
PHYSICAL REVIEW B 104, L201107 (2021)
Letter

Non-Hermitian band topology from momentum-dependent relaxation in two-dimensional metals
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We study the emergence of non-Hermitian band topology in a two-dimensional metal with planar spiral
magnetism due to a momentum-dependent relaxation rate. A sufficiently strong momentum dependence of the
relaxation rate leads to exceptional points in the Brillouin zone, where the Hamiltonian is nondiagonalizable.
The exceptional points appear in pairs with opposite topological charges and are connected by arc-shaped branch
cuts. We show that exceptional points inside hole and electron pockets, which are generally present in a spiral
magnetic state with a small magnetic gap, can cause a drastic change of the Fermi surface topology by merging
those pockets at isolated points in the Brillouin zone. We derive simple rules for the evolution of the eigenstates
under semiclassical motion through these crossing points, which yield geometric phases depending only on the
Fermi surface topology. The spectral function observed in photoemission exhibits Fermi arcs. Its momentum
dependence is smooth—despite of the nonanalyticities in the complex quasiparticle band structure.
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Introduction. The discovery of topological insulators [1,2]
has triggered a systematic analysis and classification of topo-
logical features of band structures in solids. So far, the main
focus has been on noninteracting electrons and supercon-
ductors in a mean-field picture, corresponding to Hermi-
tian quadratic Hamiltonians [3]. Recently, there has been
growing interest in topological features of non-Hermitian
Hamiltonians [4]. In quantum many-body systems, these nat-
urally arise in certain open systems, but also as effective
Hamiltonians capturing relaxation processes in interacting
and/or disordered closed systems [5–19]. A striking effect,
which is unique to non-Hermitian systems, is the existence of
exceptional points in momentum space where the Hamiltonian
is not diagonalizable.

In this letter we show that the combination of two seem-
ingly innocuous ingredients—spiral magnetic order in a
two-dimensional metal and a momentum-dependent relax-
ation rate—can lead to a non-Hermitian Hamiltonian with
nontrivial topological features, such as exceptional points
and branch cuts in the Brillouin zone. Spiral order is
a candidate for incommensurate magnetic order observed
in cuprate superconductors [20–30], while relaxation rates
with a pronounced momentum dependence arise naturally in
two-dimensional systems with strong antiferromagnetic fluc-
tuations [31–34]. We find that the momentum dependence
of the relaxation rate can lead to a closing of the direct
band gap between the quasiparticle bands E+

p and E−
p on
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one-dimensional branch cuts in the Brillouin zone, which
terminate at exceptional points. These lines of degenerate
quasiparticle bands, which are sometimes referred to as non-
Hermitian (bulk) Fermi arcs [4,5], are in general dispersive,
in contrast to flat degenerate bands in some other systems
[5,16,35]. In the dispersive case, hole and electron pockets
merge at isolated momenta in the Brillouin zone where these
degenerate bands cross the Fermi level, leading thus to a pecu-
liar Fermi surface topology. Electrons traversing such crossing
points along the Fermi surface acquire π -phase shifts, which
can lead to a nontrivial geometric Berry phase. Surprisingly,
we find that the nonanalyticity of the complex band at the
exceptional points does not entail any singularity in the spec-
tral function for single electron excitations. Nevertheless, the
Fermi surface obtained from the spectral function seems trun-
cated to Fermi arcs.

Spiral spin density waves. In a planar spiral spin density
wave, the local magnetic moment has the form Si = mni,
where m is a constant amplitude and ni a site-dependent
unit vector, which rotates in a fixed but arbitrary plane. For
definiteness, we choose ni to lie in the x-y plane, such that
ni = ( cos(Q · Ri ), sin(Q · Ri ), 0), where Q is the wave vector
of the spin density wave. On a mean-field level, the planar
spiral spin density wave is described by the two-band tight-
binding Hamiltonian H = ∑

p �†
pHp�p, where the spinor

�p = (cp+Q,↑, cp,↓) collects the two spin components with a
relative momentum shift Q, and

