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Topological insulator (TI) thin films with surface magnetism are expected to exhibit a quantized anomalous
Hall effect (QAHE) when the magnetizations on the top and bottom surfaces are parallel, and a quantized
topological magnetoelectric effect (QTME) when the magnetizations have opposing orientations (axion-insulator
phase) and the films are sufficiently thick. We present a unified picture of both effects that associates deviations
from exact quantization of the QTME caused by finite thickness with nonlocality in the sidewall current response
function. Using realistic tight-binding model calculations, we show that in Bi,Se; TI thin films, deviations from
quantization in the axion-insulator phase are reduced in size when the exchange coupling of tight-binding model
basis states to the local magnetization near the surface is strengthened. Stronger exchange coupling also reduces
the effect of potential disorder, which is unimportant for the QAHE but detrimental for the QTME, which requires

that the Fermi energy lie inside the gap at all positions.

DOI: 10.1103/PhysRevB.104.L.201102

Introduction. In magnetoelectric materials, an applied elec-
tric field E induces magnetization M and an applied magnetic
field B induces electrical polarization P [1]. The magneto-
electric response is described by the linear magnetoelectric
polarizability tensor v, whose diagonal components,
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are pseudoscalars. [0 in Eq. (1) is dimensionless]. Since B and
M are odd under time reversal and E and P are odd under
space inversion, the magnetoelectric response normally oc-
curs in insulators that break both time-reversal and inversion
symmetry (TRS and IS, respectively) and is typically charac-
terized by a small value of 6. We are interested here in the
orbital magnetoelectric response [2—4] of three-dimensional
(3D) topological insulators (TIs) [5,6], which is special in
the sense that it is nonzero even when TRS is not broken in
the sample bulk [7]. The magnetoelectric response is instead
related to a nontrivial topological invariant of the bulk bands
[2,3,6] and is quantized at @ = 7 (a; = e*/2h).

The quantized topological magnetoelectric effect (QTME)
is realized only when the TI surface magnetization adopts an
axion-insulator configuration [2,3], one in which all facets
and hinges (where facets meet) of the bulk TI crystal sur-
face are insulating [8]. For thin films this requires that the
top and bottom surface magnetizations have opposite orien-
tations [9,10], as shown in Fig. 1. When the magnetizations
have the same orientation, the film displays [11] the quantum
anomalous Hall effect (QAHE), and the side walls (hinges)
are not gapped. Both the QAHE and the QTME can be un-
derstood qualitatively [9] by considering the limit of weakly
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gapped Dirac-cone surface states, since these give rise to
half-quantized intrinsic anomalous Hall conductances oy =
+¢?/2h with a sign determined by the magnetization orien-
tation [2,6,12]. The QAHE has been observed in uniformly
doped magnetic TI thin films [13], in modulation-doped TI
films [14—18] that have surface magnetism only, and recently
also in TI films with proximity-induced 2D magnetism [19].
On the other hand, the QTME not yet been directly [20]
confirmed experimentally, even though successful realization
of the axion-insulator configuration is strongly suggested in
some experiments [15-18,21] by the absence of a Hall effect
in states with oppositely oriented top and bottom surface
magnetizations. Novel intrinsic antiferromagnetic TIs, such as
the van der Waals layered MnBi, Te, [22-24] and MnyBi, Te;
families [25], and their heterostructures with nonmagnetic TIs
[25,26] have also been found to display the QAHE. These
systems do not suffer from the intrinsic disorder of doped TIs
and typically possess relatively larger magnetic gaps at their
Dirac points.

