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Mixed-parity octupolar pairing and corner Majorana modes in three dimensions
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We identify time-reversal symmetry breaking mixed-parity superconducting states that feature eight Majorana
corner modes in properly cleaved three-dimensional cubic crystals. Namely, when an odd-parity isotropic
p-wave pairing coexists with cubic symmetry preserving even-parity octupolar dx2−y2 + id3z2−r2 pairing, the
gapless surface Majorana modes of the former get localized at the eight corners, thus yielding an intrinsic
third-order topological superconductor (TOTSC). A cousin dxy + id3z2−r2 pairing also accommodating eight
corner Majorana modes, by virtue of breaking the cubic symmetry, in contrast, yields an extrinsic TOTSC.
We identify a doped octupolar (topological or trivial) Dirac insulator as a suitable platform to sustain such
unconventional superconductors, realized from an intraunit cell pairing. Finally, we argue that the proposed
TOTSC can be experimentally realizable in NaCl and other structurally similar compounds under high pressure.
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Introduction. Localized Majorana zero modes are of
paramount importance for braiding and non-Abelian statistics,
and their applications in topological quantum computa-
tion [1–3]. For these purposes, one-dimensional quantum
nanowires offer a great potential as they can host topologically
robust endpoint Majorana zero modes at low temperatures:
a hallmark of the traditional bulk-boundary correspondence.
Nonetheless, its recently discovered higher-order general-
ization manifesting through robust gapless modes localized
on even lower-dimensional boundaries, such as corners and
hinges [4–16], when extended to the territory of neutral
Bogoliubov–de Gennes (BdG) quasiparticles, boosts in this
regard the prominence of higher-dimensional, higher-order
topological superconductors (HOTSCs) [17–40]. For exam-
ple, in contrast to conventional (or first-order) topological p +
ip and d + id pairings, supporting one-dimensional Majorana
edge modes, a two-dimensional p + id HOTSC hosts four
pointlike corner localized Mojorana modes [17,33]. However,
thus far the proposed three-dimensional (3D) HOTSCs only
encompass Majorana hinge modes, while the mechanism and
the platforms for the realizations of 3D corner Majorana
modes remained elusive. In this Letter, we therefore venture
the following set of questions, and provide definite answers
to them. (1) What is the underlying pairing symmetry of 3D
HOTSCs that supports corner Majorana modes? (2) What are
the suitable material platforms where such pairings can be
realized?

Key results. Here, we identify two candidate mixed-
parity time-reversal symmetry breaking octupolar pairings,
each of which supports eight zero-energy Majorana corner
modes in suitably cleaved cubic crystals (Figs. 1 and 2).
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Specifically, we show that when an odd-parity spin-triplet
isotropic p-wave pairing (analog of the B phase of 3He)
coexists with an even-parity singlet dx2−y2 + id3z2−r2 pair-
ing, the resulting mixed-parity superconducting state supports
eight Majorana corner modes. This pairing is a prototypical
example of octupolar pairing in a cubic system, transform-
ing under the irreducible Eg representation. It breaks the
time-reversal symmetry, but preserves the cubic symmetry.
Thus p ⊕ (dx2−y2 + id3z2−r2 ) pairing stands as an intrinsic
HOTSC [41]. A cousin p ⊕ (dxy + id3z2−r2 ) pairing, trans-
forming under the mixed T2g and Eg representations, although
supporting eight corner Majorana modes, breaks the cu-
bic symmetry. It thus stands as an extrinsic HOTSC. Since
pointlike corner Majorana modes with dimensionality dB = 0
in three dimensions (d = 3) are characterized by the codi-
mension dc = d − dB = 3, these two paired states represent
third-order topological superconductors (TOTSCs). They can
be realized around an underlying Fermi surface with an addi-
tional twofold sublattice degeneracy besides the conventional
Kramers degeneracy. The corner Majorana modes are sta-
ble even in the presence of a weak s-wave pairing that gets
induced naturally in the presence of dominant d-wave pair-
ings. We identify a doped octupolar Dirac insulator (defined
later) as a suitable platform where such unconventional pair-
ings stem from a unique fully gapped local pairing. While
an intrinsic TOTSC possesses a quantized octupolar mo-
ment Qxyz = 0.5, for an extrinsic TOTSC Qxyz = 0. See the
phase diagrams in Fig. 3. Finally, the proposed TOTSC may
be experimentally realizable in NaCl and structurally simi-
lar compounds InTe, SnAs, and SnSb under high pressure
[42–45].

