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Universality in the onset of quantum chaos in many-body systems
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We show that the onset of quantum chaos at infinite temperature in two many-body one-dimensional lattice
models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically,
we show that the onset of quantum chaos is marked by maxima of the typical fidelity susceptibilities that scale
with the square of the inverse average level spacing, saturating their upper bound, and that the strength of the
integrability- or localization-breaking perturbation at these maxima decreases with increasing system size. We
also show that the spectral function below the “Thouless” energy (in the quantum-chaotic regime) diverges when
approaching those maxima. Our results suggest that, in the thermodynamic limit, arbitrarily small integrability-
or localization-breaking perturbations result in quantum chaos in the many-body quantum systems studied here.
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Quantum chaos and eigenstate thermalization are two in-
tertwined fields that have been the focus of much recent
attention in the context of the emergence of statistical mechan-
ics and thermodynamics in isolated quantum systems [1–3].
Those two fields are built on foundational analytical and
computational results [4–14], and they have been recently
linked to typicality ideas that date back to von Neumann’s
work [15–17]. When quantum-chaotic systems (which are ex-
pected to exhibit eigenstate thermalization) are taken far from
equilibrium, few-body operators (observables) generically
equilibrate under unitary dynamics to the predictions of tradi-
tional statistical mechanics (they “thermalize”). This has been
verified in experiments with ultracold quantum gases [18–21].
The “nonthermalizing” counterparts to quantum-chaotic sys-
tems are integrable [22–26] and disorder-localized [26–29]
systems, which have also been probed in experiments with
ultracold quantum gases [21,30–35].

In the clean case, a deeper understanding of what happens
when quantum-chaotic systems approach integrable points
is still needed. In finite systems there is a crossover in
which quantum chaos [36–44] and eigenstate thermaliza-
tion [39,42,43,45,46] indicators worsen. In the thermody-
namic limit one expects quantum chaos and eigenstate ther-
malization to break down only at the integrable point [36–44]
but the time scale for thermalization to diverge approaching
that point [1,47–52]. The latter has been seen in recent exper-
iments [21] and can be understood in the context of Fermi’s
golden rule [52,53] and of the scaling of the quantum metric
tensor with system size [44]. In the disorder-localized case,
localization was argued to be perturbatively stable against
weak short-range interactions [54,55] and against strong in-
teractions in one dimension (1D) [56]. Disorder-induced
localization in interacting systems is known as many-body lo-
calization and has attracted much theoretical and experimental

research in the strongly interacting regime [26–29]. Recent
works have argued against and in favor of the occurrence of
many-body localization in that regime in the thermodynamic
limit [57–62].

We explore the onset of quantum chaos at infinite tem-
perature in perturbed integrable and noninteracting disorder-
localized chains, as well as its destruction upon approaching
trivial classical limits. One of our goals is to identify universal
features and differences between the clean and disordered
cases. We compute fidelity susceptibilities χ [44,63], which
are equivalent to the diagonal components of the quan-
tum geometric tensor [64,65] or the norm of the adiabatic
gauge potential [44], and spectral functions. Fidelity sus-
ceptibilities are commonly used to detect quantum phase
transitions [64–68]. We find that the departure from quantum
chaos is characterized by a higher sensitivity of eigenstates
to perturbations [44,61,69], which results in maxima of the
typical fidelity susceptibility that scale with the square of the
inverse level spacing. The shifts in the maxima’s positions
with system size are consistent with, at infinite temperature
in the thermodynamic limit, quantum chaos only failing to
occur at the unperturbed integrable, noninteracting disorder-
localized, and integrable infinite-interaction (classical) limits.