Hp =
(

εp+Q −�

−� εp

)
, (1)

where εp is the (bare) band dispersion and � the magnetic gap
[36]. The wave vector Q can be chosen arbitrarily. The simple
two-band structure is due to a symmetry under combined
lattice translations and spin rotations [37]. For Q = (0, 0) and
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Q = (π, π ) one recovers ferromagnetic and Néel antiferro-
magnetic order aligned in the xy plane, respectively. In the
following we consider incommensurate spiral order with wave
vectors of the form Q = (π − 2πη, π ) with η > 0, as found
in the hole-doped Hubbard and t-J model [20–30]. Diagonal-
izing Hp one finds two quasiparticle bands E±

p with a minimal
direct gap �, which generally results in a reconstructed Fermi
surface with electron and/or hole pockets [28–30].

Non-Hermitian effective Hamiltonian. In interacting elec-
tron systems all the information on the Fermi surface,
quasiparticle bands and decay rates, as well as the spectral
function measured in photoemission, is encoded in the single-
particle Green‘s function. The bare Green’s function of the
noninteracting reference system is dressed by the self-energy,
which receives contributions from the electron-electron inter-
action, and possibly from phonon and impurity scattering. In
the low-frequency limit, the real part of the self-energy yields
a renormalization of the band structure, and a reduction of the
quasiparticle weight, while the imaginary part describes the
quasiparticle relaxation rate �p. Here we discard the real part
and focus on the more interesting effects of �p in combina-
tion with spiral magnetic order. In the two-component spinor
basis defined above, the retarded Green‘s function can then be
written as

GR
p (ω) = [ω + μ − Hp]−1, (2)

where the non-Hermitian Hamiltonian Hp is defined as

Hp = Hp − i

(
�p+Q 0

0 �p

)
, (3)

with Hp from Eq. (1). Imaginary off-diagonal components
have only minor consequences [38].

Exceptional points. Hp has the complex eigenvalues

E±
p = εs

p ± √
Dp − i�s

p, (4)

with the discriminant

Dp = (
εa

p − i�a
p

)2 + �2, (5)

where ε
s/a
p = 1

2 (εp+Q ± εp) and �
s/a
p = 1

2 (�p+Q ± �p) are
symmetric and antisymmetric linear combinations. The con-
dition Dp = 0 defines the exceptional points, that is, the set of
momenta at which Hp is not diagonalizable. The momentum
dependence of �p is crucial for the existence of exceptional
points. For �p = � or �p = �p+Q, we have �a

p = 0, and thus
Dp � �2 > 0 in the magnetically ordered phase. For �a

p �= 0,
the real and imaginary parts of Dp yield two conditions for an
exceptional point,

εp = εp+Q, (6)

|�p+Q − �p| = 2�, (7)

which need to be satisfied simultaneously. The second condi-
tion requires a relaxation rate that exceeds the magnetic gap at
particular momenta. The exceptional points can be classified
by a topological charge νi = ± 1

2 via

νi = − 1

2π

∮
�i

dp · ∇p arg[E+
p − E−

p ], (8)

where �i is a closed contour encircling the ith exceptional
point counterclockwise [5,39,40]. Exceptional points with op-
posite charge are connected by branch cuts where Dp is real
and negative.

Fermi surface reconstruction. As an example, we assume a
tight-binding dispersion on a square lattice, a magnetic gap
� and a wave vector Q = (π − 2πη, π ) such that several
hole and electron pockets are present, confined by momenta
at which the lower and upper quasiparticle bands cross the
Fermi level, respectively. The dispersion has the form

εp = − 2t (cos px + cos py) − 4t ′ cos px cos py

− 2t ′′[cos(2px ) + cos(2py)], (9)

where t , t ′, and t ′′ are hopping amplitudes between nearest,
next-nearest, and third-nearest neighbors, respectively. We
use t as our energy unit, and we choose t ′/t = −0.17 and
t ′′/t = 0.05, as widely used for La2−xSrxCuO4 (LSCO) super-
conductors [29,30,41]. The parameters of the magnetic order
�/t = 0.144 and η = 0.106 are taken from recent DMFT
results for the two-dimensional Hubbard model with LSCO
parameters at a hole doping p = 1 − n = 0.177 [30].