HOTSCs around Fermi surface. The effective single-
particle BdG Hamiltonian in the presence of p ⊕ (dα +
id3z2−r2 ) pairings, with α = x2 − y2 and xy, around the Fermi
surface (FS), possessing Kramers and twofold sublattice
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degeneracy reads

HFS
octu =

(
k2

2m∗
− μ

)
�300 + �p

3∑
j=1

kj

kF

�13 j

+�1 d1(k)�110 + �2 d2(k) �200 + �s�100, (1)

where �μνρ = ημτνσρ . Three sets of Pauli matrices {η}, {τ },
and {σ } respectively act on the Nambu or particle-hole, sub-
lattice, and spin or Kramers indices, m∗ is the effective mass,
μ is the chemical doping, and kF is the Fermi momentum.
Throughout we consider m∗, μ > 0, such that the pairing
of sharp normal-state quasiparticles takes place around a
Fermi surface. We are then in the weak-coupling regime. The
triplet p-wave pairing with amplitude �p is odd under parity
k → −k, while it preserves the time-reversal symmetry. The
two components of the cubic d-wave pairings (with explicit
forms defined below) are even under parity, i.e., d1,2(−k) =
d1,2(k). But the component d2(k) is odd under the reversal of
time, generated by T = �002K, where K is the complex con-
jugation and T 2 = −1. In addition, we also include an s-wave
pairing with amplitude �s, which preserves the time-reversal
symmetry and gets naturally induced in the presence of a
d-wave pairing, as both pairing channels are even under parity.
The above effective single-particle Hamiltonian enjoys the
particle-hole symmetry, generated by the antiunitary operator

 = �202K with 
2 = +1 and 
HFS

octu

−1 = −HFS

octu.
In the absence of d- and s-wave pairings, HFS

octu describes a
fully gapped isotropic odd-parity p-wave pairing (class DIII).
As such, it supports two copies of gapless Majorana states on
all six surfaces of a cubic crystal, irrespective of its specific
cut [46]. When only the d-wave pairings are included, all
the matrices appearing in HFS

octu mutually anticommute. Since
then HFS

octu involves six mutually anticommuting matrices,
their minimal dimensionality has to be eight, which in turn
demands an additional twofold sublattice degeneracy of the
Fermi surface. We now address the role of the d-wave pairings
for the realization of Majorana corner modes.

Intrinsic TOTSC. From five possible cubic d-wave pairings,
one can construct only one combination with

d1(k) =
√

3

2k2
F

(
k2

x − k2
y

)
, d2(k) = 1

2k2
F

(
2k2

z − k2
x − k2

y

)
(2)

that preserves the cubic symmetry, but breaks the time-
reversal symmetry. The resulting dx2−y2 + id3z2−r2 state is an
octupolar pairing and supports eight Majorana-Weyl nodes at
±kx = ±ky = ±kz = kF /

√
3 (in the absence of other super-

conducting orders). Even though both d-wave components
transform under the irreducible doublet Eg representation of
the cubic or Oh point group, their amplitudes in Eq. (1) are set
to be different, since these two pairings cannot be transformed
into each other by an arbitrary SO(3) rotation. Nonetheless,
their transition temperatures are the same, as expected [47,48].

In the presence of such octupolar pairing, the gapless
surface states of the isotropic p-wave pairing get partially
gapped, since all the involved matrices in Eq. (1) then mutu-
ally anticommute. In other words, the dx2−y2 + id3z2−r2 pairing
acts as a mass for gapless surface Majorana fermions of the
p-wave superconductor. However, such a BdG Wilson-Dirac
mass vanishes along the high-symmetry eight body-diagonal

FIG. 1. (a) Eigenvalue spectra (En) for an intrinsic TOTSC, real-
ized around a Fermi surface, on a cubic lattice. Inset: Eight near (due
to finite system size) zero-energy corner modes (red dots), well sepa-
rated from nearby bulk states (black dots). (b) Local density of states
for the zero-energy states in (a), displaying sharp localization around
the corners in the 〈111〉 directions. These results remain qualitatively
unchanged in the presence of a small s-wave component, and for the
local pairing shown in Eq. (7) in an octupolar (topological or trivial)
Dirac insulator (doped or undoped) [46]. The linear dimension of
the system is L = 10 in each direction, and t1 = t0 = �1 = �2 =
m0/2 = 1 and �s = 0 in Eq. (5).