We study the (clean) extended spin-1/2 XXZ chain:

Ĥcln =
L∑

i=1

[
J

2
(Ŝ+

i Ŝ−
i+1 + H.c.) + �Ŝz

i Ŝz
i+1 + �′Ŝz

i Ŝz
i+2

]
,

(1)

with J = √
2, � = (

√
5 + 1)/4, and �′ ∈ [10−4, 101]. Ĥcln is

Bethe-ansatz integrable for �′ = 0, and Ĥcln/�
′ corresponds

to two disconnected Ising chains for �′ = ∞. We also study
the Anderson chain with added nearest-neighbor interactions,
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which we write in the spin language as

Ĥdsr =
L∑

i=1

[
J

2
(Ŝ+

i Ŝ−
i+1 + H.c.) + hiŜ

z
i + �Ŝz

i Ŝz
i+1

]
, (2)

with J = √
2, hi ∈ [−h, h] for h = (

√
5 + 1)/4, and � ∈

[10−3, 101] [70]. Ĥdsr is the Anderson model for � = 0, and
Ĥdsr/� is the Ising chain for � = ∞.

To probe the eigenkets {|m〉} of the models above,
we compute the typical fidelity susceptibility χtyp(O) =
exp(ln[χm(O)]) (in short, the susceptibility) associated with
observable Ô, where

χm(O) = L
∑
l �=m

|〈m|Ô|l〉|2
(Em − El )2

. (3)

The average ln[χm(O)] is carried out over the central 50%
of eigenstates in the spectrum. We also compute the average
spectral function | fO(ω)|2 = | f O

m (ω)|2 over the same 50% of
eigenstates, where∣∣ f O

m (ω)
∣∣2 = L

∑
l �=m

|〈m|Ô|l〉|2δ(ω − ωml ). (4)

We replace δ(x) → μ/[2π (x2 + μ2)] with μ = 0.9 ωmin,
where ωmin is the minimum level spacing. The factor of L in
Eqs. (3) and (4) accounts for the Hilbert-Schmidt norm of our
translationally invariant intensive observables.

The specific observables Ô considered [71] are the nearest-
neighbor “kinetic” K̂n and interaction Ûn energies:

K̂n = 1

L

L∑
i=1

(Ŝ+
i Ŝ−

i+1 + H.c.), Ûn = 1

L

L∑
i=1

Ŝz
i Ŝz

i+1, (5)

and the next-nearest-neighbor kinetic energy K̂nn. As shown
recently [44,72,73], in integrable systems the response of
eigenstates to perturbations depends on whether the pertur-
bations do or do not break integrability. If Ûn (K̂nn) is added
to Ĥcln, integrability is preserved (destroyed), while if K̂n (Ûn)
is added to Ĥdsr, localization is preserved (destroyed); keeping
this in mind, in what follows we show results for Ûn and K̂nn

(K̂n and Ûn) when studying Ĥcln (Ĥdsr).
In Fig. 1 we show χtyp vs �′ (strength of the integrability-

breaking next-nearest-neighbor interaction), for Ûn [Fig. 1(a)]
and K̂nn [Fig. 1(b)]. The susceptibilities are scaled as expected
for quantum-chaotic systems, for which χtyp ∝ LD−1ω−2

H
(ωH is the mean level spacing and D is the Hilbert space
dimension [74]) because |〈m|Ô|l〉|2 ∝ D−1 for Em − El →
ωH [1,73]. For all chain sizes, the scaled susceptibilities ex-
hibit an excellent collapse for about a decade in �′ when
�′ ∼ 1. The region over which the scaled susceptibilities
collapse increases (both towards smaller and towards larger
values of �′) with increasing system size. This highlights a
quantum-chaotic regime that is robust and is increasing its
extent with increasing system size.

