadening of the Majorana bound state, which is
exponential with � [24], i.e., ∼exp[−�/kBT ], and hence
unimportant in the regime of interest, T � Tc. For example,
the topological superconductor (Li1−xFex)OHFeSe [25] with
a small coherence length ξ 
 1.4 nm, high Tc (42 K), and
a large superconducting gap 2� 
 20 meV, can be robust
against temperature fluctuations, which may be an attractive
test bed for our perspective. The small Fermi energy of the
superconductor EF 
 50–60 meV, leads to a relatively large
minigap ω0 
 1 meV, which unambiguously separates MZM
from other low-lying core states and impurity effects at T =
0.4 K and magnetic field of 10 T [25].

It is clear that in practice, one has to take into account
nonuniversal properties such as contamination from impurity
states and sample geometry. For example, the vortex-entry
energy barrier in an ordinary type-II superconductor can vary
with sample size and geometry [26], which are measured
through their effects on the hysteresis of the magnetization
curves [27,28]. This suggests a simple route for exploring
macroscopic signatures of the underlying quantum statistics in
driven collective vortex dynamics through nontrivial geome-
tries. In particular, to have a more precise control over the
nucleation of vortices, one can tailor the edge geometry and
the applied magnetic field to harness the vortex entry barrier.

In addition, the vortex motion is often accompanied by
the spectral flow of the fermionic states bound to its core
[29], which could affect the thermal transport [30]. Here, we
consider weak bias at the boundary and thus slow (quasistatic)
vortex dynamics. In this limit, dynamical effects such as the
spectral flow of states above the minigap in the vortex core
should not significantly change our conclusions [31]. With the
excitation of antivortices suppressed by an external magnetic

field, only one species of vortices is assumed. We have also
neglected the possible interactions between vortices, which
may be justified since the Majorana tunneling is exponentially
suppressed as a function of the distance between vortices [22].
Depending on the global geometry, we may also need to keep
track of the winding superflow built up due to vortex flow and
the backaction by the associated free energy [32].

The advantage of considering the topological aspects is that
the quantities of interest are “quantized,” such as the chemical
potential of skyrmions in the quantum Hall example, and the
entropy per MZM in the topological superconductor example.
A half-quantized entropy change was recently proposed to
be measurable as the fingerprint signature of an MZM by
coupling it to a metallic lead [33]. Here, having these definite
quantities could enable us to effectively control the biased
injection of topological charges. Furthermore, the nucleation
time scale of the vortices that bind an MZM is exponen-
tially affected by entropic effects, 1/R = (1/ρ0)2−δT/2T . This
serves as an example of enthalpy-entropy compensation, or
the Meyer-Neldel rule [34,35] for topological charge nucle-
ation.

Since energy transfer, either in work or heat, is af-
fected by noise in the leads and the order parameter
variations, it may fluctuate between different realizations
of the nucleation process. Fortunately, taking such fluc-
tuations into consideration, our formalism still applies
thanks to the well-established Jarzynski equality [36]. In-
stead of defining a chemical potential through the averaged
work 〈W 〉, we can think of the average of the expo-
nentiated work 〈e−βW 〉 = e−β�F . The equality holds for
nonequilibrium states, as well as in the presence of strong
system-environment coupling [37]. The biasing effects of
�F can then be discussed similarly to what we have
shown.

The examples we have discussed are based on the well-
ordered phase of the bulk. Strong thermal fluctuations, on the
other hand, can sometimes be more favorable for the injection
of topological charges [38], with easily activated dynamics of
the order parameters. For an understanding near the critical
temperature, a dynamic critical theory is needed with stochas-
tic terms and nonequilibrium drive [39], which is interesting
for future studies. We remark that ν = 1 integer quantum
Hall bilayer is another experimental platform for skyrmionic
pseudospin textures, as well as vortex injection (due to the
easy-plane anisotropy) [40].

In this work, we have presented a framework to trigger
and control bulk transport of topological charge by thermody-
namic biasing at the edges, which is governed by the universal
properties of the topological charges. Along with the discov-
ery of more topological materials, the interplay between the
band topology and the real-space order-parameter textures
takes place in a diverse range of settings. The edge states,
which are relatively easy to access in experiments, provide a
promising route to bias and control the transport of topological
charges in the bulk.
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