For the momentum-dependent relaxation rate �p we as-
sume a d-wave form

�p = γ0 + γd

4
(cos px − cos py)2, (10)

with γ0, γd � 0, which has its minimal value (�min = γ0)
along the Brillouin zone diagonals, and its maximal value
(�max = γ0 + γd ) at the points (π, 0) and (0, π ) on the px and
py axis. The relaxation rate in a cuprate compound from the
LSCO family has recently been determined experimentally
via angle-resolved magneto-resistance measurements in the
overdoped regime at various temperatures [42], yielding an
estimate γ0/t ≈ 0.015 and γd/t ≈ 0.15. For a given relax-
ation rate �p, the condition (7) can always be satisfied for a
sufficiently small gap, for instance, near the onset of magnetic
order at a quantum critical point. For a better visualization
of the topological effects, we choose a sizable magnetic gap
and consider relatively large values for the relaxation rate,
namely γ0/t = 0.05, and γd/t � 1.6. We fix the doping level
at p = 0.177. All results are obtained at zero temperature.

In Fig. 1 (top row) we show the “nesting” lines defined
by Eq. (6), and the lines corresponding to the condition (7)
for different γd/t . Exceptional points where these lines cross
exist for γd/t � 1.0. Changing parameters, exceptional points
can be created or annihilated only in pairs with opposite
topological charge. In the bottom row of Fig. 1 we show the
quasiparticle Fermi surfaces. Electron and hole pockets are
disconnected for γd/t = 0 and 0.8, while for larger γd/t they
merge at isolated momenta on the branch cuts.

In Fig. 2 we show the real and imaginary parts of the
quasiparticle bands E±

p for γd/t = 1 as a function of px along
the upper nesting line in Fig. 1, where the discriminant Dp is
real (since εa

p = 0). For |�p+Q − �p| < 2�, the square root in
Eq. (4) is real, such that E±

p = Re E±
p describes two separate

bands. For |�p+Q − �p| > 2�, that is, on the branch cut, the
square root in Eq. (4) is purely imaginary such that E+

p = E−
p ,

while now �±
p = −Im E±

p assumes two distinct values. At the
exceptional points, where |�p+Q − �p| = 2�, both real and
imaginary parts of the two complex bands E±

p collapse to a

L201107-2



NON-HERMITIAN BAND TOPOLOGY FROM … PHYSICAL REVIEW B 104, L201107 (2021)

�
�

�
�

��

��

�
�

�
�

��

��

�

�

�

� �

�

�
�

�

�

�

� �

�

�
�

FIG. 1. From left to right: γd/t = 0, 0.8, 1.0, and 1.6. Upper row: The conditions given by Eq. (6) (green “nesting” lines), which separates
the region of εa

p > 0 (gray) and εa
p < 0 (white), and Eq. (7) (red lines). Exceptional points are situated at the intersection of both lines, and

carry the topological charge νi = ± 1
2 . Lower row: The quasiparticle Fermi surfaces defined by Re E±

p = μ for fixed doping p = 0.177. Hole
pockets (orange) and electron pockets (blue) merge at isolated momenta on the branch cuts, that is, on the parts of the nesting line between
exceptional points of opposite charge.

single value. The degenerate band E+
p = E−

p on the branch cut
is dispersive. Thus, it intersects the Fermi level only at isolated
momenta, which leads to the peculiar Fermi surface topology
in Fig. 1. The merging of hole and electron pockets at single
isolated momenta is a generic consequence of exceptional
points with opposite topological charge inside the pockets
and, thus, not restricted to our specific realization by the
particular form of the dispersion in Eq. (9) or the relaxation
rate in Eq. (10).