The quantum-chaotic regime in Fig. 1 is separated from the
integrable ones at small and large �′ by maxima in χtyp [71].
As a result of the trivial nature of the �′ = ∞ model, the
large-�′ maxima are more affected by finite-size effects than
the small-�′ ones. In what follows we focus on the latter. The

FIG. 1. Typical fidelity susceptibility χtyp (scaled to exhibit col-
lapse in the quantum-chaotic regime) vs the integrability-breaking
parameter �′ for observables Ûn (a) and K̂nn (b) in clean periodic
chains. To calculate χtyp and ωH , we average over the central 50%
of the eigenstates in the even-Z2 sector in each total quasimomentum
sector considered. For L < 24, we report the weighted average over
all k �= (0, π ) sectors, while for L = 24 we report results for the
k = π/2 sector. Circles on the y axis show χtyp at the integrable point
(�′ = 0), and diamonds show the maximal χ∗

typ (at �′∗ = −b/2a)
obtained from polynomial fits ax2 + bx + c (black solid lines about
the maxima). The dotted lines on the right of the first peaks are a
guide for the eye and depict �′−2.55 behavior. Inset in (a): χ∗

typ vs ωH

for both observables, along with the results of power-law fits. Inset in
(b): �′∗ vs ωH for both observables (the values of �′∗ overlap). The
dotted line depicts ω0.39

H behavior.

inset in Fig. 1(a) shows that χtyp at the small �′ maxima scales
as the square of the inverse average level spacing ωH . This
scaling corresponds to the maximum possible sensitivity of
quantum eigenstates to a perturbation [44]. It is exponentially
larger, in system size, than expected from random matrix
theory. The position of the maxima, �′∗, appears to move
towards �′ = 0 exponentially fast with increasing system size
(notice the near equal shift with increasing L and the log scale
in the �′ axis). In the inset in Fig. 1(b), we plot of �′∗ vs
ωH showing that our numerical results are consistent with
�′∗ ∝ (ωH )α , with α ∼ 0.39. We note that our results in Fig. 1
are robust; �′∗ and the scaling of χ∗

typ are nearly identical for
both observables [71].

The susceptibility is related to the spectral function defin-
ing the dynamical response of the system [44,65]. Indeed, it
follows from Eqs. (3) and (4) that

χm(O) =
∫ ∞

−∞

∣∣ f O
m (ω)

∣∣2

ω2
dω. (6)
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FIG. 2. Spectral functions in clean periodic chains with L = 24
for observables Ûn [(a) and (b)] and K̂nn [(c) and (d)] over 2 decades
of the integrability-breaking parameter �′ [see labels at the top and
legends in (b) and (d)]. In (a) and (c), the top insets show FO =
(ω/�′)2| fO(ω)|2 vs ω/�′ at �′ = 1.58 × 10−2, while the bottom
insets show | fO(ω)|2 vs ω/�′ at �′ = 1.58 × 10−1, for the three
largest chains studied. The insets in (b) and (d) show | f p

O (ω)|2 vs �′,
where | f p

O (ω)|2 is the value of | fO(ω)|2 at the plateaus in the main
panels (and for other values of �′ for which | fO(ω)|2 is not shown).
The dotted lines are a guide for the eye and depict �′−2.55 behavior.
All computations were done as for Fig. 1.

In integrable systems, | fO(ω → 0)|2 vanishes for
integrability-preserving perturbations [44,71–73], leading to a
polynomial in L scaling of χm(O) [44]. Typical (integrability
breaking) perturbations in contrast have | fO(ω → 0)|2 =
O(1) [44,71–73] resulting in an exponential-in-L, ∼D, scaling
of the susceptibility χm(O) [44]. As mentioned before, in
quantum-chaotic systems χm(O) ∝ L/[D(ωH )2] ∼ D. The
faster scaling at the maxima χ∗

typ ∝ 1/ω2
H ∼ D2 implies that

the spectral function diverges as | fO(ωH )|2 ∼ 1/ωH around
�′∗.

Figures 2(a) and 2(c) show | fO(ω)|2 vs ω/�′ for differ-
ent values of �′ about �′∗ for L = 24. The data for both
observables collapse at frequencies ω/�′ � 1 showing that
| fO(ω)|2 ∼ (�′/ω)2 in that regime [75]. In the top insets,
we plot FO = (ω/�′)2| fO(ω)|2 for different chain sizes when
�′ < �′∗. The plateaus show that the | fO(ω)|2 ∼ (�′/ω)2

behavior is robust to changing L [71]. For �′ < �′∗, the
susceptibilities in Figs. 2(a) and 2(c) also collapse at lower
frequencies showing a nontrivial dependence of ω/�′ [71],
but this collapse gradually disappears as �′ approaches �′∗.