〈111〉 directions. As a result, the surface states of isotropic
p-wave pairing are left gapless only at eight corners of a cubic
crystal cleaved so that they are placed at (±1,±1,±1)L/2,
where L is the linear dimension of the system in each direc-
tion (see Fig. 1). The resulting p ⊕ (dx2−y2 + id3z2−r2 ) pairing
therefore stands as an intrinsic TOTSC that supports eight
zero-energy Majorana corner modes. On the other hand, when
�2 = 0, the xy surfaces and four hinges along the z direction
host gapless Majorana modes, and we realize a second-order
topological superconductor [46].

Extrinsic TOTSC. Another octupolar pairing with

d1(k) =
√

3

k2
F

(kxky), d2(k) = 1

2k2
F

(
2k2

z − k2
x − k2

y

)
(3)

that also supports eight Majorana Weyl nodes at
(±√

2, 0,±1)kF /
√

3 and (0,±√
2,±1)kF /

√
3 (in the

absence of any other pairings), partially gaps out the surface
Majorana modes of the isotropic p-wave superconductor.
Such an octupolar pairing leaves eight corners gapless,
which, as dictated by the dxy pairing component in Eq. (3), are
pinned at the four side centers on each of the two xy planes
in real space (see Fig. 2). The above two components of the
d-wave pairings respectively transform under the T2g and Eg

representations, thereby breaking the cubic symmetry and
the corresponding two amplitudes in Eq. (1) are generically
different. The resulting mixed-parity p ⊕ (dxy + id3z2−r2 )
pairing then stands as an extrinsic TOTSC. Once again
if we switch off the d3z2−r2 -wave pairing, a second-order
topological superconductor is realized [46].

Induced s-wave pairing. Now we address the impact of the
induced s-wave component on the fully gapped TOTSC. For a
small amplitude of such parasitic s-wave pairing the spectra of
BdG quasiparticles remain fully gapped, and the system con-
tinues to support eight localized corner Majorana modes [46].
However, beyond a critical amplitude of the s-wave pairing,
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FIG. 2. (a) Eigenvalue spectra (En) for an extrinsic TOTSC, real-
ized around a Fermi surface, on a cubic lattice (dashed cube), cleaved
in such a way (solid cube) that eight corners are now placed at the
four side centers on each of the two xy planes. Inset: Eight near
zero-energy corner modes (red dots), well separated from nearby
bulk states (black dots). (b) Local density of states for the zero-
energy states, displaying sharp corner localization. These results
remain qualitatively unchanged in the presence of a small s-wave
component, and for the local pairing shown in Eq. (7) in an octupolar
Dirac material [46]. The linear dimensions of the system are Lx = 13,
Ly = 13, and Lz = 10 in the x, y, and z directions, respectively. The
parameter values are the same as in Fig. 1.

which for the intrinsic (int) and extrinsic (ext) TOTSCs are
respectively

�∗,int
s = �p, �∗,ext

s =
√

�2
p + �2

1

/
3, (4)

the fully gapped paired state becomes topologically trivial and
thus no longer supports corner modes.

Lattice model and numerical results. To anchor the above
outlined key results, next we perform a numerical analysis
on a cubic lattice. The lattice-regularized Hamiltonian cor-
responding to Eq. (1), which, pending the representation of
the � matrices, also describes the octupolar Dirac insulator
(defined below) and the realization of the TOTSC therein,
reads [49]

H lat
octu = t1

∑
j=1,2,3

sin(k ja)� j + �4 mlat
1 (k)

− �1 �5

√
3 d lat

1 (k) − �2 �6 d lat
2 (k) + �s�̃. (5)

Here, a is the lattice spacing and mlat
1 (k) = m0 − 6t0 +

2t0[cos(kxa) + cos(kya) + cos(kza)] is the first-order Dirac
mass. For intrinsic and extrinsic TOTSCs, d lat

1 (k) =
cos(kxa) − cos(kya) and sin(kxa) sin(kya), respectively, while
d lat

2 (k) = 2 cos(kza) − cos(kxa) − cos(kya) in both cases.
Here, j = 1, 2, and 3 correspond to x, y, and z, respectively.
Comparing with Eq. (1), we find the following correspon-
dences among the matrices � j = �13 j for j = 1, 2, 3, �4 =
�300, �5 = �110, �6 = �200, and �̃ = �100. When expanded
around the � = (0, 0, 0) point of the cubic Brillouin zone, for
example, H lat

octu takes the form of HFS
octu with m∗ = (2t0a2)−1,

μ = m0, kF = a−1, and �p = t1. We implement the above
tight-binding model on a cubic lattice with an open boundary
condition and numerically diagonalize it for different cuts of
the crystal. The results are displayed in Figs. 1 and 2. Eight
zero-energy Majorana corner modes are found when 0 <

m0/t0 < 12. On the other hand, for m0/t0 < 0 and m0/t0 >

12, the paired state is topologically trivial [46]. In the fol-
lowing, we identify the octupolar Dirac insulator as a suitable
platform for the realization of the TOTSC and the correspond-
ing Majorana corner modes.

