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Laser driving in systems with competing or coupled electronic orders can lead to the enhancement of orders
or even to the appearance of hidden phases without an equilibrium analog. Here we consider a model for A3C60

which exhibits a unique interplay between conventional and odd-frequency (or composite) orders. In particular,
we show that photodoping of the antiferromagnetic Mott insulating phase, as realized in Cs3C60, results in
a paramagnetic gapped state with broken orbital symmetry. This hidden phase, which does not exist under
equilibrium conditions, can be interpreted as an odd-frequency orbital-ordered state and is conceptually related to
the equilibrium Jahn-Teller metal in more weakly correlated compounds. Our study demonstrates the appearance
of pure odd-frequency order via the nonthermal melting of magnetic order and provides an interesting example
of nonequilibrium control of electronic orders in a multiorbital system.

DOI: 10.1103/PhysRevB.104.L201101

Introduction. Intriguing prospects of nonequilibrium con-
densed matter physics are light control of correlated systems
and the exploration of hidden phases that do not exist in
equilibrium [1,2]. Prominent examples include photoinduced
superconducting-like states [3–6] and metastable structures
with associated metal-insulator transitions [7–9]. Strongly
correlated materials with several active degrees of freedom
provide an ideal playground for the exploration of hidden
phases, since these materials typically host competing or
coexisting orders [10] and exhibit complicated free-energy
landscapes. Superconductivity has been induced via the laser-
driven suppression of a competing stripe order [3], while
polaronic Mott insulators can be switched to long-lived non-
thermal conducting states [8,9]. Theoretical investigations
have revealed hidden magnetic, orbital, and spin-orbital or-
ders [11,12] in photodoped multiorbital systems. Still, there
are many open questions concerning nonequilibrium control
of competing orders, the nature of hidden phases, and the
mechanisms which stabilize them.

In this Letter, we demonstrate the disentangling of a com-
posite (or odd-frequency) orbital order from a magnetic order
in a photodoped nonequilibrium state. Our study is inspired
by the fulleride compounds A3C60, whose essential physics is
captured by the half-filled three-orbital Hubbard model with
negative Hund coupling [13–15]. As sketched in the upper
panel of Fig. 1, the high-temperature (T ) phases of this model
break no symmetry, and one observes a crossover or transition
from a paramagnetic (PM) metal to a paramagnetic (paired)
Mott insulator with increasing interaction. At low T , in the
vicinity of the Mott transition, a peculiar Jahn-Teller metal
with coexisting metallic (M) and Mott insulating (I) orbitals
appears [16]. This is a composite-ordered (C) phase with a
nonzero two-body orbital moment [17]. While a conventional
electronic order can be described in terms of expectation
values of one-body operators, a composite-ordered phase ex-

hibits a symmetry breaking at the level of two-body operators,
e.g., orbital-dependent double occupations [17,18]. The low-
T Mott state is antiferromagnetic (AFM), and we will show
that this insulating phase is also of the C type. In equilibrium,
the C order is driven by the AFM order, but photodoping
can disentangle the two symmetry breakings. As indicated
in Fig. 1, the photoinduced melting of AFM order results
in a hidden gapped PM,C phase, which cannot be stabilized
without photocarriers.

Model and method. The rotationally invariant local Hamil-
tonian of our three-orbital model reads

Hloc = −μ
∑

α,σ

nασ + U
∑

α,σ

nασ nασ̄

+
∑

α>β,σ

[(U − 2J )nασ nβσ̄ + (U − 3J )nασ nβσ ]

− J
∑

α>β

(c†
α↓c†

β↑cβ↓cα↑ + c†
β↑c†

β↓cα↑cα↓ + H.c.), (1)

where μ is the chemical potential, U the intraorbital repulsion,
and J the Hund coupling. c†

ασ denotes the creation operator
for orbital α and spin σ . In addition, there is a hopping with
amplitude v

i j
α between sites i and j,

∑
〈i j〉ασ v

i j
α (t )(c†

iασ c jασ +
H.c.), which in the real compounds favors different crys-
tallographic axes depending on the orbital [15], enabling
orbital-selective excitations. The unique properties of the ful-
leride compounds originate from the effectively negative J
[14], which favors low-spin states. We will choose J = −U/4,
which is larger in magnitude than in realistic compounds [19]
but does not qualitatively change the physics [17].

