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Relaxation timescales and electron-phonon coupling in optically pumped
YBa2Cu3O6+x revealed by time-resolved Raman scattering
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Time-resolved measurements provide a new way to disentangle complex interactions in quantum materials due
to their different timescales. We used pump-probe Raman scattering to investigate the apical oxygen vibration
in YBa2Cu3O6+x under nonequilibrium conditions. Time dependence of the phonon population demonstrated
strong electron-phonon coupling. Most importantly, the phonon shifts to a higher energy due to transient
smearing of the Fermi surface in a remarkable agreement with diagrammatic theory. We also discuss insights
into photoinduced superconductivity reported at lower doping that follow from these results.
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Driving quantum materials with electromagnetic fields can
generate novel phases and states away from thermal equilib-
rium [1–5]. Recently reported signatures of superconductivity
at elevated temperatures in photoexcited copper oxides and
intercalated fullerenes are particularly interesting but still
enigmatic [6–12]. In most of these experiments the ultra-
fast laser pulse (pump) drives or photoexcites the system
and another ultrafast pulse (probe) takes snapshots of a spe-
cific property as a function of pump-probe time delay. Such
experiments also elucidate energy flows between phonons,
electrons, and magnons providing a way to determine the
strength of different interactions.

This work focuses on relaxation timescales and interac-
tions between electrons and phonons in a prototypical copper
oxide superconductor, YBa2Cu3O6+x.

Electron-phonon coupling in the copper oxides is still
enigmatic. It allows electron-hole recombination and elec-
tron scattering with the creation or annihilation of phonons;
phonons in turn can decay into electron-hole pairs. As a result,
spectroscopic quasiparticle peaks shift and/or broaden due
to decreased lifetime. However, electron-phonon scattering is
not the only process that gives rise to these effects. Internally,
phonon-phonon coupling (anharmonicity) also broadens the
phonon peaks; similarly, electron-electron interactions can
broaden the electronic quasiparticles, as does disorder [13].
Thus, extracting just the electron-phonon coupling strength
from the linewidths of quasiparticle peaks is challenging.

To get around this problem, we used time-resolved Raman
scattering (TRR) [Fig. 1(a)] [14–23]. In TRR an ultrafast opti-
cal pump laser pulse first photoexcites the material and Raman
scattering from another time-delayed pulse probes the system.
In the copper oxides, previous TRR work highlighted ultrafast
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destruction of the antiferromagnetic order in the undoped
parent compound of YBa2Cu3O6+x [24] and nonequilibrium
behavior of the superconducting gap in Bi2Sr2CaCu2O8+δ

(BSCCO) [25].
In our experiment near-infrared (IR) pump pulses create

hot electrons, and the time-delayed Raman probe measures
the apical oxygen A1g phonon. Apical oxygen modes recently
came to the center of attention due to their impact on elec-
tronic [26] and magnetic [27] degrees of freedom of the
copper-oxygen planes, interlayer charge transport [28], and
photoinduced superconductivity [6,9–11,26]. The A1g mode
is known for a large spectroscopic linewidth [29–31] and an
anomaly at the superconducting transition temperature, Tc.

Upon optical pumping the phonon occupation number
increased dramatically due to absorption of energy from pho-
toexcited electrons as expected from strong electron-phonon
coupling [32–37]. This phonon also hardened at short time
delays as a result of the decrease of its electronic self-energy
expected from smearing of the Fermi surface due to very
high transient electronic temperature. This effect provides a
rigorous test of electron-phonon calculations based on elec-
tronic structure. Our results were in quantitative agreement
with the Green’s functions–based theory of Refs. [33,38]
[see Fig. 1(b)].