Octupolar Dirac insulators. The lattice model for an oc-
tupolar Dirac insulator takes the form shown in Eq. (5) when
�s = 0, with eight-component mutually anticommuting Her-
mitian � matrices now given by � j = β1τ1σ j for j = 1, 2, 3,
�4 = β1τ3σ0, �5 = β1τ2σ0, and �6 = β2τ0σ0. Three sets of
Pauli matrices {σ }, {τ }, and {β} respectively act on the spin
(↑,↓), parity (±), and sublattice (A, B) indices. The Hamil-
tonian is invariant under a composite PT symmetry, where
T = (β0τ0σ2)K, P = β1τ3σ0, and under P : k → −k. Here,
T and P respectively play the role of time-reversal and parity
operators, with (T P )2 = −1. Furthermore, the Hamiltonian
is invariant under an additional parity operator P ′ = β2τ1σ0

and P ′ : k → −k, and enjoys a unitary particle-hole or chiral
symmetry, generated by �7 = β3τ0σ0. Even though the above
model for 0 < m0/t0 < 12 supports a topological octupolar
insulator with charged corner modes, here we consider the
trivial regimes, m0/t0 < 0 and m0/t0 > 12. The normal state
then does not support any topological boundary modes. There-
fore, the appearance of Majorana bound states can solely be
attributed to pairing, which we discuss next.

To select the pairing realizing the TOTSC in an octupolar
insulator, we first notice that the system supports 28 (the
number of purely imaginary eight-component Hermitian ma-
trices) local (on-site or intraunit) cell pairings, due to the Pauli
exclusion principle. To capture all the pairings in a unified
framework we Nambu-double the original eight-component
spinor, and absorb the unitary part of the time-reversal opera-
tor (T ) in the hole part of the Nambu spinor. In such a basis
the octupolar Dirac insulator takes the form shown in Eq. (5),
with sixteen-dimensional � matrices taking the explicit forms

�1 = η3β1τ1σ1, �2 = η3β1τ1σ2, �3 = η3β1τ1σ3,

�4 = η3β1τ3σ0, �5 = η0β1τ2σ0, �6 = η0β2τ0σ0. (6)

The chemical potential term is given by −μ(η3β0τ0σ0).
A local pairing (with a constant amplitude) supporting

Majorana corner modes satisfies the following algebraic
constraints. It anticommutes with the Dirac kinetic energy
(proportional to t1) and commutes with the first-order Dirac
mass [50]. The paired state then represents a fully gapped
topological pairing with two-dimensional dispersive massless
Majorana modes occupying all six surfaces of a cubic crystal,
when �1 = �2 = 0. In addition, the paired state must also
simultaneously anticommute with two higher-order Wilson-
Dirac insulating masses (proportional to �5 and �6), such
that surface states get partially gapped, leaving eight corners
gapless. Only one pairing satisfies all these constraints [46],
for which the effective single-particle Hamiltonian is

Hoctu = �(η1 cos φ + η2 sin φ)β1τ1σ0, (7)

where φ is the U (1) superconducting phase and � is the pair-
ing amplitude. This pairing is a spin singlet, but mixes even-
and odd-parity bands, and two sublattices. We numerically
diagonalize H lat

octu corresponding to the octupolar insulator in
the presence of this pairing and find the eight zero-energy
corner Majorana modes in a cubic system, cleaved according
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to the chosen form of d lat
1 (k), similar to Figs. 1 and 2, thus

yielding a TOTSC. If, on the other hand, we set �2 = 0, the
same paired state corresponds to a second-order topological
superconductor with gapless hinge modes along the z direc-
tion and surface states occupying the xy surfaces [46].

These observations can be supported by projecting the
above local pairing onto the Fermi surface using the band
basis of the single-particle Hamiltonian in Eq. (5), and
neglecting the interband pairing components. The reduced
Hamiltonian (after a suitable global unitary rotation) assumes
the form of HFS

octu in Eq. (1), when expanded around the � or
R point of the Brillouin zone. Furthermore, with appropriate
choices of the insulating mass form factor d lat

1 (k) the same
local pairing from Eq. (7) yields either intrinsic or extrinsic
TOTSC [46]. Therefore, the local pairing Hoctu imposes a
nontrivial octupolar topology when projected onto the Fermi
surface, in spite of the parent insulating phase being trivial.
These conclusions remain qualitatively unchanged when the
normal state is a topological octupolar insulator.