To compute the nonequilibrium dynamics of the lattice
model, we use the nonequilibrium dynamical mean field
theory (DMFT) [20–22]. The lattice problem is mapped
to an effective impurity model with a self-consistently
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FIG. 1. Upper panel: Schematic equilibrium and nonequilibrium
phase diagrams, and nonthermal trajectory of the photodoped AFM
insulator. The equilibrium phases are labeled as metal (M) or insula-
tor (I), paramagnet (PM) or antiferromagnet (AFM), and according
to the presence of composite order (C). Lower panel: Equilibrium
DMFT+NCA phase diagram (green lines). Black dashed lines indi-
cate the phase diagram restricted to PM states. The red cross locates
the initial state considered in the nonequilibrium simulations.

determined hybridization function �ασ (t, t ′). Instead of a
bcc or fcc lattice, we will consider an infinite-dimensional
Bethe lattice, with a semicircular density of states of band-
width 4vα (0) (in equilibrium at time t = 0). In this case, the
DMFT self-consistency condition directly relates the impu-
rity model Green’s function Gασ (t, t ′) = −i〈TCcασ (t )c†

ασ (t ′)〉
to the hybridization function �ασ [20,22]: �ασ (t, t ′) =
vα (t )Gασ̄ (t, t ′)vα (t ′), where we switch the spin index between
the left and right side in order to describe a potential AFM
order.

To solve the nonequilibrium impurity problem, we use the
noncrossing approximation (NCA) [23,24], which captures
the essential physics in the strongly correlated regime. To
mimic the effect of a photoexcitation, we will apply a hopping
modulation of the form

vα (t ) = v(0) + aα f (t − tp) sin(�(t − tp)) (2)

with aα the amplitude of the modulation for orbital
α, f (t − tp) = exp[(−0.3(t − tp))2] a Gaussian envelope

function centered at time tp, and � the frequency of the mod-
ulation. For � larger than the gap, this creates mobile charge
carriers and thus has an effect similar to photodoping. We use
v(0) as the unit of energy (h̄/v(0) as the unit of time) and set
h̄ = 1.

Our model is invariant under orbital rotations, and none
of the phases considered in this work have a conventional
orbital order (at half filling, nα = 1 for all three orbitals). The
C phases, however, break the orbital symmetry by singling
out two orbitals in a paired Mott state, while the third orbital
is either metallic or in a conventional Mott insulating or AFM
state. By applying a small seed in the initial DMFT iterations,
we select the two paired Mott orbitals to be orbitals α = 1 and
2. The C phases, with orbital-dependent double occupations,
are therefore characterized by a nonzero

T 8
comp(t ) =

∑

α

√
3λ8

αα〈nα↑(t )nα↓(t )〉, (3)

with λ8 = 1√
3
diag(1, 1,−2) a Gell-Mann matrix [25]. This

breaking of the orbital rotation symmetry can be related
to odd-frequency orbital order [17] and detected through
the time dependence of the Green’s functions. In equi-
librium, the imaginary-time dependent quantity T 8(τ ) =∑

ασ

√
3λ8

αα〈c†
ασ cασ (τ )〉 can be expanded as T 8(τ ) = T 8

even +
T 8

oddτ + O(τ 2) to define the order parameters for conventional
orbital order (T 8

even) and for odd-frequency orbital order (T 8
odd).

Since T 8
odd = 2UT 8

comp + (other terms) [26], T 8
odd and T 8

comp can
both be used to detect the C order. For nonequilibrium calcu-
lations, it is convenient to express T 8

odd as

T 8
odd(t ) = −

∑

ασ

√
3λ8

αα∂t ′G<
ασ (t ′, t )

∣∣∣∣∣
t ′=t

. (4)

We also consider AFM order, AFM(t ) = ∑
α〈nα↑(t ) −

nα↓(t )〉, while antiferro-orbital order and superconductivity,
which also exist in this model [27], are suppressed.