Semiclassical transport through crossing points. In a semi-
classical description of the electron dynamics, the momentum
of electrons changes smoothly in the direction of the applied
force [43]. The Lorentz force acts perpendicularly to the
electron velocity, such that a magnetic field makes low-energy
electrons move along the Fermi surface. We now clarify how
electrons move semiclassically through the crossing points.
There are potentially six paths on the Fermi surface. (see
Fig. 3). We study the evolution of a biorthonormal basis
with left and right eigenstates |Ln

p〉 and |Rn
p〉 for the bands

n = ± when p traverses the crossing point [44,45]. Since
the Hamiltonian in Eq. (3) is symmetric, Hp = Htr

p , we can

choose a gauge such that |Ln
p〉 = (|Rn

p〉)
∗
. Thus, the Berry

connection i〈L±
p |∂pα

R±
p 〉 vanishes and the geometric phase γB

is determined exclusively by the overlap of the initial and final
states [46]. For definiteness, the remaining gauge freedom
|Rn

p〉 → ±|Rn
p〉 has also been fixed.

In the Supplemental Material [38] we show that only the
two diagonal paths allow for a continuous evolution of the
eigenstates through the crossing point. The phase shift is de-
termined by the sign change of εa

p. With the shorthand notation

|np〉 = |Rn
p〉, the transition of states at the crossing point is

given by

|+p〉 � −|−p〉 and |−p〉 � |+p〉, (11)

where the transition from left to right is when crossing with
sign change + → − (gray to white in Fig. 3) and the evolution
from right to left is when crossing with sign change − → +
(white to gray in Fig. 3). The first rule in Eq. (11) involves a
minus sign beside the well-known swapping of the eigenstates
[4]. The velocities ∂pα

E±
p are smooth and finite at the crossing

point [38]. Note that the rules in Eq. (11) are gauge dependent,
but the total geometric phase accumulated in a closed loop is
a gauge independent quantity.

FIG. 2. Real part (left) and imaginary part (right) of the complex
quasiparticle bands E±

p for γd/t = 1 on the upper nesting line where
εp = εp+Q (see upper row in Fig. 1) as a function of px . Left: The
band gap closes between the exceptional points. The bands for γd =
0 are shown for comparison (gray lines). The chemical potential μ

is indicated by the red line. Right: The quasiparticle relaxation rate
�±

p = −Im E±
p is double-valued between the exceptional points. The

gray lines indicate �min and �max. Note that �±
p is always positive.
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�

�

FIG. 3. Close-up of a crossing point for γd/t = 1.6. The electron
(blue) and hole (orange) pockets encircle exceptional points (red
dots) of opposite charge. They merge at one point on the branch
cut (red-dashed line). Only the two diagonal paths from �1 to �3

and from �2 to �4 are continuously connected. The crossing rules
depend on the sign change between the regions εa

p > 0 (gray) and
εa

p < 0 (white).

In Fig. 4 we sketch the evolution of the eigenstates for elec-
trons moving along the Fermi surface according to Eq. (11).
For the pockets in Fig. 1 we find a vanishing geometric phase
γB = 0 after a completed round, but a relative phase difference
π on opposite sides of the hole pocket [step ii) and iv)]. We
predict a geometric phase γB = π for an “eight” topology of
a merged electron and hole pocket, so that the original state is
then recovered only after two rounds.

Quantum oscillation experiments at sufficiently large mag-
netic fields ωcτ > 1, where ωc is the cyclotron frequency
and τ = 1/2�, can be used to measure the Fermi surface
topology. Thus, the merging of electron and hole pockets
(see Fig. 1) is visible at least in principle in the spectrum
of quantum oscillations. A geometric phase can be observed
experimentally as a phase shift in quantum oscillations [47].
A detailed microscopic or semiclassical analysis of transport
in non-Hermitian systems is still ongoing research [29,48–56]
and beyond the scope of this paper.

FIG. 4. Evolution of the eigenstates i) − iv) for electrons moving
along the Fermi surface in the arrow directions. Left: The “double-
eight” topology appearing in Fig. 1. Right: A hypothetical “eight”
topology.

FIG. 5. The spectral function for single-particle excitations
Ap(0) for γd/t = 0 (left) and γd/t = 1 (right).