Topological invariant. Intrinsic and extrinsic TOTSCs can
be distinguished besides by symmetry, also in terms of a bulk
topological invariant, the octupolar moment Qxyz [51–53].
To extract Qxyz, we treat holelike excitations as independent
particlelike excitations and compute

n = Re

[
− i

2π
Tr

(
ln

{
U † exp

[
2π i

∑
r

q̂xyz(r)

]
U

})]
, (8)

where q̂xyz(r) = xyzn̂(r)/L3, n̂(r) is the number operator at
r = (x, y, z) of a periodic cubic system of linear dimension
L in each direction, and U is constructed by columnwise
arranging the eigenvectors for the negative-energy states. The
octupolar moment is defined as Qxyz = n − nal (modulo 1),
where nal = (1/2)

∑
r xyz/L3 represents n in the atomic limit

and at half filling. We compute Qxyz for the lattice-regularized
BdG Hamiltonian and the local pairing in an octupolar Dirac
insulator [Eqs. (5) and (7)], which, depending on the form
factor d lat

1 (k), yields intrinsic or extrinsic TOTSC. While the
octupolar moment is quantized Qxyz = 0.5 in an intrinsic
TOTSC, Qxyz = 0 in an extrinsic TOTSC. In terms of the
corner modes and Qxyz, we construct cuts of the phase diagram
for intrinsic and extrinsic TOTSCs in Fig. 3.

Summary and discussions. We show that time-
reversal symmetry breaking mixed-parity octupolar
p ⊕ (dα + id3z2−r2 ) pairing supports eight corner localized
Majorana modes in properly cleaved cubic crystals (Figs. 1
and 2). There are two such orders, representing intrinsic (for
α = x2 − y2) and extrinsic (for α = xy) TOTSCs. The corner
modes can be detected by scanning tunneling microscopy,
for example. We furthermore identify a doped octupolar
(topological or trivial) Dirac insulator as the suitable material
platform where such superconducting order can arise from
local or on-site Cooper pairs. Remarkably, among all possible

FIG. 3. Phase diagrams of TOTSCs (always supporting eight
corner Majorana modes) for (a) lattice-regularized BdG Hamiltonian
and (b) local pairing in Eq. (7) in an octupolar Dirac insulator
for t1 = 1. For intrinsic (extrinsic) TOTSC, Qxyz = 0.5 (0.0). Trivial
pairing does not support any corner modes and Qxyz = 0 therein. In
(a) �1 = �2 = �, while in (b) �1 = �2 = 1.0 and � denotes am-
plitude of the local pairing in Eq. (7). The octupolar Dirac insulator is
topological (trivial) for 0 < m0/t0 < 12 (m0/t0 < 0 and m0/t0 > 12).

local pairings in this system, the unique pairing supporting
the Majorana corner modes is also energetically most favored
over a wide range of m0/t0, covering both topological and
trivial Dirac insulating phases in the normal state [46].
In addition, the TOTSC and its associated corner modes
remain stable in the presence of a weak induced s-wave
pairing.

Presently, NaCl is the only known candidate material for
an octupolar topological Dirac insulator [54] and it may be a
superconductor under pressure with a transition temperature
Tc ∼ 2–7 K [42]. Nonetheless, structurally analogous binary
compounds such as InTe, SnAs, and SnSb under high pressure
also show superconductivity with Tc ∼ 1–3 K [43–45]. Given
that our analysis suggests that the doped octupolar Dirac
insulator does not need to be topological to accommodate
TOTSC, which is at the same time energetically most favor-
able topological pairing in this system [46], we expect that the
topological nature of superconductivity in these materials will
be scrutinized more thoroughly in the future. Our proposal
should also stimulate the search for new octupolar Dirac ma-
terials. Indeed, a recent study [55] reported possible candidate
materials for the realization of the octupolar Dirac insulator in
Ti4XTe3, with X = Pb, Sn. When doped, these materials will
constitute an ideal platform to harbor TOTSCs.

Note added in proof. Recently, we became aware of a
study where proximity-induced TOTSC in a doped third-order
topological insulator with preexisting charged corner modes
has been discussed [56].
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