Results. The lower panel of Fig. 1 shows the DMFT+NCA
phase diagram of the half-filled model in the space of U and T .
Within NCA, the metallic, paramagnetic, composite-ordered
M,PM,C phase and low-T metal-insulator crossover line of
the PM calculation are buried inside an extended insulating
composite-ordered I,AFM,C solution (solid green line), which
features one AFM and two almost PM orbitals. On the strong
coupling side, there is a narrow range of conventional AFM
insulator with three degenerate AFM orbitals, close to TNéel.
The transition from the high-T PM to the I,AFM phase is
second order, while the transition to I,AFM,C is first order. In
the exact DMFT solution (obtained with a CT-HYB impurity
solver [28]), only the paired Mott region becomes AFM [17],
while the metallic and composite-ordered phases at smaller U
are PM. We checked that this exact AFM solution is also of the
C type, with a direct first order transition from the I,PM phase
to the I,AFM,C solution. In the nonequilibrium analysis, we
will restrict ourselves to U = 8, and initial T = 0.033 (red
cross in Fig. 1). In this large-U regime, apart from the detailed
behavior near the phase boundary, the physics is correctly
captured by the NCA solver.

The nature of the I,AFM,C state is revealed by
the orbital-resolved local spectral function Aασ (ω, t ) =
− 1

π

∫ tmax

t dt ′eiω(t ′−t )GR
ασ (t ′, t ), which for the initial equilib-
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FIG. 2. Upper panel: Spectral functions in the initial I,AFM,C
state at U = 8, T = 0.033, the metastable I,PM,C state (measured
at t = 10), and the thermalized I,PM state. In the AFM states, solid
(dashed) lines indicate the spin-averaged spectra for orbital α = 1, 2
(α = 3). We also indicate the total S and L associated with the differ-
ent peaks. Lower panel: Majority-spin spectral functions. The blue
lines in the inset show the occupied density of states A<(ω, t = 10)
for orbital α = 1, 2 (solid line) and α = 3 (dashed line).

rium state is shown by the gray lines in the upper panel
of Fig. 2. Two orbitals (α = 1, 2 in our simulations, solid
lines) are PM and in a paired Mott insulating state, which is
stabilized by the pair-hopping term. The third orbital (α = 3,
dashed line) is in an AFM insulating state. (For simplic-
ity, we plot the spin-averaged spectrum.) Because the two
types of orbitals have different double occupations and dif-
ferent Green’s functions, T 8

comp and T 8
odd are nonzero (while

T 8
even = 0). The spectral function features three pairs of peaks,

with energy separations �ω ≈ U + 2J = 4, U − 4J = 16,
U − 8J = 24. These correspond to electron removal/addition
from/to the lowest energy half-filled states with total spin
S = 1

2 and total angular momentum L = 1 (see, e.g., Table
I in Ref. [29]). The lowest peaks are associated with the cre-
ation of four- and two-electron states with S = 0, L = 0, the
middle peaks with S = 0, L = 2, and the high-energy peaks
with S = 1, L = 1.

The half-filled S = 1
2 , L = 1 atomic states are super-

positions of the states |dh〉αβ ⊗ |s〉γ , where |dh〉αβ =
1√
2
(|↑↓, 0〉αβ + |0,↑↓〉αβ ) describes a doublon-holon eigen-

state of the pair-hopping term (eigenenergy J) and |s〉γ = |σ 〉

FIG. 3. Evolution of the AFM, T 8
odd and T 8

comp order parameters
for the photodoped I,AFM,C state with U = 8 and initial T = 0.033,
plotted on a linear (upper panel) and logarithmic (lower panel) scale.
The pulse with � = 3.5, a = 1 is applied to orbital 3. The solid gray
line indicates the envelope f (t − tp) of the pulse and the horizontal
dashed line the expected reduction of T 8

comp due to the photodoped
population of doublons and holons.

a singly occupied orbital (α, β, γ is a cyclic permutation of
1,2,3). Adding/removing an electron to/from |s〉γ creates a
superposition of S = 0, L = 0 and S = 0, L = 2 states, while
in the case of |dh〉αβ , one ends up in a superposition of
S = 0, L = 2 and S = 1, L = 1 states.