In this Research Letter we employ a unified description of
the QAHE and the QTME in TI thin films, by expressing the
magnetization in terms of sidewall currents that respond non-
locally to electric potentials that vary slowly across the film.
In this picture, perfect quantization of the QTME requires a
sidewall response that is localized near the top and bottom sur-
faces, whereas the QAHE requires only bulk state localization.
We characterize the nonlocality of the sidewall response by
calculating finite-size corrections to the QTME theoretically
using a realistic tight-binding model, demonstrating that they
are smaller for stronger exchange coupling J(r) between the
surface magnetization and tight-binding model basis states
localized near the surface. By increasing surface-state gaps,
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stronger exchange coupling not only reduces finite-size cor-
rections but also reduces the effect of disorder, which can be
tolerated in QAHE measurements but is deleterious for the
QTME.

QAHE, QTME, and sidewall response. We consider the
linear response of the Z-direction orbital magnetization of a
thin film with a quasi-2D bulk gap to an electric potential that
varies slowly across the film. Since the bulk is time-reversal
invariant and insulating, the magnetization response must
originate from changes in currents that circulate around the
film sidewalls: M, = (1/d) )", Lw(1). Here, d is the thickness
of the film, and we have anticipated our use of a tight-binding
model by specifying the vertical position along the sidewall
using a discrete layer index /. By allowing the /-dependent
bulk electric potentials to turn on slowly upon entering the
sample bulk [27] so that lateral electric fields are present only
near the sidewall, we can relate the current response to bulk
Hall conductivity:

1
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where V (1) is a layer-dependent electric potential and oy (I, 1)
is the thin-film Hall conductivity generalized [28] to allow for
nonlocality in the Z direction [29],
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In Eq. (2) we have introduced a chemical potential to allow for
a unified discussion of the QAHE and QTME. In Eq. (3), f,
is a band occupation number, P; is a layer projection operator,
|u,x) is a band state of the 2D Bloch Hamiltonian H (k), E, is
the corresponding band energy, and v;(k) = dH (k)/0dk;, i =
x,y, is the velocity operator. When summed over / and /',
on(1,1') yields €?/h times the total Chern number C of all
occupied 2D bands and is quantized.

The QAHE measures [30] the response of the total
sidewall current to a uniform chemical potential shift, and its
quantization is therefore explained simply by the quasi-2D
band Chern numbers. The QTME is a zero-temperature
property of a state that is fully insulating, and is a response not
to chemical potential but to electric potential. Its quantization
can nevertheless be understood in terms of Chern quantization
by the following argument. Define o,y = Zz, I'e 1(b) OH {0, 1),
where each layer is classified by proximity as belonging to
the top or bottom layer subset. For thick films the sidewall
response must be localized where time-reversal symmetry is
broken, i.e., near the top or bottom surface. It follows that for
any configuration of the surface magnetism, oy = o, + 0p.
Since oy is quantized, its value must be independent of small
variations in local properties, including variations in the
strength of the exchange coupling, which occur only at one
surface and can change only o; or o;. It follows that o, and
o must be separately universal. Since both must change sign
when the magnetization is reversed at their surface, o, + o,
must be quantized. In the special case of an axion insulator

(o = 0) it follows that 0}, = —oy, 20, = ne®/h, and that for
n=1, M=ME,)—-M©O)~ (1/ed)o;[V()— V)] =
(e?/2h)E. when an electric field E, is applied across the
sample in the insulating state. V (I;)) is the electric potential
at the top (bottom) layer with layer index /). (Note that for
asymmetric exchange fields at the two surfaces, the magne-
tization is nonzero even when E, = 0). Because the sidewall
response has a finite localization length, the magnetization
response has a finite-size correction that varies inversely
with the number of layers N in the film and is characterized
by the dimensionless number mgq,(d) = |[6M(d = 00) —
SM(d)]/dM(d = o0)| = (h/4ez)z(1,)€, og(l, —=I")/N.