When �′ increases beyond �′∗ and the system enters into
the quantum-chaotic regime [Figs. 2(b) and 2(d)], a plateau
develops in the spectral function at low frequencies [76].
The formation and growth of the plateau with increasing L,
at a fixed �′ � �′∗, are illustrated in the bottom insets in
Figs. 2(a) and 2(c). The plateau and the | fO(ω)|2 ∼ (�′/ω)2

behavior coexist in the regime in which �′ � �′∗, which is
consistent with the occurrence of thermalization with relax-
ation rates dictated by Fermi’s golden rule [51,71]. In that
regime, we find that the spectral function | fO(ω)|2 at the
plateau, | f p

O|2, appears to diverge as (�′)−β with β ∼ 2.55
[see insets in Figs. 2(b) and 2(d)], consistent with the diver-
gence of χtyp in Fig. 1 (see dotted lines in the main panels).
Remarkably, it is possible to relate the scaling of | f p

O|2 with �′
with the drift of �′∗ with L: �′∗ ∼ ωα

H with α = 1/β ∼ 0.39
[see inset in Fig. 1(b)].

We can understand this under the following scenario:
Let | fO(ω)|2 = | f p

O (�′)|2 for ω < ωp(�′) and | fO(ω)|2 ∝
(�′/ω)κ for ω > ωp(�′), with ωp(�′) playing the role of the
so-called Thouless energy, and κ > 1. Then from the spec-
tral sum rule,

∫ | fO(ω)|2dω = O(1), we infer that ωp(�′) ∝
(�′)β , with β = κ/(κ − 1), and that | f p

O (�′)|2 ∝ (�′)−β . The
maximum of χtyp then occurs when ωp = ωH , i.e., when the
maximum of the spectral function occurs at the Heisenberg
scale. This results in �′∗ ∼ ωα

H with α = 1/β, and χ∗
typ ∼

ω−2
H . Currently, we do not know the origin of the values of the

exponents suggested by our numerical calculations. Given our
observation of | fO(ω)|2 ∼ (�′/ω)2 behavior for �′ below and
above �′∗, which appears to grow in extent with increasing
system size [see top insets in Figs. 2(a) and 2(c)], two sce-
narios come to mind: (i) The exponents observed numerically
are affected by finite-size effects, and for larger systems than
those accessible to us, κ = 2, β = 2, and α = 1/2; and (ii)
the spectral function develops a power law with an exponent
1 < κ < 2 before saturating to a constant at low frequencies
so that β > 2 and α < 1/2.

In Fig. 3, we show results for the spectral function of disor-
dered chains in the presence of nearest-neighbor interactions.
The corresponding typical fidelity susceptibilities are shown
in Fig. 4. The results in Figs. 3 and 4 are similar to those
in Figs. 2 and 1, respectively. The similarity is remarkable
considering that the unperturbed models in both cases are
strikingly different, the disordered one being a noninteract-
ing localized model and the clean one being an interacting
integrable one. The slight differences between the results in
Figs. 3 and 2 include a narrower | fO(ω)|2 ∼ (�′/ω)2 regime
in Figs. 3(a) and 3(c) as compared with Figs. 2(a) and 2(c), and
a narrower regime in which | f p

O|2 is consistent with a power
law scaling with � in Fig. 3(d). Related to the latter, in the
inset in Fig. 4(b) the dynamical range for �∗ vs ωH is smaller
than in the inset in Fig. 1(b). Consequently, and also keeping
in mind that in Fig. 4 we plot typical fidelity susceptibilities
while in Fig. 3 we plot raw averages of the spectral functions,
we cannot establish a relationship between the scaling of
| f p

O|2 with �′ and the drift of �′∗ with L as we did for the
clean case. That said, all those differences are consistent with
stronger finite-size effects, and fluctuations associated with
the disorder average, in the disordered systems. For the latter,
the largest chains studied have L = 18 vs the L = 24 chains
considered for clean systems.