Data presented in this Letter were collected on a 170-
nm-thick (110)-oriented YBa2Cu3O6.9 thin film prepared by
pulsed laser deposition on a (110) LaAlO3 substrate with Tc

of 81 K [39,40]. We also obtained a data set on a similar
film with reduced oxygen concentration (Tc = 40 K) with
the temperature in the cryostat of 100 K. Our TRR setup
[Fig. 1(a)] uses 20-kHz 790-nm (1.57 eV) laser pulses from
an amplified mode-locked Ti:sapphire laser, which produces
intense 40 fs pulses. Second-harmonic generation at 395 nm
(3.14 eV) was used as the probe light source for Raman
scattering.
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FIG. 1. Time-resolved Raman scattering (TRR) setup and key results. (a) Schematic of the TRR experiment and the color map showing
representative data on the anti-Stokes (AS) side of the spectrum obtained with the sample at 300 K. Negative time corresponds to the probe
pulse arriving before the pump pulse when the system is still at thermal equilibrium. Most intensity in the peak is from the apical oxygen
phonon whose atomic displacements are indicated by green arrows in the schematic of the YBa2Cu3O7 unit cell to the right of the color map.
(b) Comparison of diagrammatic theory [38] and experiment for the dependence of phonon energy as a function of electronic temperature at
delay times up to 600 fs. The temperature in the cryostat was 10 K/300 K in the top/bottom panels, respectively. Impurity scattering of 20 meV
was added to the theory curve in the upper panel, but not to the lower panel, since scattering by phonons at 300 K is greater. Unrenormalized
phonon energy was picked to obtain good agreement of theory with experiment at thermal equilibrium [38].

The time-energy uncertainty principle limits the energy
resolution of the ultrafast probe. In order to resolve the
phonons from the elastic line, the 790 nm pulses were passed
through an in-house-built time-compensating band-pass fil-
ter [Fig. 1(a)] making both the pump and the probe pulses
narrower in energy and broader in time. A cross-correlation
measurement gave a time resolution of 220 fs FWHM (see
Supplementary Note 1 in [41]). The time-averaged probe
power was below 1 mW, to eliminate self-pumping nonlinear-
ities (in the Supplemental Material [41], see Ref. [17] therein).

The scattered light was collected by a pair of parabolic
mirrors with a polarizer in the middle, and analyzed on a
single-stage McPherson spectrometer equipped with a LN2-
cooled CCD detector. A custom-made notch filter blocked
elastically scattered light. The samples were in air or in a
cryostat in a He exchange gas. We show results obtained with
the pump photon polarization parallel to the ab plane. Photon
polarization along the c axis gave similar results. Background
measured under identical conditions but without the probe was
subtracted from raw data.

We read off phonon temperature from the intensities on the
Stokes (S) and anti-Stokes (AS) sides, IS and IAS [15,16]. They
are related by the fundamental principle of detailed balance:

gIAS

IS
= (ω0 + ωph)4

(ω0 − ωph)4 e−h̄ωph/kBTph , (1)

where ω0 is the laser frequency, ωph is the phonon energy, kB is
the Boltzmann constant, Tph is the phonon temperature, and g
is equal to 1. Introducing g allows us to correct for the system-
atic error due to imprecise spectrometer calibration. We made
g = 0.9 to make the phonon temperature at negative times
equal to 300 K at room temperature. Following convention,

we define the temperature of each bosonic mode, Tboson, via
its relation to the occupation number n = (eh̄ωph/kBTboson − 1)−1.
Away from thermal equilibrium different phonons have differ-
ent occupation numbers, and therefore different temperatures.
According to the fluctuation-dissipation theorem, the S and
AS Raman intensities are given by IS = (n + 1)χ ′′(h̄ω) and
IAS = nχ ′′(h̄ω), where χ ′′ is the imaginary part of the Raman
response function (polarizability) of the phonon of interest.
The color map in Fig. 1(a) showcases the dramatic increase of
the AS intensity, indicating an increase of Tph [Eqs. (1), (2)],
as well as a peak shift to larger energy right after photoexcita-
tion.