Finite-thickness corrections in Bi,Ses. Finite-size correc-
tions in thin films distinguish the QTME from the QAHE. To
estimate their size in realistic systems, we have added a uni-
form electric field E, applied across finite-thickness quasi-2D
TI films to a realistic tight-binding (TB) model with surface
magnetism and explicitly evaluated the magnetization carried
by the distorted bands using [31,32]
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Note that Egs. (4) and (2) agree in the case of constant V (/)
since a constant electric potential shifts band energies without
changing wave functions. Equation (4) gives the 2D bulk
magnetization for an infinite-cross-sectional-area TI slab with
broken TRS at the surfaces. The physical origin of the re-
sponse of this magnetization to an electric field is the changes
in the sidewall currents discussed above. This example of
bulk-edge correspondence is closely analogous to that of the
QAHE [30,33].

We focus on Bi;Sejs thin films [34], whose electronic struc-
ture can be described by an sp? TB model with parameters
obtained by fitting to ab initio electronic structure calculations
[35,36]. We apply this TB model to thin films with finite
numbers of van der Waals coupled quintuple layers (QLs) and
model broken time reversal at the top and bottom surfaces by
adding exchange fields of strength J; and J,, oriented orthog-
onal to the (111) surface, that couple to electron spin. We will
consider two types of exchange fields: (i) a homogeneous field
applied to the entire first surface QL, modeling magnetic mod-
ulation doping [14—18], and (ii) a homogeneous field applied
only to the very top and bottom atomic monolayers (MLs),
modeling the exponentially evanescent proximity effect of an
adjacent magnetic layer [19,21,37].

In Figs. 1(b) and 1(c) we plot the band structures of 15-
QL TI films for two strengths of exchange fields of type (i),
both in the parallel (P) QAHE configuration, corresponding
to the Chern-insulator phase. For symmetric exchange fields
Jipy = 0.1 eV (smaller than the bulk gap of ~0.3 eV), the
in-gap states on the two surfaces are essentially degenerate
Dirac cones with exchange gaps A &~ J at the Dirac point
(DP). In the following, we will refer to the surface states below
the exchange gap as valence-band states and to those above
as conduction-band states. An analysis of the wave functions
[38] shows that, around the I" point, these states are localized
at either the top or the bottom surface, decaying exponentially
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FIG. 1. (a) Schematic of a TI thin film with surface magnetiza-
tions at top and bottom in either parallel (P; Chern-insulator phase)
or antiparallel (AP; axion-insulator phase) configurations. (b) and
(c) Band structure of a 15-QL Bi,Se; TI thin film in the P config-
uration for two choices of the top and bottom surface exchange fields
Jp and J;. The gapped Dirac surface states are indicated by red and
blue lines. In the symmetric case (b) these states are nearly doubly
degenerate and approach exact degeneracy in the thick-film limit.

within the first two QLs, just like the Dirac surface states of
a nonmagnetic TI film [36]. For larger k, the surface-state
bands merge with bulk bands, and the corresponding wave
functions are delocalized across the film [38]. On the other
hand, when the exchange field at one surface is of the order
of the bulk gap, as in Fig. 1(c), the Dirac-cone band structure
at that surface is strongly modified; in particular, the valence
band no longer resembles a gapped Dirac cone even near
the I' point. In fact, the band flattens but remains separated
from the bulk bands for most k values. The corresponding
wave functions are now localized at the strongly magnetized
surface for a larger region of the Brillouin zone (BZ) [38].
For exchange fields of type (ii) (not shown in the figure), the
structure of the gapped Dirac cones is robust and, apart from
the increase in the exchange gap with Jy), remains unmod-
ified even for Jyp) > 0.3 eV. These results demonstrate that
the spatial distribution of J(r) plays a separate role from its
strength in influencing how the Dirac surface-state electronic
structure is modified by surface magnetism.