In the I,AMF,C phase, the orbital symmetry is broken, and
our simulation produces an insulator dominated by |dh〉12 ⊗
|s〉3. The above considerations explain why the spectral func-
tion for orbital α = 1, 2 (solid gray line) has weight mainly
in the middle and high energy peaks, while α = 3 (dashed
gray line) contributes to the middle and low energy peaks.
The lower panel of Fig. 2 shows the majority-spin spectral
functions and reveals that the AFM order is supported by
orbital 3, with a large spin polarization and characteristic spin-
polaron peaks [30,31]. We can understand the origin of the
orbital symmetry breaking in the lattice system by considering
the effect of intersite hopping. Because of the orbital-diagonal
hopping, the |dh〉12 ⊗ |s〉3 arrangement with AFM ordered
|s〉3 fully exploits the spin-exchange energy. In an orbitally
symmetric system, most of the virtual hoppings are agnostic
to the spin arrangement and do not stabilize an AFM order.
Hence, the composite order in the equilibrium I,AFM,C phase
is driven by the magnetic order.
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FIG. 4. Red-shaded curves: AFM versus composite order after
pulses with indicated frequencies � and a = 1, applied to orbital
α = 3. The black dashed line with circles shows the order parameters
for different temperatures in equilibrium (increasing T from top right
to bottom left).

We now show that the C order can be disentangled from the
AFM order by photodoping. We apply a pulse with � = 3.5
and a = 1 to orbital α = 3 (see Supplemental Material [32]
for the orbital-symmetric pulse) and track the evolution of
the AFM, T 8

odd, and T 8
comp order parameters. Figure 3 shows

the results on a linear and logarithmic scale. This pulse with
energy comparable to the splitting between the S = 0, L = 0
multiplets quickly melts the AFM order, while T 8

odd and T 8
comp

(after some suppression during the pulse) decrease much more
slowly. The result is a transient I,PM,C phase, which has
pure odd-frequency or C order. Such a symmetry-broken state
cannot be realized in equilibrium, where the I,PM phase has
degenerate orbitals.

The energy gap and orbital symmetry breaking in the hid-
den I,PM,C phase are clearly revealed by the red spectra for
t = 10 in Fig. 2, where the solid (dashed) lines show the
results for α = 1, 2 (α = 3), and in the top panel we average
over spin. In contrast, the equilibrium M,PM,C phase, which
exists at smaller U , is an orbital-selective metal state at ele-
vated T , with a large but orbital-dependent density of states at
ω = 0 [33]. The nonthermal nature of the red spectra becomes
obvious by comparison to the spin and orbital symmetric spec-
tra of the thermalized system expected after a long time (black
line). The corresponding T = 1.42 has been determined from
the conserved total energy after the pulse.

The thermalization pathway is illustrated in Fig. 4, which
plots the evolution of the system for different pulse frequen-
cies � in the space of the AFM and T 8

comp order parameters.
In equilibrium, as T is increased, the AFM order decreases
more slowly than the composite order, see black dashed line
with circles, then (within DMFT+NCA) a jump to the con-
ventional I,AFM state with T 8

comp = 0 occurs, and as T is
further increased this I,AFM order melts. The nonthermal
evolution follows a distinctly different pathway, as illustrated
by the dashed arrow. In this case, the AFM order is quickly
suppressed, while the C order persists, so that the system
switches into the hidden I,PM,C phase. A qualitatively similar
behavior, but for conventional orbital and magnetic orders,
has been observed in a photodoped two-orbital model in
Ref. [11].

FIG. 5. Left panels: Illustration of doublon hopping in orbital
α = 3 in the I,PM,C state. Full/empty dots represent doubly/singly
occupied sites in orbital 3 and the black oval the doublon/holon
state |dh〉12. Right panels: Illustration of a doublon hopping process
involving orbitals α = 1, 2. In the first step, pair hopping leads to
the reshuffling |dh〉12 ⊗ |d〉3 → |dh〉23 ⊗ |d〉1. In the last step, an
electron in orbital 1 hops to the neighboring |dh〉12 doublon-holon
state.