Spectral functions. The quasiparticle spectral function is
given by the diagonal matrix Ãp(ω) = − 1

π
Im G̃R

p (ω), where
G̃R

p (ω) = [ω + μ − H̃p]−1 is the retarded Green‘s function
in the quasiparticle basis, and H̃p is the diagonalized non-
Hermitian Hamiltonian with the eigenvalues E±

p from Eq. (4).
The quasiparticle spectral functions are thus Lorentzians with
positions εs

p ± εDp − μ and widths �s
p ∓ �D

p , where εDp =
Re

√
Dp and �D

p = Im
√
Dp.

The spectral function matrix in the bare band basis is given
by Ap(ω) = 1

2π i (GA
p (ω) − GR

p (ω)) with GA
p (ω) = [GR

p (ω)]†.
The Green‘s function in the bare band basis is related to
the quasiparticle Green‘s function by GR

p (ω) = Up G̃R
p (ω)U−1

p ,
where the matrix Up diagonalizes Hp for all momenta except,
of course, the exceptional ones. The diagonal elements of
Ap(ω) are obtained as [38]

A↑/↓
p (ω) = 1

2
[Ã+

p (ω) + Ã−
p (ω)], (12)

±
(

1

2

εa
pε

D
p − �a

p�
D
p(

εDp
)2 + (

�D
p

)2 [Ã+
p (ω) − Ã−

p (ω)], (13)

+ 1

2π

εa
p�

D
p + �a

pε
D
p(

εDp
)2 + (

�D
p

)2 [P̃+
p (ω) − P̃−

p (ω)]

)
, (14)

where P̃±
p (ω) are the elements of the diagonal matrix P̃p(ω) =

Re G̃R
p (ω). Due to the momentum shift Q in the spinor �p,

the total spectral function for the physical single electron
excitations reads

Ap(ω) = A↑
p−Q(ω) + A↓

p (ω). (15)

For �a
p = 0 we have �D

p = 0, so that we recover the well-
known result for a momentum-independent relaxation rate
[28,38]. The appearance of the term (14) is directly linked to
a nonzero �a

p. In the Supplemental Material [38] we analyze
the effect of exceptional points. Both the second term in (13)
and the third term in (14) are discontinuous at the exceptional
points. Due to the phase shift π

2 in
√
Dp when crossing the

exceptional point, the two contributions are mapped onto each
other. Thus, the sum of both is continuous. In other words, the
nonanalyticity of the complex band at the exceptional points
does not appear in Ap(ω).

In Fig. 5 we show the spectral function Ap(ω) at ω = 0
for γd/t = 0 and γd/t = 1. The spectral weight is strongly
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suppressed for momenta away from the bare Fermi surface
[28,38]. Moreover, the angle dependence of �p reduces the
spectral weight in the antinodal region, such that only Fermi
arcs in the nodal region are visible.

Conclusions. We have analyzed the non-Hermitian band
topology resulting from a momentum-dependent relaxation
rate �p in a two-dimensional metal with spiral magnetic order.
We provided a concrete example for a specific band dispersion
and relaxation rate. We find that arc-shaped branch cuts con-
necting exceptional points with opposite topological charges
appear in the Brillouin zone. Exceptional points inside hole
and electron pockets lead to a peculiar Fermi surface topology
with pockets merging at isolated points in the Brillouin zone.
We have derived rules for the evolution of eigenstates un-
der semiclassical motion through these crossing points, from
which geometric phases associated with the Fermi surface
topology can be obtained. The change of the Fermi sur-

face topology and the geometric phase are visible at least
in principle via quantum oscillations. The spectral function
for single-particle excitations, which can be observed in pho-
toemission experiments, exhibits Fermi arcs. Its momentum
dependence is however smooth, due to subtle cancellations
of the nonanalyticities in the complex quasiparticle band
structure.

Our paper provides an example for an intriguing non-
Hermitian topological band structure emerging from a combi-
nation of conventional ingredients, in an electron system that
was hitherto expected to be topologically trivial. Following
this paradigm, we expect the discovery of other condensed
matter systems with an interesting non-Hermitian band
topology.
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