The apical oxygen phonon around 500 cm−1 and a weaker
plane oxygen mode at 440 cm−1 [Fig. 2(a), inset], which may
include substantial apical oxygen character [42,43], dominate
the Raman spectrum in the zz geometry where both inci-
dent and scattered photons are polarized perpendicular to the
copper-oxygen planes [Fig. 2(a)] [29,30,44]. The intrinsic line
shape of the phonon peaks is known to be best described
by characteristic Fano profiles (see inset in Fig. 2(a) and
[29,30,44]); however, due to a very broad energy resolution
of the experiment, they were fitted with Gaussians as shown
in the main panel of Fig. 2(a). When fitting the time-resolved
data where the peaks are not resolved [Fig. 2(a), main panel],
the intensity of the 440 cm−1 peak was fixed at 20% of the 500
cm−1 peak, consistent with Raman intensities obtained with
a high-energy-resolution 360 nm laser whose wavelength is
close to 395 nm of the probe pulsed laser. The linewidths of
the two peaks are similar [Fig. 2(a), inset], so we assumed
similar electron-phonon coupling and kept the intensity ratio
the same at all delay times. Assuming weak electron-phonon
coupling for the 440 cm−1 peak did not significantly change
the fit results.
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FIG. 2. Raw data and phonon temperature at two doping levels.
(a) Background-subtracted TRR spectra at different delay times with
the cryostat at 300 K (black circles). The peaks at ±500 cm−1 are
Stokes (+) and anti-Stokes (−) phonon peaks. Red line is a guide to
the eye representing smoothed data without the pump. Large peak
widths are due to the increased energy width of the pulsed laser.
(b) Phonon temperature as a function of time after photoexcitation
at optimal doping and reduced doping where photoinduced super-
conductivity was reported earlier [9]. Temperature in the cryostat
of 100 K and pump fluence of 8 mJ/cm2 were the same as in
Ref. [9]. Note that pump energy is absorbed first by electron-hole
pairs, which then thermalize with the apical oxygen phonons; i.e.,
electronic temperature never drops below the phonon temperatures.

Figure 2(b) shows the time dependence of the phonon
temperature for optimally doped and underdoped samples
obtained under the pumping conditions used to generate tran-
sient superconductivity with the near-IR pump in an earlier
study [9]. The two samples behave similarly with smaller
maximum temperature achieved by the underdoped sample.
Note that in both cases the phonon temperature remains above
300 K up to long delay times although the temperature in the
cryostat was 100 K.

We performed a detailed analysis of the time-dependent
phonon data obtained with a lower pump fluence (Fig. 3). The
phonon temperature dramatically increases within the time
resolution to about 450 K independently of the temperature
in the cryostat. This increase is followed by the exponential
decay starting from 0.5 ps. The decay saturates around 5 ps
[Fig. 3(a), inset] when the photoexcited region reaches the
internal thermal equilibrium temperature, Teq = 300 K. The
inset to Fig. 3(b) shows Teq as a function of Tcryo highlighting
increased transient heating of the sample, �T , at lower tem-
peratures due to its smaller heat capacity. Further equilibration
with the cryostat exchange gas is much longer than 100 ps
[see inset to Fig. 3(a)]. An earlier study attributed this heating

FIG. 3. Phonon temperature and energy together with fits to
the two-temperature model. Pump (probe) fluence was 1.4 mJ/cm2

(15 μJ/cm2). Tcryo was 250 K. Black line represents hot phonons; red,
hot electrons; blue, cold phonons. The electronic temperature curves
in (a) and (b) are the same. Inset to (a) illustrates the behavior at large
delay times for the sample in air at 300 K. Dashed blue line in (b) is
the measured pump-probe cross correlation centered at t = 0.

to nonthermal effects, but the heating at these time delays is
consistent with the pump fluence as discussed below.

Our 1.5 eV pump photons should create electron-hole pairs
[45], which thermalize among themselves much faster than
the time resolution. Time-resolved angle-resolved photoemis-
sion (trARPES) showed that electrons reached a maximum
temperature of 800 K with 100 μJ/cm2 pump pulses in
BSCCO [46]. In graphite the electronic temperature reached
far above 1000 K when pumping with 150 μJ/cm2 [15,47,48].
It is reasonable to expect similarly high electronic tempera-
tures in YBCO.

We interpret our results in terms of the two-temperature
model where f is a fraction of phonons with strong electron-
phonon coupling, λ. Photoexcited electrons first give off
energy to the hot phonons [46,49,50], which in turn decay
into other, cold phonons with the lifetime τ until all phonons
and electrons thermalize at Teq. The system then slowly equi-
librates with the heat bath via propagating (mostly acoustic)
phonons.