In summary, our results suggest that the onset of quan-
tum chaos at infinite temperature in the models studied, as
well as its destruction when approaching classical limits for
very strong interactions, is characterized by universal be-
havior. We focused our analysis on the onset of quantum
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FIG. 3. Spectral functions in disordered periodic chains with L =
18 for observables K̂n [(a) and (b)] and Ûn [(c) and (d)] over 2 decades
of the interaction strength � [see labels at the top, and legends in
(b) and (d)]. In (a) and (c), the top insets show FO = (ω/�′)2| fO(ω)|2
vs ω/�′ at �′ = 1.58 × 10−2, while the bottom insets show | fO(ω)|2
vs ω/�′ at �′ = 1.58 × 10−1, for the three largest chains studied.
The insets in (b) and (d) show | f p

O (ω)|2 vs �, where | f p
O (ω)|2 is the

value of | fO(ω)|2 at the plateaus in the main panels (and for other
values of � for which | fO(ω)|2 is not shown). The dotted lines are a
guide for the eye and depict �′−2.4 behavior. To calculate | fO(ω)|2,
we average over the central 50% of the eigenstates in each chain and
then over disorder realizations (200 for L � 16, 100 for L = 17, and
50 for L = 18).

chaos as finite-size effects (and fluctuations associated with
disorder averages) are smaller. The main universal feature
identified is the divergence of the typical fidelity suscepti-
bilities as ω−2

H when entering (exiting) the quantum-chaotic
regime and the associated divergence of the spectral functions
below the Thouless energy. The latter is potentially univer-
sal and diverges as ε−β (ε being the strength of either the
integrability-breaking or localization-breaking perturbation)
in the quantum-chaotic regime. Also potentially universal is
the shift of the position ε∗ of the maximum of the fidelity
susceptibilities as ε∗ ∼ ωα

H , as well as the relation α = 1/β

between the exponents. We note that ε∗ ∼ ωα
H supports the

expectation that in clean systems in the thermodynamic limit,
quantum chaos and eigenstate thermalization break down
only at the integrable point [36–44], and it suggests that at
infinite temperature the 1D Anderson insulator (for the param-
eters considered here) is unstable against adding interactions.
An interesting open question is whether this relates to re-
cent findings that many-body localization is unstable against
the insertion of thermal “bubbles” if disorder is not strong
enough [77,78].

Much still needs to be explored, such as what happens at
finite temperatures and when one changes the parameters of
the unperturbed Hamiltonians [which we selected to be O(1)

FIG. 4. Typical fidelity susceptibility χtyp (scaled to exhibit col-
lapse in the quantum-chaotic regime) vs the interaction strength �

for observables K̂n (a) and Ûn (b) in disordered periodic chains.
Circles on the y axis show χtyp at the Anderson-localized point
(� = 0), and diamonds show the maximal χ∗

typ (at �∗ = −b/2a)
obtained from polynomial fits ax2 + bx + c (black solid lines about
the maxima). The inset in (a) shows χ∗

typ vs ωH for both observables,
along with the results of power-law fits. The error bars are the (prop-
agated) standard deviation of the average over disorder realizations
(see Ref. [71] for details) at the value of � (for which we carried
out a calculation) that is closest to �∗. The inset in (b) shows �∗ vs
ωH for both observables. The dotted line depicts ω0.28

H behavior. All
computations were done as for Fig. 3.

to minimize finite-size effects]. In the disordered case, two
parameter regimes to be explored are the strong disorder and
strong interaction regimes. The contrast between the small
� and large � peaks in the fidelity susceptibilities in Fig. 4
suggests that obtaining meaningful scalings using full exact
diagonalization in those regimes will be computationally very
challenging. We note that the results reported in this Research
Letter required about 1 000 000 CPU hours of calculations.
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