The selective melting of the AFM order and the emergence
of the I,PM,C state are linked to the kinematics of the excited
doublons and holons. The photodoping pulse with � = 3.5
produces them in the lowest-energy S = 0, L = 0 multiplet
and hence orbital α = 3 (see blue arrows in Fig. 2). Since
the gap size is comparable to the width of the S = 0, L = 0
subband, the injected doublons/holons are long lived [34,35]
and as illustrated in the left panels of Fig. 5, they can move
to neighboring singly occupied orbitals 3 without any local
energy cost. This hopping disturbs the AFM spin background
and results in the melting of the magnetic order, because the
initial kinetic energy of the doublons/holons is larger than the
spin exchange energy [36] and their density is sufficiently
high. The electron-spin interactions and the thermalization
bottleneck lead to a PM state in which much of the injected en-
ergy is stored as potential energy, and the doublons/holons are
relatively cold [37]. Such nonequilibrium quasisteady states
can host nonthermal electronic orders [38–42].

Fitting the nonequilibrium distribution function
A<(ω, t )/A(ω, t ) to a Fermi function yields Teff = 0.38
for the doublons/holons. This is substantially lower than the
T = 1.42 of the thermalized state but still high compared to
the temperature scales of the equilibrium C phases. Entropy
cooling [43] or the large susceptibility to orbital symmetry
breaking in low-temperature states (see Ref. [32]) can thus
not fully explain the robustness of the hidden I,PM,C phase.
A more relevant aspect is that the system approaches a
quasiequilibrium state with an approximately conserved
density of photoexcited doublons/holons [38–42]. The C
order survives because the orbital symmetry breaking allows
the doublons/holons to move around and to optimize the
kinetic energy. This mechanism is similar to the stabilization
of ferromagnetic order by itinerant carriers in the double
exchange model [44,45], but here we are dealing with
nonthermal carriers and a ferrotype two-body orbital moment.

To support this interpretation, we consider the dynamics
of the injected doublons. In principle, as illustrated in the
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right panels of Fig. 5, the pair-hopping term can reshuffle a
configuration with additional doublon and for example con-
vert |dh〉12 ⊗ |d〉3 into |dh〉23 ⊗ |d〉1. However, in the C phase
with broken orbital symmetry, an electron from orbital α = 1
cannot be easily transferred to the neighboring |dh〉12 state,
since such a process corresponds to electron insertion into the
intermediate- or high-energy multiplets. The corresponding
substantial energy cost of �E � U − J in most cases pre-
vents the hopping, so that the local configuration reverts to
|dh〉12 ⊗ |d〉3 and the doublon moves on in orbital 3, leaving
behind an unperturbed I,PM,C pattern.

Since local states with photodoped doublons and holons
can be reshuffled by the pair hopping term, they should not
contribute to T 8

comp. The pulse used in the left panel of Fig. 4
produces doublons or holons on 2 × 18 = 36% of the sites.
The horizontal gray dashed line shows the initial T 8

comp re-
duced by these 36% and confirms that the suppression of the
C order during the pulse is due to the photodoped carriers,
while the orbital background remains undisturbed. A further
consequence of the local reshuffling of doublons is the fact
that the occupied density of states in the upper Hubbard band
is almost independent of orbital (see inset of Fig. 2). The small
difference between the occupation A< (blue) and the spectral
function A (red) for α = 1, 2 indicates that doublons in these
orbitals are almost exclusively generated by such reshufflings,
while for α = 3 only a fraction of the states are occupied,
consistent with the picture of itinerant doublons moving in a
Hubbard band (Fig. 5).

Conclusions. We have shown that the AFM insulating
state in a simple model for A3C60 exhibits a spontaneous
symmetry breaking into two paired Mott insulating orbitals
and a third conventional Mott insulating orbital which sup-
ports the AFM order. The photoinduced nonthermal melting
of the AFM order converts this equilibrium I,AFM,C phase
into a hidden I,PM,C phase with pure composite or odd-
frequency orbital order (Fig. 1). This hidden state is stabilized
by the long life-time and orbital-dependent kinetic energy
of the photocarriers. It would thus be an interesting target
for studies with nonequilibrium steady state [42] or effective
equilibrium [41] formalisms. While |J| is much smaller in
realistic fulleride compounds, signatures of such a hidden
state may be detectable in photodoped bcc Cs3C60, through
orbital-dependent spectra in photoemission or through an
anisotropy in transport measurements. Photoelectron fluc-
tuation spectroscopy [46], which was recently discussed
in the context of odd-frequency superconductivity in
Ref. [47], could potentially provide direct access to the order
parameter.
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