Our experiments provide detailed information on each step
of this process.

The electrons are pumped by a Gaussian pulse P(t ) with
energy density Epulse = ctot�T , where �T = Teq − Tcryo and
the duration is 170 fs. The combined specific heat of electrons,
hot phonons, and cold phonons, ctot, depends on temperature,
but we approximate it as the average of the values at Tcryo and
Teq taken from Ref. [51]. If �0 is a typical phonon energy,
then the electronic temperature, Tel , the hot phonon temper-
ature, Th, and the cold phonon temperature, Tc, obey the rate
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FIG. 4. Dependence on pump power, P, and Tcryo. (a) Phonon
hardening at 200 fs [Eph(200 fs) − Eph(−1000 fs)] as a function of
Tcryo at P = 27 mW. Inset: Phonon hardening at Tcryo = 10 K as
a function of P. (b) Phonon temperature at 200 fs and 1 ps as a
function of Tcryo at P = 27 mW (fluence of 1.4 mJ/cm2). Note that
Tel = Tph at 1 ps. Inset: Tph at 200 fs at Tcryo = 10 K as a function
of P. (c) Electron-phonon coupling constant λ together with the
anharmonic scattering rate 1/τ . See Supplementary Notes 2 and 3
for details on how τ and λ were calculated [41]

equations:

∂Tel

∂t
= −3λ�3

0

h̄πk2
B

n(Tel ) − n(Th)

Tel
+ P(t )

cel (Tel )
, (2)

∂Th

∂t
= cel (Tel )

ch(Th)

3λ�3
0

h̄πk2
B

n(Tel ) − n(Th)

Tel
− Th − Tc

τ
, (3)

∂Tc

∂t
= ch(Th)

cc(Tc)

Th − Tc

τ
, (4)

where n(T ) = (e�0/kBT − 1)−1 and the specific heats are
cel = γ Tel , ch = 3Natm f �0(∂nh/∂Th), and cc = 3Natm(1 −
f )�0(∂nc/∂Tc). Here, Natm is the number of atoms per for-
mula unit (= 12.9 for our sample) and the value of γ was
taken from measurements in Ref. [51]. Equations (2)–(4) cor-
respond to Eqs. (1)–(3) of Ref. [46] written down in terms of
�T , which we measured with high precision.

We solved these coupled differential equations using the
Euler method with 1 fs steps. Figure 3(a) presents a fit to
this model with �0 = 60 meV and τ = 478 ± 25 fs (see
Supplementary Note 3 for fits with different values of �0

and τ [41]). f = 0.14 and λ = 0.065 were free parameters.
Electrons initially heat up to 1000 K similarly to the previous
result on BSCCO [46], and then cool quickly to thermalize
with hot phonons at 300 fs. Thermalized hot electrons and
hot phonons have a larger heat capacity compared with the
heat capacity of electrons alone so they equilibrate with cold
phonons with the much slower 478 fs time constant at 250 K.
This lifetime increases with reduced temperature reaching
700 fs at 10 K (see Fig. 4(c) and Supplementary Note 2
in [41]). It is much smaller than in graphite [15–21]. The

electron-phonon coupling strength is close to λ = 0.07 at all
temperatures, which is smaller than the the LDA value [52].

Thermalization on subpicosecond timescales is controver-
sial. Deviations from the Fermi-Dirac distributions of the
electrons have been reported at pump-probe delay times of a
few hundred fs in simple metals [53,54]. However, the ARPES
measurements of Ref. [40] showed that in BSCCO, thermal-
ization occurs already at 100 fs. It also showed that nonther-
mal distribution at shorter times is characterized by a small
(only a few percent) deviation from the Fermi-Dirac distri-
bution. Assuming that YBCO behaves similarly, for our pur-
poses electrons can be treated as internally thermalized [53].