We now consider the implications of these electronic struc-
ture properties for the magnetoelectric response. We compute
M numerically as a function of E_, represented in the TB
Hamiltonian as an on-site energy varying linearly from the
bottom to the top of the TI film [38]. By keeping eE ,d smaller
than the surface-state gap A in such a way that M, depends
linearly on E,, we extract the 8 parameter defined in Eq. (1).
The results are shown in Fig. 2. From Fig. 2(a) we can see
that, starting from five QLs, 6 versus d is well described
by the relation 6 = 6, ..(1 — w/d) [9], where w ~ 2 nm is
a nonuniversal length scale that can be extracted from this
figure, and measures the localization of the sidewall current
response. Finite-size corrections are larger than 10% for film
thicknesses below ~20 nm. Figure 2(b) demonstrates that
for all choices of the exchange strength J;/; and position
dependence, 6,;_,,, = 7 to within numerical accuracy ~1%.
That is, the magnetoelectric coefficient extrapolated to infinite
thickness is, as expected, exactly quantized. Importantly, as
shown in Fig. 2(a), the length scale w decreases with increas-
ing J;(»). Finite-size corrections are reduced when the surface
magnetization is strengthened.

Magnetization at the top surface
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FIG. 2. Magnetoelectric coefficient 6 extracted from the calcu-
lation of the magnetization in BiySe; TI thin films of different
thicknesses d and different values of the top and bottom surface
exchange fields. “(1QL)” and “(1ML)” indicate that the exchange
field is applied uniformly to the first surface QL or to the first
surface monolayer, respectively. (a) 6 vs 1/d. (b) Asymptotic value
(d — o0) of 6.

The quantization of the magnetoelectric response is con-
sistent with the properties of the nonlocal Hall conductivity
shown in Fig. 3, where oy(l, ") is plotted as a function of
the QL indices [ and !’ for two values of the exchange con-
stants. As anticipated, oy(l, l') is localized near the top and
bottom surfaces, where TRS is broken. Furthermore, a careful
numerical evaluation of o,y = Zl’ Ve 1(b) OH (1,1") shows that
the larger J; ;) is, the more localized oy is at the surfaces.

To shed further light on the finite-size corrections, we
define a QL-projected total Chern number C(/) in which the
Berry curvature of each state is weighted by the projection of
that state onto the /th QL:

1
()= — / d*k QY (k), 5)
27 BZ i
where
Q;Z)(k)z —2Im Z (unk|vy(k)|un’k) (un’k|vx(k)|unk) W(li)-
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In Eq. (6), Wn(l? =Y o l{slunx)|? is the weight of |u,x) when
projected on orbitals |s) centered at the sites s of the /th QL.
The total Berry curvature does not single out the contribution
of a particular quasi-2D band. However, when projected on
a given QL, foy)(k) and C(l) are a good measure of the
contribution of the surface states relative to the contribution
of the bulk states. The total Q and C, obtained by summing
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FIG. 3. Nonlocal response of Hall conductivity in 15-QL TI thin
films for (a) J, = J, = 0.1 and (b) J, = J, = 0.3.
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FIG. 4. QL-projected total Chern number for 15-QL TI thin films
with different choices for the surface exchange fields J, and J,.
(a) Chern-insulator configuration; (b) axion-insulator configuration.
The total Chern number is dominated by sums over the three QLs
closest to either surface only when J, and J; are both smaller than the
bulk gap of ~0.3 eV.

Egs. (5) and (6) over [, yield C =1 in the Chern-insulator
state and C = O in the axion-insulator state, regardless of the
number of QLs and the value of J.

In Fig. 4 we plot C(/) versus the QL index [ for a 15-QL
film for different values of J;,,. Consistent with the band struc-
tures in Fig. 1, these results show that for J,;, substantially
smaller than the bulk gap, the only states with substantial
Berry curvature are those that derive from the nonmagnetic
state Dirac cones, which are strongly localized in the first three
QLs [38]. Note that the first three QLs represent the typical
localization region of the evanescent surface states in nonmag-
netic TI films [36]. In this case, we can operationally define
a surface QAHE conductance by 64 ) = e?/h let(b) c(),
and we find that it is closer to +e? /2h; in other words, the ex-
planation for the topological magnetoelectric effect (TME) in
terms of surface-localized half-quantized Hall conductivities
applies literally. Only under these conditions do the definitions
of a top and bottom surface Hall conductivity in terms of a
projected Chern number C(/) and a nonlocal Hall conductivity
ou(l, ") coincide. For very strong exchange potentials across
a full quintuple layer, our calculations show that states with
large Berry curvature have substantial weight deep in the bulk
of the film [38]. This is particularly evident in the asym-
metric case J, = 0.1, J; = 0.3 eV. Our explicit calculation
of the magnetization response to electric fields nevertheless
shows that finite-size corrections to the magnetoelectric re-
sponse are actually smaller in this case, implying that the
sidewall current response is even more concentrated in the
layers of the film that have broken time-reversal symmetry,
as evidenced by Fig. 3. For strong exchange interactions
the localized sidewall response cannot be understood sim-
ply in terms of the Hall response of states localized at the
surface.

Discussion. We have presented a unified analysis of the
QAHE, the response of sidewall current to changes in
chemical potential, and the QTME, the response of the mag-
netization associated with sidewall currents to changes in
electric potential across the width of the film. The QAHE
and the QTME are both of fundamental importance because
of the direct relationship of these observables to Bloch state
topology. Because the electric potentials in which we are
interested are independent of lateral position, we can intro-
duce them by adding layer-dependent lateral electric fields

that are nonzero only near the film sidewalls. In this way
we arrive at Eq. (2), which relates the magnetization and the
sidewall currents to both electric potentials and chemical po-
tentials via a Hall conductivity o (/, [’) that is nonlocal across
the film.

We have argued that in the thick-film limit the nonlocal
Hall conductivity oy (l,!") ~ 0 when either [ or I’ are far
from both the top and bottom surfaces and therefore in a
region that is locally time-reversal invariant. Numerical eval-
uation of og(l,1") for the realistic TB model of a TI thin
film reported on in Fig. 3 supports this statement, which
allows us to separate the total Hall conductivity o into top
and bottom surface contributions ¢ = o; + o;,. It follows from
time-reversal symmetry that o;(J;, Jp) = —o,(—J;, —J;) and
op(Jy, Jp) = —op(—J;, —Jp), where J;, and J, specify the ex-
change couplings at the top and bottom surfaces. We have
argued that in the thick-film limit a locality condition also ap-
plies, namely, that o; depends only on J; and o}, depends only
on Jj. This locality condition is certainly satisfied in the limit
of weak time-reversal symmetry breaking where the exchange
gap is considerably smaller than the bulk gap and the Hall con-
ductivity is contributed by weakly gapped Dirac-cone surface
states. It is less obvious, perhaps, that the locality condition
is satisfied in the strong-(J;, Jp) limit where we have shown
that states with large Berry curvature are extended across
the sample—although even here nonlocal response would be
very surprising. The assumption of locality is supported by
the fact that, when combined with quantization of the total
Hall conductivity and time-reversal symmetry properties, it
naturally accounts for the expected quantization value of the
QTME o, = 0}, = ¢*/2h, which we confirm numerically, and
for the (1 — w/d) form of finite-size corrections, with w being
a nonlocality length of the sidewall response and d being the
film thickness.

We have established the (1 — w/d) finite-size law using
explicit calculations of magnetization in the presence of an
electric field applied across a BiySe; topological insulator
which yield w ~ 2 nm. If this is correct, the part in 10° quanti-
zation accuracy routinely achieved for quantum Hall systems
would require films of approximately millimeter thickness.
Stronger surface magnetism generates larger quasi-2D gaps,
which in turn imply greater robustness of the quantized re-
sponse against potential disorder that is inevitable and can
invalidate quantization by inducing surface electron or hole
puddles. It is therefore encouraging for QTME measurement
efforts that finite-size corrections to the QTME are smaller
for surface magnetism that is stronger. This can be achieved
either in the sense of coupling more strongly to electron spins
near the Fermi level or in the sense of being present over more
near-surface layers of the film.
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