The assumption of internally thermalized hot phonons
is valid only if they have similar electron-phonon coupling
strength. For example, the 2T model breaks down in graphite
where one hot phonon had a significantly larger electron-
phonon coupling than another [15]. According to Ref. [33] as
well as prior experimental work, the breathing phonons and
the buckling phonons have a significantly stronger electron-
phonon coupling than the apical oxygen mode [55,56]. We
found that adding phonons that have a much stronger electron-
phonon coupling than the apical mode to the model can
increase λ by nearly an order of magnitude; thus λ obtained
from fits to the apical oxygen phonon occupation data alone
is not accurate. Time-dependent electronic temperature, how-
ever, was only weakly model dependent, which allowed us
to make a quantitative comparison of the phonon energy vs
electronic temperature to theory as discussed below.

We observe a profound shift of the phonon peak position
to a higher energy (hardening) at small time delays [Fig. 3(b)]
with the maximum at 200 fs. It is independent of Tcryo but de-
creases with reduced pump power [Fig. 4(a)]. These changes
in the phonon energy do not correlate with either phonon
occupation or with the electric field of the pump, which
should follow the cross-correlation curve in Fig. 3(c). Instead
phonon hardening closely follows the electronic temperature.
A similar effect in graphite was associated with electronic
temperatures of over 1000 K [17,57,58].

The phonon self-energy �(q,�) is proportional to elec-
tronic polarizability, which depends on the electronic temper-
ature [59–61]. To make this quantitative, we model the system
as a band of electrons interacting with the three strongly cou-
pled phonons: the A1g, B1g, and breathing modes, which are
kept at the cryostat temperature. Electronic quasiparticle exci-
tations renormalize the apical phonon frequency. The increase
in the quasiparticle temperature diminishes the softening of
the apical phonon [lines in Fig. 1(b)], leading to an increase in
the phonon frequency as a function of the effective electronic
temperature [60] (also see Supplementary Note 4 in [41] and
Refs. [33,62] therein for the details). The initial decrease of
the theory curve at Tcryo = 10 K is a result of the broadening
of the electronic bands due to their phonon-mediated self-
energy. At weak interactions (and low T) broadening the bands
increases the bubble (phonon self-energy), and thus softens
the phonon as temperature increases. This effect competes
with the dominant hardening effect due to smearing of the
Fermi surface described above. The calculation picks it up
due to relatively sharp bands when the lattice temperature is
low in the absence of impurity scattering. It is not present at
300 K because of the existing broadening by phonons at this
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temperature. Increasing the impurity scattering rate weakens
the kink at Tcryo = 10 K as shown in Supplementary Note 5
[41].

Note that simple heating of the sample leads to phonon
softening, not hardening. This is primarily because of
thermal expansion caused by increased population of acoustic
phonons. However, acoustic phonons stay cold at short pump-
probe time delays and lattice expansion does not occur.

We have demonstrated quantitative agreement with theory
of the time-varying apical phonon frequency as the electronic
system loses its excess energy to the broader phonon bath. It
highlights that the dynamics of energy transfer are responsi-
ble for the temporal behavior of the electrons and phonons,
as well as the disparity between interactions in and out of
equilibrium. Although in strongly correlated materials such
as YBCO there are strong Coulomb processes and impurity
scattering that dominate the electronic spectra, when it comes
to time domain these processes rapidly come to an internal
equilibrium and effectively shut off [38]. Our results pro-
vide a phonon-centered perspective on previous experiment
in Bi2Sr2CaCu2O8 with both time-resolved ARPES [63] and
ultrafast electron diffraction [64] that both observed a similar
quantitative agreement.

Our work provides insights into photoinduced supercon-
ductivity [65,66]. Its signatures were recently reported in the
optical spectra of underdoped YBCO up to time delays of

about 1 ps when pumping with 790-nm near-IR pulses [9]
as well as with pulses that resonated with IR-active apical
oxygen phonons. Our experiments reproduced the former
pumping condition and showed that optimally doped and un-
derdoped YBCO behave similarly [Fig. 2(b)]. We found that
hot and cold phonons were out of thermal equilibrium, but
electrons and hot phonons were at or near thermal equilibrium
at time delays below 1 ps. At these time delays electronic tem-
peratures were always well above room temperature. We plan
to determine transient heating while pumping the IR-active
phonons in future experiments.
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